首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 687 毫秒
1.
为进一步提升农用拖拉机牵引装置的牵引效率和整机作业效率,针对其牵引装置进行智能化测试与改进研究。在全面理解农用拖拉机牵引装置工作机理及组件结构的基础上,建立牵引系统理论模型,并对相关联的悬挂装置同步改进,将驱动、牵引、悬挂形成闭环且协调的智能控制系统,进行试验测试。测试表明:选定牵引效率、燃油消耗率(经折合换算后)、悬挂稳定保持率和拖拉机整机作业效率4个变量参数,改进后的优化效果分别达到+2.8%、-3.7%、+12.1%和+15.8%,改进效果明显,可为农用拖拉机或其他动力驱动机械的类似部件优化提供思路和参考。  相似文献   

2.
随着农业机械自动化水平的不断提高,大型农用拖拉机日益向智能化和机电一体化方向发展。如何使操控者快速、准确地获得拖拉机及农机具的运行参数,是开发智能农业机械的重要组成部分。为此,讨论了智能拖拉机状态显示的必要组件和特点,为优化操作者对拖拉机运行状态的感知力,设计了一种简明、清晰并具有继承性的智能拖拉机状态信息显示形式,为驾驶员在作业时提供关键的信息参数,提高机械的作业效率并降低驾驶员劳动强度。  相似文献   

3.
袁苗达 《农机化研究》2019,(2):253-256,261
为进一步提升农用拖拉机的传动性能,同时降低能耗损失,根据拖拉机作业工况特点及用途,在查阅国内外拖拉机传动装置特性研究与整机发展情况的基础上,通过分析我国常用拖拉机的结构组成及传动系统工作原理,将混合动力传动应用于核心传动装置,并对关键部件进行合理布局和计算选型;同时,植入智能控制系统,对变速、转向、步进等各作业状态进行监控与实时调整,达到传动装置工作的可视化目标。其中,CVT应用于连续、平稳更换挡位,实现了传动及时、控制精准性能要求。搭建了试验平台对牵引性能、能耗环保指标及安全性能综合测试,结果表明:各挡位的传动比较优化前数据提升19%左右,拖拉机整体工作效率得到有效提高,可为后续拖拉机其他核心部件优化与改进提供思路和参考。  相似文献   

4.
基于当前智能电力控制技术,对拖拉机应用效果进行了优越性分析。在了解国内外拖拉机发展基础上,结合拖拉机工作原理与作业特性,选取模糊控制算法与PID自动调节方法,对拖拉机的电力自动控制系统硬件构成及软件控制两大方面进行优化,设计了电力控制部件变换电路、力位综合控制及传感与导航控制程序,并进行试验性能验证。试验表明:电力自动控制系统的应用与传统式拖拉机相比,位置定位、转角控制及作业深度等精准度得到提升,实现了拖拉机驱动环节的混合动力控制,整体作业效率提升了近45%左右,能耗效率由8.9 kW·h/6 6 7 m^2降低至5.7 kW·h/667m^2,所耗费用降低了20%左右。  相似文献   

5.
为有效提高拖拉机的作业效率,选取轮式拖拉机的转向系统进行改进优化。在全面理解拖拉机转向控制形式及原理的基础上,建立了该拖拉机的转向角度数学模型,将全液压转向控制改进为线控液压转向。同时,对硬件配置进行合理选型,搭建正确的控制驱动电路,融入ECU控制,对转向系统的角位移信号采集与控制进行PID模糊算法程序实时调控,形成完整的优化转向系统,并进行了性能测试。试验表明:改进后的拖拉机转向系统各评定参数较改进前提升效果明显,以数字1~10为优劣评定依据,拖拉机的转向刚度评价值可提高到1. 7,整机的车轮回正满意度可提高1. 6;同时,经采样,改进后的转向装置的转角误差范围波动平稳控制在±0. 15m范围内,整机运行平稳可靠,可为类似农业机械的改进优化提供一定的参考。  相似文献   

6.
为了提高轮式拖拉机行走装置的跟踪控制精度与设计优化效率,采用VR处理技术与跟踪控制理论,对其行走装置的VR跟踪系统进行了设计。通过图像准确采集与特征信号提取,在目标跟踪与智能避障核心算法下引入合适的比例因子进行VR跟踪系统模型建立与软硬件设计与仿真试验。试验结果表明:在确保VR场景渲染下拖拉机与作业场景的高度融合基础上,跟踪系统的避障成功率平均为80%以上,纠偏响应速度保持在41.2~43.8s之间,VR跟踪精度保持在89.1%以上,最高可达91.3%;拖拉机整机行走跟踪稳定性能符合实际作业要求,设计可行。该可视化设计研究可为相关学者对农机设备的开发优化提供思路,对于提高拖拉机行走装置及类似机具设计效率有很好的借鉴价值。  相似文献   

7.
张勇  武欣 《农机化研究》2023,(2):230-235
由于人工耕作误差大、效率低,拖拉机耕作已成为当前研究的热点和重点,但驾驶拖拉机需要大量的人力和时间,降低了农业耕作的整体效率。针对这一问题,提出了一种基于机器视觉的农用无人拖拉机耕作轨迹智能控制系统,并对系统的硬件进行了设计,结合智能控制算法实现对拖拉机耕作环境图像进行处理,应用自适应路径跟踪算法实现农业无人拖拉机耕作轨迹的自适应跟踪,从而达到轨迹控制的目的。研究结果表明:系统能够准确跟踪和控制农用无人拖拉机的耕作轨迹,提高了拖拉机的作业效率。  相似文献   

8.
为进一步提升一体化灌溉施肥机的作业效率,在明确其结构组成与工作原理的基础上,对内部电气控制系统进行了优化研究。运用PID智能调节和PLC控制理论,对整机的电气装置和自动控制系统进行优化改进,包括调节控制模块、数据管理模块及智能监测模块等,并选定优化参数进行灌溉试验。结果表明:以肥液浓度C为指标,计算机理论浓度与灌溉试验浓度均可达到设定目标浓度状态,且二者吻合较好;优化后的一体化灌溉施肥机的水利用效率和肥料利用效率分别在原基础上提高22%和13%,大大缩短了施肥灌溉作业时间,验证了此优化研究的可行性,具有一定的应用价值。  相似文献   

9.
为了提高无人驾驶拖拉机大面积作业的自动化水平,实现农业的精密化播种、收割等环节,提出了一种基于PC嵌入式技术和物联网技术的新型无人驾驶拖拉机智能导航控制系统。以嵌入式PC处理器为核心,结合Linux嵌入式系统和物联网技术,设计了智能无人驾驶拖拉机的控制系统软硬件部分。基于PC技术,对无人驾驶拖拉机的自主导航能力进行了测试,测试结果表明:通过对多台无人驾驶拖拉机的协同作业能力进行测试,无人驾驶拖拉机自主导航曲线和预设导航曲线吻合程度较高,定位误差较小,误差收敛速度较快。基于物联网技术,对多台拖拉机的协同作业能力进行了测试,测试结果表明:3台无人驾驶拖拉机的定位精度均较高,都没有超过0.06m,从而验证了物联网在无人驾驶拖拉机控制系统中使用的可行性。如果将其在大面积农业作业中进行推广,将具有非常广阔的应用前景。  相似文献   

10.
为进一步提高播种机的故障自诊断功能与综合作业效率,结合智能数据挖掘技术对其故障监测系统进行应用研究。通过系统性了解播种机作业机理与监控系统实现目标,建立了播种机故障检测流程,将发动机、变速箱体、齿轮传动等部位故障转换成数据代码,根据智能数据挖掘技术的闭环控制机理,搭建故障监测理论模型,生成播种机故障监测系统功能架构,并进行故障监测系统应用试验。结果表明:保持15~25区间的数据挖掘核心算法有效规则数,可信度平均可达到0.84以上,较传统控制算法提升了3%,平均故障检测准确率为95.37%,较一般故障诊断应用技术提升了5.0%,故障平均检测耗时缩短了46.55%,提高了播种机故障监测效率,可为播种机及类似农机向智能数据化改进提供一定思路。  相似文献   

11.
基于自校准变结构Kalman的农机导航BDS失锁续航方法   总被引:2,自引:0,他引:2  
针对农机自动导航作业过程中存在的BDS信号失锁导致系统突然失控的问题,提出了一种适用于轮式农机的基于自校准变结构Kalman滤波器的农机导航BDS失锁续航方法。依据4自由度农机运动学模型,设计了BDS/INS信息融合Kalman滤波器;进行INS导航定位误差不确定度分析,并设计了基于自回归模型的航向校准方法、INS传感器角速率测量零偏实时校准方法,结合上述方法设计了自校准变结构滤波器,进行位姿信息处理,结合导航跟踪控制方法实现失锁续航功能。根据分米级精度要求,进行了机器人直线、矩形路径失锁续航试验和农机田间直线续航试验。机器人续航试验结果表明:行驶速度为1 m/s时,与运用未校准滤波器的续航系统相比,该方法实际平均横向偏差减小34%,横向偏差达到20 cm时机器人在路径上的平均行驶距离提高80%。农机田间续航试验结果表明:行驶速度为1 m/s时,在实际偏差小于20 cm的条件下,农机在路径上的行驶平均距离达到16. 65 m。  相似文献   

12.
履带拖拉机采用差速转向,转向可控性差,影响自动导航性能,为提高履带拖拉机自动导航的性能,以液压传动控制行星差速转向履带拖拉机为研究对象,建立履带拖拉机转弯半径数学模型。构建每个控制量下转弯半径均值和方差计算方法,建立基于卡尔曼滤波和局部加权回归的转弯半径均值和方差更新方法。分别针对直线路径跟踪和掉头建立基于高斯混合模型的履带拖拉机转弯半径控制方法。采用纯跟踪算法分别以不同的初始位置偏差进行自动导航仿真试验,得到导航轨迹、位置偏差和角度偏差。以农夫NF-702型履带拖拉机为平台,分别以不同车速进行导航试验,试验结果表明,在初始航向角为0,车速分别为1.0、1.5m/s时,导航平均误差分别为-0.62cm和0.28cm,导航误差绝对值极值分别为10.14cm和8.10cm,导航误差绝对值均值分别为2.34cm和2.57cm,导航均方根误差分别为3.77cm和3.99cm。本文提出的基于高斯混合模型的履带拖拉机转弯半径控制方法可应用到液压传动控制行星差速转向履带拖拉机自动导航领域,满足实际田间作业需求。  相似文献   

13.
农业机械自动转向是实现农业机械自动化和智能化的关键技术之一,农田作业工况较为复杂,拖拉机自动转向装置的现场安装调试费时费力。针对这一问题,本研究研制了一种拖拉机自动转向试验台,对拖拉机自动转向装置进行模拟调试与测试以保证其控制的准确性和可靠性,从而减少田间测试时间,降低安装使用成本。本研究选用120马力拖拉机前桥,通过对机械结构、液压系统和电气控制系统的设计计算,搭建了拖拉机自动转向试验台。利用惯性测量单元对转向系统工作性能进行测试,试验结果表明方向盘平均转向间隙为16.48°,车轮平均转角延迟时间为0.14s,响应速度和稳定性符合农业机械转向要求。所研制的拖拉机自动转向试验台能够用于测试拖拉机前桥的工作状态,并对其转向性能参数进行准确采集和记录,可为农业机械自动转向装置的调试和性能检测提供一个高效可靠的测试平台。  相似文献   

14.
基于自动导航的小麦精准对行深施追肥机设计与试验   总被引:2,自引:0,他引:2  
针对冬小麦返青期地表追施氮肥使氮素挥发导致肥料利用率低的问题,结合目前在小麦追肥过程中缺少深施氮肥作业装备的现状,进行了基于拖拉机自动导航技术实现精准对行深施氮肥的技术研究,设计了小麦精准对行精量深施追肥机。追肥机采用安装有自动导航系统的拖拉机牵引实现精准对行,以RTK-GNSS接收机测取的作业速度为基准,通过液压系统驱动排肥机构工作,双圆盘开沟器开沟深施,采用PID控制排肥轴转速与车辆行驶速度实现实时匹配,达到精量控制追肥量的目的。田间试验结果表明:设置目标追肥量为200 kg/hm2,车辆行驶速度为5 km/h时,追肥机能完成对行深施追肥作业,机具对行作业误差在±6 cm以内,追肥量偏差小于9%,可满足实际生产需求;对照撒肥机表层撒肥作业,每公顷减施氮肥25 kg左右,小麦每公顷增产486.5 kg左右。  相似文献   

15.
视觉导航拖拉机自动转向控制系统研究   总被引:1,自引:0,他引:1  
拖拉机的转向控制系统是实现自动驾驶的重要组成部分。为此,以铁牛654拖拉机为研究对象,进行了自动转向控制系统的研究,提出了基于简化的运动学模型模糊控制方法。将利用视觉传感器得到的方位偏差和侧向偏差作为控制器的输入,控制器可以根据输入实时输出相应的前轮转角。仿真和试验表明,该控制器有比较好的跟随性和响应性,可以较好地适应低速时拖拉机行驶的要求,为深入开展拖拉机的自动驾驶研究提供了有益尝试。  相似文献   

16.
基于DGPS与双闭环控制的拖拉机自动导航系统   总被引:1,自引:0,他引:1       下载免费PDF全文
以东方红X-804型拖拉机为平台,设计了一种基于RTK-DGPS定位和双闭环转向控制相结合的自动导航系统,研究提高农业机械导航控制精度的方法。阐述了导航系统整体设计方案,以RTK-DGPS和AHRS500GA分别提供位置信息和辅助修正信息实现准确定位,以电控液压转向系统实现转向控制。分析了整体控制的策略,建立了路径跟踪的传递函数模型,阐述了双闭环转向控制算法的建立过程,以及控制器的硬件实现。试验结果表明:GPS定位数据经过校正后,平均偏差降低至0.031 m;双闭环控制算法提高了自动转向系统性能,稳态时方波信号以及正弦波信号的跟踪误差平均值为0.40°;在拖拉机田间作业跟踪过程中,路径跟踪误差平均值不超过0.019 m,转向轮偏角跟踪误差平均值为0.43°,标准差不超过0.041 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号