首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 887 毫秒
1.
To investigate the relationship between age and the sugar composition in hydrolysates of the surface horizon and buried humic horizons with age up to 28,000 years B.P., the neutral sugars and amino sugars in soil hydrolysates were determined.

The ratios of total sugar carbon content to total carbon content of soil ranged from 2.68 to 4.13 percent. These values showed no distinct relationship with age.

Rhamnose, fucose, arabinose, xylose, mannose, galactose, glucose, g1ucosamine and galactosamine were present in the hydrolysates of all soil samples.

The polysaccharides of soil samples which have been buried for shorter periods were dominated by glucose, while those of soil samples buried for longer periods were dominated by mannose.

The proportion of hexoses showed a tendency to increase with age, while that of pentoses showed a tendency to decrease with age.  相似文献   

2.
Amino sugars are increasingly used as indicators for the accumulation of microbial residues in soil and plant material. A reverse-phase high-performance liquid chromatography method was improved for the simultaneous determination of muramic acid, mannosamine, glucosamine and galactosamine in soil and plant hydrolysates via ortho-phthaldialdehyde (OPA) pre-column derivatisation and fluorescence detection. The retention time was reduced, and the separation of muramic acid and mannosamine was optimised by modifying the mobile phase. The effects of excitation wavelength, OPA reaction time, tetrahydrofuran concentration and pH value of the mobile phase on the amino sugar separation were tested. Quantification limits were in the range of 0.13 to 0.90 μg ml−1. No interferences exist from amino acids or other primary amines, occurring in soil and plant hydrolysates.  相似文献   

3.
《Journal of plant nutrition》2013,36(12):2391-2401
Abstract

Availability of phosphorus (P) in soil and its acquisition by plants is affected by the release of high and low molecular weight root exudates. A study was carried out to ascertain the qualitative and quantitative differences in root exudation among the genotypes of maize (Zea mays L.) and green gram (Vigna radiata L.) under P‐stress. Results showed that both inter‐ and intra‐species differences do exist among maize and green gram in terms of root exudation, P uptake, and shoot and root P content. In general, green gram, a legume crop, had greater root exudation compared to maize. However, the amino acid content of the total root exudates in maize was two‐fold as compared to green gram. The maize and green gram genotypes possessed genetic variability in root exudation. Irrespective of the species or genotypes, a positive relationship was found among P uptake rates, total root exudation, and shoot and root 32P content. The amount of sugars and amino acid present in the root exudates of P‐starved seedlings also add to the variation in P uptake efficiency of genotypes.  相似文献   

4.
Root exudates play a major role in the mobilization of sparingly soluble nutrients in the rhizosphere. Since the amount and composition of major metabolites in root exudates from one plant species have not yet been systematically compared under different nutrient deficiencies, relations between exudation patterns and the type of nutrient being deficient remain poorly understood. Comparing root exudates from axenically grown maize plants exposed to N, K, P, or Fe deficiency showed a higher release of glutamate, glucose, ribitol, and citrate from Fe‐deficient plants, while P deficiency stimulated the release of γ‐aminobutyric acid and carbohydrates. Potassium‐starved plants released less sugars, in particular glycerol, ribitol, fructose, and maltose, while under N deficiency lower amounts of amino acids were found in root exudates. Principal‐component analysis revealed a clear separation in the variation of the root‐exudate composition between Fe or P deficiency versus N or K deficiency in the first principal component, which explained 46% of the variation in the data. In addition, a negative correlation was found between the amounts of sugars, organic and amino acids released under deficiency of a certain nutrient and the diffusion coefficient of the respective nutrient in soils. We thus hypothesize that the release of dominant root exudates such as sugars, amino acids, and organic acids by roots may reflect an ancient strategy to cope with limiting nutrient supply.  相似文献   

5.
[目的]秸秆残体还田能引起土壤微生物残留物氨基糖的变化,然而不同部位秸秆残体因含碳氮化学组分差异,还田到不同肥力土壤后对氨基糖在团聚体中分配的影响尚不明析.因此,研究添加玉米不同残体对不同肥力棕壤团聚体中氨基糖分配的影响,并利用微生物标识物氨基葡萄糖与胞壁酸比值变化指示棕壤团聚体真菌和细菌群落组成动态变化,对深入阐明秸...  相似文献   

6.
Amino sugars are key compounds of microbial cell walls, which have been widely used as biomarker of microbial residues to investigate soil microbial communities and organic residue cycling processes. However, the formation dynamics of amino sugar is not well understood. In this study, two agricultural Luvisols under distinct tillage managements were amended with uniformly 13C-labeled wheat residues of different quality (grain, leaf and root). The isotopic composition of individual amino sugars and CO2 emission were measured over a 21-day incubation period using liquid chromatography–isotope ratio mass spectrometry (LC–IRMS) and trace gas IRMS. Results showed that, the amount of residue derived amino sugars increased exponentially and reached a maximum within days after residue addition. Glucosamine and galactosamine followed different formation kinetics. The maxima of residue derived amino sugars formation ranged from 14 nmol g−1 dry soil for galactosamine (0.8% of the original concentration) to 319 nmol g−1 dry soil for glucosamine (11% of the original concentration). Mean production times of residue derived amino sugars ranged from 2.1 to 9.3 days for glucosamine and galactosamine, respectively. In general, larger amounts of amino sugars were formed at a higher rate with increasing plant residue quality. The microbial community of the no-till soil was better adapted to assimilate low quality plant residues (i.e. leaf and root). All together, the formation dynamics of microbial cell wall components was component-specific and determined by residue quality and soil microbial community.  相似文献   

7.
Field and pot experiments showed that the P demand of wheat is highest in early stages of growth (up to 1.67 μg P per cm2 root surface and day). The needed orthophosphate ions H2PO4? and HPO42-move from soil to the root by diffusion. This process is controlled by the concentration gradient of the diffusible phosphate and the effective diffusion coefficient according to Pick's first law. Root excretions (rhizodeposition) are able to affect both characteristics. The water soluble portion of rhizodeposition contains more than 50% of up to 8 different sugars, 10–40% carboxylic acids and 10–15 amino acids and amides. The composition varies in dependence on the age of the root parts and on nutrition (Zea mays L., Brassica napus L., Pisum sativum L.). Diffusion experiments using small soil blocks showed that 50–75% of the root exudates were decomposed by respiration within 3 days. The rest was largely chemically converted. Originally present sugars disappeared. Due to the biosynthesis of different organic acids from the individual sugars the mobilisation of Ca3(PO4)2 by Pantoea agglomerans increased when the sugar mixture was derived from the rhizodeposition of P deficient plants with more pentoses instead of glucose and fructose (mainly effect of anions). In the rhizosphere therefore a mixture of rhizodeposition and its conversion products exists which affects the binding of phosphorus in soil and the P transport to the root. This should be considered both for the development of new soil extractants and for modelling the P supply to plants.  相似文献   

8.
Root exudates comprising soluble low‐molecular‐weight organic compounds (LMWOCs) play a crucial role in the rhizosphere processes. Therefore, accurate determination of the composition and quantity of these compounds is of importance. A continuous trapping system (CTS) with XAD‐4 macroporous resin is widely used for collecting root exudates in hydroponics, and ion exchange resins are used in the separation of root exudates into neutral, acid and basic fractions. Here, we studied the adsorption equilibrium isotherms and dynamic adsorption properties of 27 standard LMWOCs on XAD‐4 resin. The adsorption isotherms of most LMWOCs matched the Langmuir isotherm equations. Furthermore, we investigated the adsorption efficiency of the CTS for LMWOCs and the recovery ratios during fractionation by ion exchange resins. The adsorption capacities of the CTS for LMWOCs which are non‐polar or having large non‐polar moieties were higher. The recovery ratios of most LMWOCs were larger than 80% during fractionation. The overall recovery ratios of LMWOCs were ca. 10, 20, and 30% for sugars, organic acids, and amino acids, respectively. Using this collection method, we present the composition and quantity of root exudates of cucumber (Cumumis sativus L.) at four different growth stages. The major components of root exudates were similar to previous works, whereas the quantities were different. The various collection methods may be the main reason for these differences. Therefore, it is necessary to study the overall recovery ratios when the compositions of root exudates via different collection methods are compared.  相似文献   

9.
Chao Liang  Teri C. Balser 《Geoderma》2008,148(1):113-119
Microorganisms participate in soil carbon storage by contributing biomass in the form of refractory microbial cell components. However, despite the important contribution of microbial biomass residues to the stable carbon pool, little is known about how the contribution of these residues to soil carbon storage varies as a function of depth. In this study, we evaluated microbial residue biomarkers (amino sugars) in varied pedogenic horizons from six soil profiles of two geographic sites on a glacial-landscape toposequence in Dane County, WI. We found that the amino sugars appeared to preferentially accumulate in subsoil. Specifically, although total amounts of amino sugars decreased downward through the profile as even as total organic carbon did, the rate of decrease was significantly lower, suggesting that these compounds are more refractory than general soil organic carbon. The proportion of amino sugars to soil organic carbon increased along the depth gradient (from top to bottom), with the exception of Bg horizons associated with high water tables. We also observed that microbial residue patterns measured by amino sugar ratio (e.g., glucosamine to muramic acid) showed different dynamic tendencies in the two different geographic sites, suggesting that residue carbon contribution by fungi and bacteria is likely site-specific and complex. In summary, regardless of the redox microenvironment created by groundwater dynamics in a given soil, our study supports the hypothesis that microbial residues are refractory and that they contribute to terrestrial carbon sequestration.  相似文献   

10.
Concentrations of soluble soil sugars, soluble phenolic acids, and free amino acids were measured in three forest communities at the FACTS-II Aspen FACE Site near Rhinelander, WI, in order to better understand how elevated atmospheric CO2 and O3 are influencing soil nutrient availability and cycling. Sugars, phenolic acids, and amino acids are mostly derived from plant and microbial processes, and have the potential to be influenced by changes in carbon inputs. We hypothesized that concentrations in the soil would parallel increases seen in biological activity, due to greater net primary productivity under elevated CO2 and seasonal patterns of root growth. Chemical analysis of soils revealed marginally significant increases of total soluble sugars and total soluble phenolic acids in the elevated CO2 treatment (+27 mg kg−1, +0.02 μmol g−1), but there were no significant differences in concentrations due to elevated O3 or CO2+O3. Total free amino acid concentrations were not affected by any of the treatments, but significant shifts in individual amino acids were observed. Elevated CO2 and the interaction treatment (elevated CO2+O3) increased aspartic acid concentrations, while elevated O3 treatment decreased the concentration of valine. Concentrations of sugars increased throughout the growing season, while phenolic acids were constant and amino acids decreased. The birch-aspen community had the highest concentration of phenolic acids and sugars overall, while maple-aspen had the lowest. These findings suggest that concentrations of soluble sugars, soluble phenolic acids, and free amino acids in the soil are strongly influenced by soil properties, plant and microbial activity, plant community composition, and to a lesser degree, changes in atmospheric CO2 and O3.  相似文献   

11.
Biogas slurry is increasingly used as fertilizer. Earlier research was focused on plant growth and soil chemical properties, with only little information available regarding the effects of biogas slurry on soil and root microbial indices. For this reason, a 70 d pot experiment was conducted in which biogas and raw slurries obtained from six biodynamic farms were added to a soil. Italian ryegrass (Lolium multiflorum Lam.) was cultivated to investigate the effects on plant yield, N uptake (two harvests), soil microbial biomass, soil fungi, and root‐colonizing microorganisms. Biogas slurries increased the mean total above‐ground plant biomass by 66% and raw slurries by 35% in comparison to the control. The mean plant N‐uptake increased under biogas and raw slurry application by 166% and 65%, respectively, compared with the unfertilized pots. The effects of biogas and raw slurry application on soil microbial indices were similar except for the lower fungal biomass after biogas slurry amendment. In contrast to biogas slurries, the raw slurries significantly increased microbial biomass C and N by roughly 25% in comparison to the control. The application of biogas slurries significantly decreased the soil ergosterol content in comparison with raw slurry and control treatment, leading to a significantly lower ergosterol : microbial biomass C ratio. In the roots, biogas and raw slurry application significantly decreased the concentrations of the amino sugars galactosamine and glucosamine by 39 and 27%, respectively, but not that of ergosterol in comparison with the control. This was most likely due to a reduced colonization with arbuscular mycorrhizal fungi in the presence of highly available plant nutrients.  相似文献   

12.
The soils of three fields under continuous maize culture for 2,4 and 15 yr, and the soil of an adjacent hayfield were analyzed for carbohydrates by gas chromatography. A sharp decrease (30%) in total carbohydrates, paralleled by a smaller decrease in organic matter (9%), was observed after 2 yr of maize cultivation. The 4-yr maize soil showed an upward trend in both organic matter and carbohydrate content but this was subsequently reversed. The 15-yr highly-compacted maize soil had 40% less organic matter and 40% less carbohydrates than the hay soil. When compared to the well structured 2-yr maize soil, this compacted soil had less arabinose, xylose, glucose, galactose and mannose; carbohydrates which are probably of plant root origin. These sugars are likely to be involved in the structural stability of soil aggregates. Conversely, neither the amino sugars nor the uronic acids seemed to contribute to good soil structure.  相似文献   

13.
Plant root systems mediate ecological processes in the rhizosphere through the exudation of organic compounds. Although exudate composition is thought to depend strongly on plant nutrient status, little is known about the influence of multi‐nutrient stresses. In this study, we examined responses to short‐term (3 d) nutrient limitation in Helianthus annuus (common sunflower), and root exudates were collected for 2, 4, or 6 h with the trap‐solution method. Root exudates, analyzed by means of gas chromatography‐mass spectrometry, consisted of over 60 sugars, sugar alcohols, amino acids, organic acids, and phosphates, with sugars and organic acids generally detected in the highest quantities. Twenty‐five of the detected metabolites, including half of the organic acids, sugars, and sugar alcohols, differed in relative abundance among the three sampling intervals, exhibiting higher abundance in sampling intervals greater than 2 h. Similarly, 24 of the detected metabolites, including half of the amino acids, phosphates, and sugar alcohols, were affected by nutrient supply, with 20 exhibiting higher abundance in the high‐nutrient treatment. Fumaric acid, quinic acid, and glucose were detected at significantly higher levels in the low‐nutrient treatment, potentially representing an adaptive response to nutrient limitation in sunflower. However, as sampling interval exerted a strong influence on the apparent effects of nutrient supply, future studies should consider the potential impacts of sampling‐interval length in comparative analyses of genotypes or treatments.  相似文献   

14.
Long‐term cultivation of former grassland soils results in a significant decline of both living and dead microbial biomass. We evaluated the effect of duration of cropping on the preservation of fungal and bacterial residues in the coarse‐textured soils of the South African Highveld. Composite samples were taken from the top 20 cm of soils (Plinthustalfs) that have been cropped for periods varying from 0 to 98 years in each of three different agro‐ecosystems in the Free State Province. Amino sugars were determined as markers for the microbial residues in bulk soil and its particle‐size fractions. Long‐term cultivation reduced N in the soil by 55% and the contents of amino sugars by 60%. Loss rates of amino sugars followed bi‐exponential functions, suggesting that they comprised both labile and stable fractions. With increased duration of cropping the amino sugars attached to silt dissipated faster than those associated with the clay. This dissipation was in part because silt was preferentially lost through erosion, while clay particles (and their associated microbial residues) remained. Erosion was not solely responsible for the reduction in amino sugar concentrations, however. Bacterial amino sugars were lost in preference to fungal ones as a result of cultivation, and this effect was evident in both silt‐ and clay‐sized separates. This shift from fungal to bacterial residues was most pronounced within the first 20 years after converting the native grassland to arable cropland, but continued after 98 years of cultivation.  相似文献   

15.
This review provides current state of the art of compound‐specific stable‐isotope‐ratio mass spectrometry (δ13C) and gives an overview on innovative applications in soil science. After a short introduction on the background of stable C isotopes and their ecological significance, different techniques for compound‐specific stable‐isotope analysis are compared. Analogous to the δ13C analysis in bulk samples, by means of elemental analyzer–isotope‐ratio mass spectrometry, physical fractions such as particle‐size fractions, soil microbial biomass, and water‐soluble organic C can be analyzed. The main focus of this review is, however, to discuss the isotope composition of chemical fractions (so‐called molecular markers) indicating plant‐ (pentoses, long‐chain n‐alkanes, lignin phenols) and microbial‐derived residues (phospholipid fatty acids, hexoses, amino sugars, and short‐chain n‐alkanes) as well as other interesting soil constituents such as “black carbon” and polycyclic aromatic hydrocarbons. For this purpose, innovative techniques such as pyrolysis–gas chromatography–combustion–isotope‐ratio mass spectrometry, gas chromatography–combustion–isotope‐ratio mass spectrometry, or liquid chromatography–combustion–isotope‐ratio mass spectrometry were compared. These techniques can be used in general for two purposes, (1) to quantify sequestration and turnover of specific organic compounds in the environment and (2) to trace the origin of organic substances. Turnover times of physical (sand < silt < clay) and chemical fractions (lignin < phospholipid fatty acids < amino sugars ≈ sugars) are generally shorter compared to bulk soil and increase in the order given in brackets. Tracing the origin of organic compounds such as polycyclic aromatic hydrocarbons is difficult when more than two sources are involved and isotope difference of different sources is small. Therefore, this application is preferentially used when natural (e.g., C3‐to‐C4 plant conversion) or artificial (positive or negative) 13C labeling is used.  相似文献   

16.
Wheat plants were grown in an atmosphere containing 14CO2 at temperatures of 10°C or 18°C for periods from 3–8 weeks. The plant roots were maintained under sterile or non-sterile conditions in soil contained in sealed pots which were flushed to displace respired 14CO2. The 14C content of the shoots, roots and soil was measured at harvest. The loss of 14C from the roots, expressed either in terms of total 14C recovered from the pots or 14C translocated to the roots, ranged from 14.3–22.6%, mean 17.3% or 29.2–44.4%, mean 39.2%, respectively. The presence of soil microorganisms significantly increased 14CO2 release from the rhizosphere but had no effect on the 14C content of the soil. Fractionation of 6 m HC1 hydrolysates from sterile and non-sterile soils showed the presence in all soils of material behaving as neutral sugars and amino acids, in quantities representing 5.9–9.2% and 13.4–17.2% of the soil 14C content for the sugar and amino acid fractions respectively. It is proposed that a major loss of root carbon resulted from autolysis of the root cortex. Root lysis was increased by soil microorganisms, apparently without penetration of the plant cell walls.  相似文献   

17.
The aim of this study was to assess differences in rhizodeposition quantity and composition from maize cropped on soil or on 1:1 (w/w) soil–sand mixture and distribution of recently assimilated C between roots, shoots, soil, soil solution, and CO2 from root respiration. Maize was labeled in 14CO2 atmosphere followed by subsequent simultaneous leaching and air flushing from soil. 14C was traced after 7.5 h in roots and shoots, soil, soil solution, and soil‐borne CO2. Rhizodeposits in the leachate of the first 2 h after labeling were identified by high‐pressure liquid chromatography (HPLC) and pyrolysis–field ionization mass spectrometry (Py‐FIMS). Leachate from soil–sand contained more 14C than from soil (0.6% vs. 0.4%) and more HPLC‐detectable carboxylates (4.36 vs. 2.69 μM), especially acetate and lactate. This is either because of root response to lower nutrient concentrations in the soil–sand mixture or decreasing structural integrity of the root cells during the leaching process, or because carboxylates were more strongly sorbed to the soil compared to carbohydrates and amino acids. In contrast, Py‐FIMS total ion intensity was more than 2 times higher in leachate from soil than from soil–sand, mainly due to signals from lignin monomers. HPLC‐measured concentrations of total amino acids (1.33 μM [soil] vs. 1.03 μM [soil–sand]) and total carbohydrates (0.73 vs. 0.34 μM) and 14CO2 from soil agreed with this pattern. Higher leachate concentrations from soil than from soil–sand for HPLC‐measured carbohydrates and amino acids and for the sum of substances detected by Py‐FIMS overcompensated the higher sorption in soil than in sand‐soil. A parallel treatment with blow‐out of the soil air but without leaching indicated that nearly all of the rhizodeposits in the treatment with leaching face decomposition to CO2. Simultaneous application of three methods—14C‐labeling and tracing, HPLC, and Py‐FIMS—enabled us to present the budget of rhizodeposition (14C) and to analyze individual carbohydrates, carboxylates, and amino acids (HPLC) and to scan all dissolved organic substances in soil solution (Py‐FIMS) as dependent on nutrient status.  相似文献   

18.
There is increasing evidence that microorganisms participate in soil C sequestration and stabilization in the form of resistant microbial residues. The type of fertilizers influences microbial activity and community composition; however, little is known about its effect on the microbial residues and their relative contribution to soil C storage. The aim of this study was to investigate the long-term impact (21 years) of different fertilizer treatments (chemical fertilizer, crop straw, and organic manure) on microbial residues in a silty clay loam soil (Udolls, USDA Soil Taxonomy). Amino sugars were used to indicate the presence and origin of microbial residues. The five treatments were: CK, unfertilized control; NPK, chemical fertilizer NPK; NPKS1, NPK plus crop straw; NPKS2, NPK plus double amounts of straw; and NPKM, NPK plus pig manure. Long-term application of inorganic fertilizers and organic amendments increased the total amino sugar concentrations (4.4–8.4 %) as compared with the control; and this effect was more evident in the plots that continuously received pig manure (P?<?0.05). The increase in total amino sugar stock was less pronounced in the straw-treated plots than the NPKM. These results indicate that the accumulation of soil amino sugars is largely influenced by the type of organic fertilizers entering the soil. Individual amino sugar enrichment in soil organic carbon was differentially influenced by the various fertilizer treatments, with a preferential accumulation of bacterial-derived amino sugars compared with fungal-derived glucosamine in manured soil.  相似文献   

19.
In spite of their low concentrations in soil solutions, low–molecular weight organic substances (LMWOS) such as amino acids, sugars, and uronic acids play a major role in the cycles of C and N in soil. With respect to their low concentrations and to possible matrix interferences, their analysis in soil leachates is a challenging task. We established two HPLC (high‐performance liquid chromatography) methods for the parallel determination of amino acids and carbohydrates in soil leachates. The pre‐column derivatization of amino acids with an o‐phthaldialdehyde (OPA) mercaptoethanol solution yields quantitation limits between 0.03 and 0.44 µmol L–1 and SD values of <8.3% (n = 9). High‐performance anion‐exchange chromatography (HPAEC) on a Dionex CarboPac PA 20 column with a NaOH acetate gradient combined with pulsed amperometric detection (PAD) was used for the determination of carbohydrates. The calibration curves obtained for 11 carbohydrates showed excellent linearity over the concentration range from 0.02 to 50.0 mg L–1. Recovery studies revealed good results for all analytes (89%–108%). Interferences from Hg(II) salts and chloroform used for stabilization of the leachates did not occur with both chromatographic methods. The optimized method was successfully used for quantitative determinations of amino acids and carbohydrates in soil leachates.  相似文献   

20.
Substantial amounts of low molecular weight organic compounds (LMWs) such as sugars and amino acids are transferred from plant roots into soil. These substances are released due to decomposition processes or leaching (exudation). Afterwards they can be metabolized by soil microorganisms into different compounds, or they can be partially re‐absorbed by the plants. The aim of this study was to clarify the influence of five wild plant species on the composition and pool sizes of LMWs extractable from three different soils. Four of the five species caused significant changes in soil LMW pools. In Chernozem, the sugar concentrations of soil with plants were up to 60 % higher than those of the bulk reference soil, and amino acids increased by as much as 207 %. The relative abundance of free amino acids in roots did not correlate with the relative abundance of amino acids in soil after six weeks of plant growth. The relative abundance of soil amino acids, that increased after plant growth, was strongly dependent on the type of soil and on the plant species present. We suggest that rather than rhizodeposition being dependent on soil type, it reflects differential microbial metabolization of amino acids in the respective soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号