首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modified-live pseudorabies virus (PRV) vaccine, designated PRV(dlg92/d1tk), with deletions in the thymidine kinase (tk) and glycoprotein-gIII (g92) genes, was derived from the PRV (Bucharest [BUK]-d13) vaccine strain. The vaccine virus also contained a deletion in glycoprotein gI. Despite 3 deletions, PRV(dlg92/d1tk) replicated to high titers in cell culture from 30 C to 39.1 C. Enzyme assays and autoradiography revealed that PRV(dlg92/d1tk) did not induce a functional tk activity in infected tk- RAB(BU) cells (rabbit skin). Rabbit skin cells were infected with PRV(dlg92/d1tk), with vaccine strains derived from BUK or Bartha K strains of PRV or with the virulent Illinois (ILL), Indiana-Funkhauser (IND-F), and Aujeszky (Auj) strains of PRV and were labeled with [3H]mannose from 4 or 5 to 24 hours after infection to investigate whether these viruses induced the synthesis of glycoprotein gIII. Nonionic detergent extracts were prepared and immunoprecipitated with antisera from pigs vaccinated with tk(-)-PRV(BUK-d13) or tk+-Bartha K, pigs vaccinated with tk+-PRV(BUK) strains and then challenge exposed to tk+-PRV(IND-F), naturally infected domestic or feral pigs, and pigs vaccinated with tk-)-PRV(dlg92/d1tk). Mouse monoclonal antibodies against PRV glycoproteins gIII, gp50, and gII were also studied. After immunoprecipitation, labeled PRV-specific proteins were analyzed by sodium dodecylsulfate-polyacrylamide gel electrophoresis and autoradiography. The PRV glycoprotein-gII complex, but not glycoprotein gIII, was synthesized in PRV(dlg92/d1tk)-infected cells. Glycoprotein gII and gIII were made in cells infected with PRV vaccine strains BUK, Bartha K, and BUK-d13 and with virulent PRV strains ILL, IND-F, and Auj. Cells infected with PRV(dlg92/d1tk) and with PRV strains ILL, IND-F, Auj, Bartha K, BUK, and BUK-d13, excreted into the cell culture medium a highly sulfated glycoprotein gX of about 90 kilodaltons. Antibodies to glycoprotein gIII were not detected in the sera of pigs inoculated with PRV(dlg92/d1tk), but were found in all other swine sera.  相似文献   

2.
Antibodies to Aujeszky's disease virus (ADV) glycoproteins gII, gIII, and gp50 were compared using four in vitro tests. Antibodies generated by vaccination with a modified-live vaccine (MLV) were also compared. The serological assays employed were: serum neutralization test (SNT), complement facilitated serum neutralization test (C'SNT), complement-mediated cytolysis and antibody dependent cellular cytotoxicity (ADCC). Pigs were immunized with single glycoproteins twice 14 days apart, or once with the modified-live vaccine. Fourteen days after the second immunization, sera were collected. Virus neutralizing activity (SNT) was demonstrated in the sera from all pigs immunized with gp50 and in one out of three immunized with gIII. Sera from the MLV group all had neutralization titers higher than animals immunized with single glycoproteins. Addition of guinea pig complement to the serum neutralization test (i.e., C'SNT) produced an enhancement of antibody titers in all groups except the pigs immunized with gIII. The complement-mediated cytolysis test rendered antibody titers similar in magnitude for all pigs immunized with single glycoproteins, but slightly lower than values for MLV vaccinated pigs. ADCC activity was clearly displayed in sera from pigs immunized with gIII or vaccinated with MLV, whereas sera from pigs immunized with gII or gp50 had a minimal response. The results indicate that the relative efficiency of antibodies against ADV glycoproteins in protection should be considered for selecting or producing gene-deleted strains for use in vaccine production.  相似文献   

3.
A blocking enzyme-linked immunosorbent assay (ELISA) test has been developed to distinguish pseudorabies virus (PRV) (Aujeszky's disease virus) -infected pigs from those immunized with a glycoprotein g92 (gIII) deletion mutant, PRV (dlg92dltk) [OMNIMARK-PRV]. This blocking ELISA test utilizes an anti-PRV gIII monoclonal antibody (mAbgIII)-horseradish peroxidase (HRPO) conjugate, TMB for color development and a cloned PRVg92 (gIII) antigen to coat wells of microtiter test plates. Undiluted sera are used to block the binding of the mAbgIII-HRPO conjugate to the antigen. The gIII blocking ELISA is specific and has a sensitivity comparable to screening ELISA and latex agglutination tests. PRV-negative sera and sera from pigs vaccinated once, twice, or four times with the gIII-negative vaccine all showed negative S/N values of greater than 0.70 (S/N defined as the optical density at 630 nm of test sera/optical density at 630 nm of negative control sera). Sera from PRV-infected herds, sera from pigs experimentally infected with virulent PRV, and sera from pigs vaccinated with modified-live or inactivated gIII+ vaccines were positive for gIII antibodies (S/N less than 0.7). Sera from pigs experimentally infected with 200 PFU virulent PRV seroconverted to gIII+ antibodies 7-10 days postinfection. Sera from pigs vaccinated with gpX- and gI- vaccines seroconverted to gIII+ antibodies 7-8 days after vaccination. The gIII antibodies persisted after gIII+ vaccinated for at least 376 days postvaccination. Sera from pigs protected by vaccination with PRV (dlg92dltk) and then challenge exposed to virulent PRV at 21 days postvaccination showed gIII+ antibodies by 14 days postchallenge. The specificity and sensitivity of the gIII blocking ELISA assay was further demonstrated on the United States Department of Agriculture-National Veterinary Services Laboratory (USDA-NVSL) sera from the 1988 PRV check set and the 1989 gIII PRV check set by comparing the gIII blocking ELISA assay with virus neutralization, screening/verification ELISA and latex agglutination assays.  相似文献   

4.
The polypeptide and glycopolypeptide composition of a local virulent Aujeszky's disease virus (suid herpesvirus 1, SHV-1) strain (E-974) was determined in order to characterize the individual SHV-1 antigens inducing the serological responses in immunized and non-immunized animals. A commercially available inactivated vaccine of known efficacy and three experimental immunogen preparations (whole inactivated SHV-1 particles, lectin-purified glycoproteins from SHV-1 culture, and a combination of both) were used for immunization. Sera of two-month old immunized and non-immunized animals were analyzed by ELISA, seroneutralization and Western immunoblotting prior to and following challenge with E-974. Sera of 7- to 30-day-old piglets littered by immunized and non-immunized sows were likewise analyzed by immunoblotting. The following variables were determined: the total level of anti-SHV-1 antibodies, the level of neutralizing antibodies, the IgG responses to individual SHV-1 antigens, and the clinical parameters and degree of protection of the animals. The whole-particle experimental immunogen conferred greatest protection, but correlation between antibody levels and the degree of protection was imperfect. Serological responses seemed to be directed against certain structural polypeptides and viral envelope glycoproteins. The glycoprotein immunogen caused a selective response to bands which closely resemble the glycopolypeptides gII and gIII. A 71 kDa component of uncertain location within the viral structure appeared to be one of the main antigens involved in porcine serological response to SHV-1 and colostral protection of piglets.  相似文献   

5.
A blocking enzyme-linked immunosorbent assay (ELISA) test has been developed to distinguish pseudorabies virus (PRV)-infected pigs from those immunized with a glycoprotein g92(gIII) deletion mutant, PRV(dlg92dltk). The blocking ELISA utilizes 96-well microtiter test plates coated with a cloned PRV g92(gIII) antigen, a mouse monoclonal antibody against gIII antigen (moMCAgIII): horseradish peroxidase (HRPO) conjugate, and undiluted test sera. Analyses can be completed in less than 3 hours with results printed out by an automated plate reader. Analyses on over 300 pig sera from PRV-free farms, on sera from other species, and on control sera containing antibodies to microorganisms other than PRV showed that the ratio of the optical density at 405 nm for the test sample to the optical density at 405 nm for the negative control (S/N value) was greater than 0.7 for all sera. No false positives were identified. Likewise, the S/N values were greater than 0.7 for over 400 sera obtained from pigs vaccinated twice with more than 1,000 times the standard PRV (dlg92dltk) dose or 1-4 times with the standard dose (2 x 10(5) TCID50/pig). Following challenge exposure to virulent PRV, the S/N values of the vaccinates were 0.1, showing that g92(gIII) antibodies in the sera of experimentally challenged pigs strongly blocked the binding of the moMCAgIII:HRPO conjugate to the antigen-coated wells. Sera of 233 pigs from PRV-infected herds with virus neutralization (VN) titers of 1:4 or greater were tested. All except 2 of these sera had S/N values less than 0.7 and more than 175 had S/N values less than 0.1. Sixteen sera from fetal pigs with VN titers of 1:4 or greater had S/N values of 0.24 or less, but 2 sera with VN titers of 1:4 when tested 5 years prior to the PRV g92(gIII) blocking ELISA test gave false negative S/N values. Twenty-four of 29 pig sera from PRV-infected herds with VN titers less than 1:4 were positive for g92(gIII) antibodies, illustrating the sensitivity of the PRV g92(gIII) blocking ELISA test. Analyses on 7 sera with VN titers of 1:4-1:64 showed that titers obtained with the PRV g92(gIII) blocking ELISA test were from 2- to 16-fold greater than the VN titers. The accuracy and sensitivity of the PRV g92(gIII) blocking ELISA test was further demonstrated by analyses of 40 unknown sera supplied in the National Veterinary Services Laboratories 1988 PRV check test kit.  相似文献   

6.
Previously we reported that immunization with pseudorabies virus (PRV), harboring chimeric Fc on the surface of the virus particles (PRV/Fc), induced higher immune responses than normal PRV particles. The chimeric Fc was fused with mouse transferrin receptor of transmembrane domain (mTR) and the Fc region of immunoglobulin G1. Since it has been reported that some chimeric protein of Fc and self-antigen induce auto-reactive antibodies, in this present study, we examined whether PRV/Fc induces auto-reactive antibodies that react with mTR. PRV/Fc immunized mice produced higher levels of anti-PRV antibodies and antibodies that reacted with mouse-derived 3T3/A31 cells (A31 cell), compared to normal PRV immunized mice. However, antibodies that reacted with mTR in A31 cells were not detected in both Western blot analyses and indirect immunofluorescence assay. The antibodies reacted with an antigen of approximately 16 kDa in A31 cells, but this antigen has a different molecular mass from that of mTR. The antibody also reacted with the antigen of approximately 16 kDa in RK13 cells in which the virus had been propagated. In addition, antibodies induced by immunization with normal PRV also reacted with the same antigen in A31 and RK13 cells. Moreover, neither kidney disorders, in which high levels of mTR were expressed, nor clinical symptoms of autoimmune diseases were observed in mice immunized with either PRV or PRV/Fc. These results indicated that the antibodies were not induced by mTR-Fc, but were instead induced by trace amounts of RK13 derived antigens contained in PRV or PRV/Fc preparations, and cross-reacted with equivalent molecules in mouse derived A31 cells. Therefore, this study confirmed that immunization with PRV/Fc did not induce harmful auto-reactive antibodies.  相似文献   

7.
Aujeszky's disease virus (ADV) envelope glycoprotein gVI (gp50) was purified from virus-infected Vero cells by ion-exchange and immunoaffinity chromatography and its usefulness as a subunit vaccine was evaluated in active and passive immunization studies. Four-week-old piglets were immunized intramuscularly (IM) with purified gVI twice two weeks apart and challenged intranasally (IN) 10 days after the second immunization with 30 LD50 (10(8)PFU) of a virulent strain of ADV. Pigs, vaccinated with 100 micrograms of purified gVI, produced virus neutralizing antibodies and did not develop clinical signs after challenge exposure. The challenge virus was not isolated from nasal swabs and tonsils of gVI-vaccinated pigs, whereas non-vaccinated control pigs developed illness after challenge exposure with the same virulent ADV strain which was later recovered from their nasal swabs and tonsils. Pregnant sows vaccinated twice with purified gVI (IM) at a three week interval produced virus neutralizing antibodies in colostrum. Four-day-old sucking piglets born of vaccinated sows were passively protected by colostral antibodies against intranasal challenge with a lethal dose of virulent ADV. Sera from gVI-vaccinated pigs were distinguished from experimentally infected swine sera by their differential reactivity in enzyme-linked immunosorbent assay (ELISA) using four major viral glycoproteins (excluding gVI) as antigen purified by the use of lentil-lectin.  相似文献   

8.
Toxoplasma gondii is one of the most common parasitic pathogens in humans and warm-blooded animals, causing toxoplasmosis. One of the efficient ways to control this disease is immunization. In this study, two recombinant pseudorabies virus (PRV) expressing TgSAG1 (rPRV-SAG1) and TgMIC3 (rPRV-MIC3) based on the PRV vaccine strain were developed by homologous recombination and used for immunizing BALB/c mice. Ninety BALB/c mice were randomly divided into five groups including four experimental groups (inoculated twice in 4 weeks interval with PRV TK-/gG-/EGFP+, rPRV-SAG1, rPRV-MIC3, rPRV-SAG1+rPRV-MIC3, respectively) and one control group (inoculated with medium). All mice vaccinated with rPRV developed a high level of specific antibody responses against T. gondii lysate antigen (TLA), a strong increase of the splenocyte proliferative response, and significant levels of IFN-γ and IL-2 production. These results demonstrated that rPRV could induce significant humoral and cellular Th1 immune responses. Moreover, rPRV immunization induced partial protection against a lethal challenge with T. gondii RH strain, and neutralizing antibodies against PRV in a BALB/c mouse model. The mice immunized with the rPRV-SAG1 and rPRV-MIC3 cocktail could develop higher T. gondii-specific IgG antibodies and lymphocyte proliferative responses and conferred more efficient protection against T. gondii challenge. These results suggested that expression of protective antigens of T. gondii in PRV is a novel approach towards the development of a vaccine against both animal pseudorabies and toxoplasmosis.  相似文献   

9.
2015年11月,当地某养殖户15日龄仔猪出现角弓反张、精神沉郁等疑似猪伪狂犬病病毒感染的典型神经症状,但查看免疫程序,已免疫猪伪狂犬病疫苗(Bartha-k61株)。经gE基因血清学调查和针对gE基因的PCR诊断,证实该病例为猪伪狂犬病病毒感染所致。  相似文献   

10.
We recently generated transgenic mice expressing a soluble form of porcine nectin-1 (PHveCIg) showing remarkable resistance to pseudorabies virus (PRV) infection. Nectin-1, also known as herpesvirus entry mediator C (HveC), is an alphaherpesvirus receptor that binds to virion glycoprotein D (gD). In order to evaluate the level of resistance to PRV infection induced by the expression of PHveCIg in the transgenic mice, the protective effects of vaccinated and transgenic mice were directly compared. Mice were immunized with a live vaccine, through intraperitoneal injection of PRV strain Begonia (an attenuated vaccine strain deleted for gE and thymidine kinase genes) at 4 weeks before challenge. The vaccinated and transgenic mice were challenged with 10LD(50), 20LD(50) or 50LD(50) of PRV strainYS-81 via intranasal route. In the vaccinated mice, no protection was observed in the challenges with 20LD(50) and 50LD(50). Only two out of six vaccinated mice survived in the challenge with 10LD(50). In contrast, four transgenic mouse lines showed significant resistance to PRV infection, although the survival rates varied in the challenge with each viral dose. These results demonstrate clearly the high potential of transgenic strategy in control of pseudorabies.  相似文献   

11.
乙型脑炎重组伪狂犬病病毒TK-/gG-/NS+1的安全性及免疫性   总被引:1,自引:0,他引:1  
用含有日本乙型脑炎病毒 (SA14 - 14 - 2株 )非结构蛋白 NS1基因的重组伪狂犬病病毒 TK- / g G- / NS 1 免疫BAL B/ c小鼠和断奶仔猪。结果表明 ,该重组病毒对 BAL B/ c小鼠和断奶仔猪是安全的 ,免疫的 BAL B/ c小鼠能抵抗伪狂犬病病毒 (PRV )强毒 (Ea株 )的致死性攻击 ,免疫的断奶仔猪能产生乙型脑炎病毒 (JEV)特异性抗体和 JEV特异性 CTL 活性。  相似文献   

12.
The effect of low-dose challenge of immunity with pseudorabies virus (PRV) on subunit-vaccinated pigs was studied in 2 experiments. In the first experiment, we studied the effect of challenge dose on the antibody response to an early excreted 98-kilodalton PRV-glycoprotein that was used as a diagnostic antigen in the ELISA. In the second experiment, we studied the effect of low doses of virus on the establishment of latent infections in subunit-vaccinated pigs. The relationship of virus exposure dose and vaccine dose to the response of pigs to diagnostic antigen was studied in 18 pigs. Two groups of 3 pigs were vaccinated with a total of 200 micrograms of a lectin-derived PRV subunit vaccine over a 5-week period. Two groups of 3 pigs were similarly vaccinated with a total of 100 micrograms. Two groups of 3 pigs served as nonvaccinated controls. One group of pigs from each of the preceding categories was intranasally exposed to 10(6.0) and 10(2.7) plaque-forming units (PFU) of virus. Antibody to diagnostic antigen was detected by the ELISA and radioimmunoprecipitation 3 to 7 days earlier in pigs exposed to 10(6.0) PFU, demonstrating that the size of the virus challenge dose affects the antibody response to diagnostic antigen. The establishment of latent infections by low PRV doses and the ability to detect these infections was studied in 10 subunit-vaccinated pigs. Each pig was intranasally exposed to 10(2.3) PFU of virus (day 0).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
为了探讨人参茎叶总皂苷(ginseng stem-leaf saponins,GSLS)联合亚硒酸钠(Na2SeO3,简称Se)对伪狂犬病病毒(PRV)灭活疫苗免疫的增强作用,本试验给小鼠口服GSLS后,接种添加了Se的PRV灭活疫苗,并检测免疫后小鼠血清中PRV gB抗体及其亚类(IgG1和IgG2a)水平、淋巴细胞增殖水平、淋巴细胞分泌细胞因子(IFN-γ、IL-2、IL-4和IL-6)水平以及野毒(fPRV)攻毒后小鼠的存活率。结果显示,与仅仅免疫PRV灭活疫苗的小鼠相比,口服GSLS联合疫苗中添加Se(GSLS-Se)能够显著提高小鼠血清中PRV gB抗体及其亚类(IgG1和IgG2a)水平,淋巴细胞增殖水平和细胞因子(IFN-γ、IL-2和IL-6)水平。此外,GSLS-Se还提高了免疫小鼠对野毒感染的抵抗力。结果表明,GSLS-Se对PRV灭活疫苗具有免疫增强作用,值得在本动物上进一步研究。  相似文献   

14.
为制备猪细小病毒VP2蛋白单克隆抗体(McAb),建立检测猪细小病毒的抗原捕捉ELISA方法 (AC-ELISA),本研究以原核表达的重组VP2蛋白作为免疫原,免疫6周龄BALB/c雌鼠,取其脾细胞与骨髓瘤细胞SP2/0进行融合,经间接ELISA方法筛选,成功获得了2株能稳定分泌抗猪细小病毒VP2蛋白的McAb,命名为3C4、5F8。以多克隆抗体作为捕获抗体、单克隆抗体5F8作为检测抗体,通过双抗夹心ELISA各个反应条件的优化,建立检测猪细小病毒抗原捕捉ELISA方法。该方法与日本乙脑病毒(JEV)、猪流行性腹泻病毒(PEDV)、伪狂犬病毒(PRV)、猪繁殖与呼吸综合征病毒(PRRSV)、猪瘟病毒(CSFV)均不发生交叉反应;与RT-PCR相比较,符合率、敏感性和特异性分别为93.6%、90.9%、94.4%。本研究建立的猪细小病毒AC-ELISA有良好的重复性、敏感性和特异性,可应用于猪细小病毒感染的早期诊断。  相似文献   

15.
抗奶牛衣原体单克隆抗体杂交瘤细胞株的建立   总被引:3,自引:1,他引:2  
将奶牛衣原体抗原免疫的 B A L B/c 小鼠脾细胞与 S P2/ O 细胞在聚乙二醇作用下融合, 用间接 E L I S A 试验筛选, 以有限稀释法克隆3 次, 得到6 株分泌抗奶牛衣原体单克隆抗体( Mc Ab) , 选择抗体分泌较高的 G2 、 F23 、 A 株进行详细的研究, 结果表明, 其核内染色体数为9035 、9214 、9442 ; 抗体属性为 Ig G2a 、 Ig G1 、 Ig M, 用交叉 E L I S A 法对3 株 Mc Ab 作特异性分析, 该 Mc Ab 只与奶牛衣原体抗原, 猪衣原体抗原、羊衣原体抗原发生反应,而不与沙眼衣原体抗原、伪狂犬病抗原、布鲁氏杆菌抗原发生反应。  相似文献   

16.
Cellular immunity in pigs inoculated with pseudorabies virus (PRV) was studied by the agarose plate technique of direct leukocyte migration-inhibition procedure. Migration of leukocytes from PRV-infected pigs was inhibited in the presence of PRV antigen, whereas migration of leukocytes from nonexposed pigs was not inhibited in the presence of the same antigen. The migration of leukocytes collected 4 days after intranasal exposure to PRV was inhibited; humoral antibodies could not be detected until 7 days after exposure. Cellular immunity was present in pigs 14 days after inoculation with inactivated PRV antigens; low concentrations of neutralizing and precipitating antibodies were present at this time. The leukocyte migration-inhibiton procedure was found to be a useful tool in studying the role of cellular immunity in PRV infections.  相似文献   

17.
A characteristic of alphaherpesviruses, including pseudorabies virus (PRV), is that the acute phase of the disease is followed by lifelong latency. Latently infected animals are asymptomatic but can transmit reactivated virus. Corticosteroid administration, tissue explanation, blot- and in situ hybridizations have been used to demonstrate the presence of latent PRV infections. The use of blot hybridization as a convenient method for defining the incidence of PRV infections in swine herds has been hampered by the detection limit of this method. The objective of this study was to increase this sensitivity of blot hybridization by polymerase chain reaction (PCR) amplification of target sequences. Two sets of 20-mer primers were synthesized and used to amplify gX and gII glycoprotein gene sequences in two different strains of PRV. The specificity of the amplification was verified by Southern blot hybridization and restriction endonuclease analysis of the amplified fragments. Amplification of target sequences by PRC increased their detection limit by a factor of at least 10(5). Porcine ganglion samples, in which latency had been demonstrated by in vitro explanation, were analyzed by PCR together with positive and negative controls. Duplicate slot blot analyses of a portion of the amplified products were used to demonstrate latency in seven of eight samples. It was concluded that blot hybridization of PCR amplified DNA appears to be both a sensitive and convenient method for the detection of PRV induced latency.  相似文献   

18.
猪伪狂犬病病毒(pseudorabies virus,PRV)是猪伪狂犬病的病原.目前,针对该病毒有较多成熟的商品化疫苗,但病毒变异频繁,因而在生猪养殖中伪狂犬病的发生仍然较为普遍.如何清除宿主体内野毒是防控该病的关键所在.应用腺联病毒携载CRISPR/Cas9系统,以小鼠为动物模型,针对PRV的TK基因、gE基因和V...  相似文献   

19.
抗猪支原体共同抗原单克隆抗体的制备与鉴定   总被引:4,自引:2,他引:2  
以猪肺炎支原体(Mycoplasma hyopneumoniae,Mhp)168菌株F332作为抗原,免疫8周龄BALB/c小鼠,利用淋巴细胞杂交瘤技术,获得两株能稳定分泌特异单克隆抗体的杂交瘤细胞株。两株单抗与Mhp和猪鼻支原体(M.hyorhinis,Mh)等反应,而不与鸡支原体,对照血清等反应。结果表明两株单抗可能是针对猪支原体共同抗原的单抗,用SDS-PAGE电泳和Western-blot分析猪支原体的膜蛋白成分。结果显示,猪支原体的共同抗原是80kd和30kd蛋白,两株单抗均与Mhp和Mh的30kd蛋白条带反应,表明这两株单抗特异地针对猪支原体的共同抗原成分30kd蛋白,可以看出,这两株单抗在Mhp的抗原分析,血清学诊断和疫苗质量监测以及猪源支原体污染细胞检测等方面有重要应用价值。  相似文献   

20.
In order to compare the effect of the route of immunization on the efficacy of a modified live Aujeszky's disease (AD) vaccine, which had deletions in both thymidine kinase (TK-) and glycoprotein gIII genes (gpIII-), 20 six-week-old pigs were vaccinated by either the intramuscular (IM) (n = 10) or subcutaneous (SC) (n = 10) route. All the animals, including five non-vaccinated control animals, were challenged with virulent AD virus 22 days after vaccination. Four of five non-vaccinated animals died within 12 days after challenge. Although none of vaccinated animals died, three of animals in the SC group exhibited clinical signs, and average daily gains in the SC group were depressed. The animals in the IM group were not found to shed challenge virus, but those in the SC group shed the virus up to 9 days. Virus neutralizing antibody titers in the vaccinated animals were low or non-detectable by 21 days after vaccination. A glycoprotein gII (gpII) screening ELISA detected gpII antibody in all animals in the IM group. While, only 30% of animals in the SC group were positive by the same test. The results of this study indicate that TK-, gpIII modified live AD virus vaccine is effective against challenge with virulent AD virus; however, vaccination by the SC route reduced vaccine efficacy in comparison with IM route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号