首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Helix signals in proteins   总被引:56,自引:0,他引:56  
The alpha helix, first proposed by Pauling and co-workers, is a hallmark of protein structure, and much effort has been directed toward understanding which sequences can form helices. The helix hypothesis, introduced here, provides a tentative answer to this question. The hypothesis states that a necessary condition for helix formation is the presence of residues flanking the helix termini whose side chains can form hydrogen bonds with the initial four-helix greater than N-H groups and final four-helix greater than C-O groups; these eight groups would otherwise lack intrahelical partners. This simple hypothesis implies the existence of a stereochemical code in which certain sequences have the hydrogen-bonding capacity to function as helix boundaries and thereby enable the helix to form autonomously. The three-dimensional structure of a protein is a consequence of the genetic code, but the rules relating sequence to structure are still unknown. The ensuing analysis supports the idea that a stereochemical code for the alpha helix resides in its boundary residues.  相似文献   

2.
Amino acid preferences for specific locations at the ends of alpha helices   总被引:113,自引:0,他引:113  
A definition based on alpha-carbon positions and a sample of 215 alpha helices from 45 different globular protein structures were used to tabulate amino acid preferences for 16 individual positions relative to the helix ends. The interface residue, which is half in and half out of the helix, is called the N-cap or C-cap, whichever is appropriate. The results confirm earlier observations, such as asymmetrical charge distributions in the first and last helical turn, but several new, sharp preferences are found as well. The most striking of these are a 3.5:1 preference for Asn at the N-cap position, and a preference of 2.6:1 for Pro at N-cap + 1. The C-cap position is overwhelmingly dominated by Gly, which ends 34 percent of the helices. Hydrophobic residues peak at positions N-cap + 4 and C-cap - 4.  相似文献   

3.
The three-dimensional solution structure of a zinc finger nucleic acid binding motif has been determined by nuclear magnetic resonance (NMR) spectroscopy. Spectra of a synthetic peptide corresponding to a single zinc finger from the Xenopus protein Xfin yielded distance and dihedral angle constraints that were used to generate structures from distance geometry and restrained molecular dynamics calculations. The zinc finger is an independently folded domain with a compact globular structure in which the zinc atom is bound by two cysteine and two histidine ligands. The polypeptide backbone fold consists of a well-defined helix, starting as alpha and ending as 3(10) helix, packed against two beta strands that are arranged in a hairpin structure. A high density of basic and polar amino acid side chains on the exposed face of the helix are probably involved in DNA binding.  相似文献   

4.
How chaperone interactions affect protein folding pathways is a central problem in biology. With the use of optical tweezers and all-atom molecular dynamics simulations, we studied the effect of chaperone SecB on the folding and unfolding pathways of maltose binding protein (MBP) at the single-molecule level. In the absence of SecB, we find that the MBP polypeptide first collapses into a molten globulelike compacted state and then folds into a stable core structure onto which several alpha helices are finally wrapped. Interactions with SecB completely prevent stable tertiary contacts in the core structure but have no detectable effect on the folding of the external alpha helices. It appears that SecB only binds to the extended or molten globulelike structure and retains MBP in this latter state. Thus during MBP translocation, no energy is required to disrupt stable tertiary interactions.  相似文献   

5.
An outstanding challenge in the field of molecular biology has been to understand the process by which proteins fold into their characteristic three-dimensional structures. Here, we report the results of atomic-level molecular dynamics simulations, over periods ranging between 100 μs and 1 ms, that reveal a set of common principles underlying the folding of 12 structurally diverse proteins. In simulations conducted with a single physics-based energy function, the proteins, representing all three major structural classes, spontaneously and repeatedly fold to their experimentally determined native structures. Early in the folding process, the protein backbone adopts a nativelike topology while certain secondary structure elements and a small number of nonlocal contacts form. In most cases, folding follows a single dominant route in which elements of the native structure appear in an order highly correlated with their propensity to form in the unfolded state.  相似文献   

6.
Structure of the DNA-Eco RI endonuclease recognition complex at 3 A resolution   总被引:76,自引:0,他引:76  
The crystal structure of the complex between Eco RI endonuclease and the cognate oligonucleotide TCGCGAATTCGCG provides a detailed example of the structural basis of sequence-specific DNA-protein interactions. The structure was determined, to 3 A resolution, by the ISIR (iterative single isomorphous replacement) method with a platinum isomorphous derivative. The complex has twofold symmetry. Each subunit of the endonuclease is organized into an alpha/beta domain consisting a five-stranded beta sheet, alpha helices, and an extension, called the "arm," which wraps around the DNA. The large beta sheet consists of antiparallel and parallel motifs that form the foundations for the loops and alpha helices responsible for DNA strand scission and sequence-specific recognition, respectively. The DNA cleavage site is located in a cleft that binds the DNA backbone in the vicinity of the scissile bond. Sequence specificity is mediated by 12 hydrogen bonds originating from alpha helical recognition modules. Arg200 forms two hydrogen bonds with guanine while Glu144 and Arg145 form four hydrogen bonds to adjacent adenine residues. These interactions discriminate the Eco RI hexanucleotide GAATTC from all other hexanucleotides because any base substitution would require rupture of at least one of these hydrogen bonds.  相似文献   

7.
Partial symmetrization of the photosynthetic reaction center   总被引:2,自引:0,他引:2  
The bacterial photosynthetic reaction center (RC) is a pigmented intrinsic membrane protein that performs the primary charge separation event of photosynthesis, thereby converting light to chemical energy. The RC pigments are bound primarily by two homologous peptides, the L and M subunits, each containing five transmembrane helices. These alpha helices and pigments are arranged in an approximate C2 symmetry and form two possible electron transfer pathways. Only one of these pathways is actually used. In an attempt to identify nonhomologous residues that are responsible for functional differences between the two branches, homologous helical regions that interact extensively with the pigments were genetically symmetrized (that is, exchanged). For example, replacement of the fourth transmembrane helix (D helix) in the M subunit with the homologous helix from the L subunit yields photosynthetically inactive RCs lacking a critical photoactive pigment. Photosynthetic revertants have been isolated in which single amino acid substitutions (intragenic suppressors) compensate for this partial symmetrization.  相似文献   

8.
On finding all suboptimal foldings of an RNA molecule   总被引:213,自引:0,他引:213  
An algorithm and a computer program have been prepared for determining RNA secondary structures within any prescribed increment of the computed global minimum free energy. The mathematical problem of determining how well defined a minimum energy folding is can now be solved. All predicted base pairs that can participate in suboptimal structures may be displayed and analyzed graphically. Representative suboptimal foldings are generated by selecting these base pairs one at a time and computing the best foldings that contain them. A distance criterion that ensures that no two structures are "too close" is used to avoid multiple generation of similar structures. Thermodynamic parameters, including free-energy increments for single-base stacking at the ends of helices and for terminal mismatched pairs in interior and hairpin loops, are incorporated into the underlying folding model of the above algorithm.  相似文献   

9.
Filamentous bacteriophage coat protein undergoes a remarkable structural transition during the viral assembly process as it is transferred from the membrane environment of the cell, where it spans the phospholipid bilayer, to the newly extruded virus particles. Nuclear magnetic resonance (NMR) studies show the membrane-bound form of the 46-residue Pf1 coat protein to be surprisingly complex with five distinct regions. The secondary structure consists of a long hydrophobic helix (residues 19 to 42) that spans the bilayer and a short amphipathic helix (residues 6 to 13) parallel to the plane of the bilayer. The NH2-terminus (residues 1 to 5), the COOH-terminus (residues 43 to 46), and residues 14 to 18 connecting the two helices are mobile. By comparing the structure and dynamics of the membrane-bound coat protein with that of the viral form as determined by NMR and neutron diffraction, essential features of assembly process can be identified.  相似文献   

10.
The high-resolution structure of halophilic malate dehydrogenase (hMDH) from the archaebacterium Haloarcula marismortui was determined by x-ray crystallography. Comparison of the three-dimensional structures of hMDH and its nonhalophilic congeners reveals structural features that may promote the stability of hMDH at high salt concentrations. These features include an excess of acidic over basic residues distributed on the enzyme surface and more salt bridges present in hMDH compared with its nonhalophilic counterparts. Other features that contribute to the stabilization of thermophilic lactate dehydrogenase and thermophilic MDH-the incorporation of alanine into alpha helices and the introduction of negatively charged amino acids near their amino termini, both of which stabilize the alpha helix as a result of interaction with the positive part of the alpha-helix dipole-also were observed in hMDH.  相似文献   

11.
Human herpesviruses are large and structurally complex viruses that cause a variety of diseases. The three-dimensional structure of the herpesvirus capsid has been determined at 8.5 angstrom resolution by electron cryomicroscopy. More than 30 putative alpha helices were identified in the four proteins that make up the 0.2 billion-dalton shell. Some of these helices are located at domains that undergo conformational changes during capsid assembly and DNA packaging. The unique spatial arrangement of the heterotrimer at the local threefold positions accounts for the asymmetric interactions with adjacent capsid components and the unusual co-dependent folding of its subunits.  相似文献   

12.
Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants   总被引:21,自引:0,他引:21  
Transmembrane proteins serve important biological functions, yet precise information on their secondary and tertiary structure is very limited. The boundaries and structures of membrane-embedded domains in integral membrane proteins can be determined by a method based on a combination of site-specific mutagenesis and nitroxide spin labeling. The application to one polypeptide segment in bacteriorhodopsin, a transmembrane chromoprotein that functions as a light-driven proton pump is described. Single cysteine residues were introduced at 18 consecutive positions (residues 125 to 142). Each mutant was reacted with a specific spin label and reconstituted into vesicles that were shown to be functional. The relative collision frequency of each spin label with freely diffusing oxygen and membrane-impermeant chromium oxalate was estimated with power saturation EPR (electron paramagnetic resonance) spectroscopy. The results indicate that residues 129 to 131 form a short water-exposed loop, while residues 132 to 142 are membrane-embedded. The oxygen accessibility for positions 131 to 138 varies with a periodicity of 3.6 residues, thereby providing a striking demonstration of an alpha helix. The orientation of this helical segment with respect to the remainder of the protein was determined.  相似文献   

13.
The helix is a ubiquitous motif for biopolymers. We propose a heuristic, entropically based model that predicts helix formation in a system of hard spheres and semiflexible tubes. We find that the entropy of the spheres is maximized when short stretches of the tube form a helix with a geometry close to that found in natural helices. Our model could be directly tested with wormlike micelles as the tubes, and the effect could be used to self-assemble supramolecular helices.  相似文献   

14.
Transmembrane helices of integrin alpha and beta subunits have been implicated in the regulation of integrin activity. Two mutations, glycine-708 to asparagine-708 (G708N)and methionine-701 to asparagine-701, in the transmembrane helix of the beta3 subunit enabled integrin alphaIIbbeta3 to constitutively bind soluble fibrinogen. Further characterization of the G708N mutant revealed that it induced alphaIIbbeta3 clustering and constitutive phosphorylation of focal adhesion kinase. This mutation also enhanced the tendency of the transmembrane helix to form homotrimers. These results suggest that homomeric associations involving transmembrane domains provide a driving force for integrin activation. They also suggest a structural basis for the coincidence of integrin activation and clustering.  相似文献   

15.
16.
17.
DNA-binding proteins   总被引:54,自引:0,他引:54  
The structures of three proteins that regulate gene expression have been determined recently and suggest how these proteins may bind to their specific recognition sites on the DNA. One protein (Cro) is a repressor of gene expression, the second (CAP) usually stimulates gene expression, and the third (lambda repressor) can act as either a repressor or an activator. The three proteins contain a substructure consisting of two consecutive alpha helices that is virtually identical in each case. Structural and amino acid sequence comparisons suggest that this bihelical fold occurs in a number of proteins that regulate gene expression, and is an intrinsic part of the DNA-protein recognition event. The modes of repression and activation by Cro and lambda repressor are understood reasonably well, but the mode of action of CAP is still unclear.  相似文献   

18.
Dynamic Monte Carlo simulations of the folding of a globular protein, apoplastocyanin, have been undertaken in the context of a new lattice model of proteins that includes both side chains and a-carbon backbone atoms and that can approximate native conformations at the level of 2 angstroms (root mean square) or better. Starting from random-coil unfolded states, the model apoplastocyanin was folded to a native conformation that is topologically similar to the real protein. The present simulations used a marginal propensity for local secondary structure consistent with but by no means enforcing the native conformation and a full hydrophobicity scale in which any nonbonded pair of side chains could interact. These molecules folded through a punctuated on-site mechanism of assembly where folding initiated at or near one of the turns ultimately found in the native conformation. Thus these simulations represent a partial solution to the globular-protein folding problem.  相似文献   

19.
20.
大豆C4H基因克隆及生物信息学分析   总被引:2,自引:0,他引:2  
为了从分子水平上揭示大豆C4H的结构特点,并为提高其表达活性提供理论依据,利用RT-PCR技术克隆了大豆C4H基因,并已登录GenBank(登录号为FJ770468),长度为1 766 bp,编码区1 521 bp,编码一个含有506个氨基酸残基的多肽。生物信息学分析显示,C4H理论PI=5.30,Mw=39.092 ku;C4H是易溶、亲水性较强的蛋白,同时有两个明显的疏水峰,有2个跨膜肽段;通过HNN分析表明,C4H各个氨基酸残基对应的二级结构分别为α螺旋(Alpha helix)(Hh):251,49.60%,β折叠(Extended strand)(Ee):52,10.28%,无规卷曲(Random coil)(Cc):203,40.12%;Geno3d模建预测,C4H蛋白中β折叠区有57个折叠,折叠区间有24个α螺旋,此外还有14个卷曲结构。氨基酸序列和结构分析显示C4H蛋白包含了一个保守区,即P450 domain。利用SignalP分析得到信号肽存在几率、信号肽锚定几率均为0.498,切割位点位于28和29位氨基酸之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号