首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
森林资源监测的数字化和智能化是未来发展的主要趋势。基于高分辨率航空、多光谱遥感数据和数字地表模型(DSM)等数据,利用计算机深度学习方法,研究乔木林小班的郁闭度、平均树高、总株数3项主要林分调查因子的数字化智能提取方法。结果表明,郁闭度判读的平均准确率可达到98.6%;平均树高判读的平均准确率可达到90%;株数判读的平均准确率可达到82.36%。  相似文献   

2.
无人机(Unmanned Aerial Vehicle,UAV)遥感可快捷获取高分辨率正射影像。本文探讨利用无人机采集高分辨率影像,生成三维点云数据获取树高和冠幅,并与实测数据对比。实验地点选择北京市京西林场,采用无人机搭载激光雷达扫描系统获取点云数据,使用LiDAR360软件进行数据处理分析,获取树木位置、株数、树高、树冠直径等信息,并与实测数据对比,结果表明:最大类间方差法可分割树木点云数据;利用三维点云技术可获取树木高度及冠幅;树高提取平均精度为94%,冠幅提取平均精度为89%。  相似文献   

3.
蓄积量是评价森林资源质量或状况的重要指标,为了解决实测郁闭度和蓄积量费时费力以及无法充分利用航测原始数据生成各项数据的问题,以无人机航测数据的点云数据和正射影像为研究数据,利用冠层高度模型提取高程,通过一元线性回归分析估测平均树高和平均胸径模型;使用改进形态学分水岭方法提取树冠个数;通过主成分回归建立郁闭度模型;结合提取与估测的GIS因子,用偏最小二乘法建立蓄积量模型。结果表明:平均树高模型精度为97.34%、平均胸径模型精度为91.27%,改进分水岭提取树冠精度为80.03%,郁闭度模型精度为83.18%,蓄积量模型精度可达88.43%。蓄积量模型的所有特征因子均是通过遥感方法从无人机原始航测数据中提取而来,充分利用了无人机航测数据。实验建立的树高、胸径和郁闭度模型可以有效地估测森林平均树高、胸径及郁闭度,改进后的分水岭算法减少了过分割,蓄积量模型能够有效估测蓄积量,提高了蓄积量提取效率,节省了大量的人力物力。  相似文献   

4.
利用目前流行的高分辨率可见光无人机遥感影像生成树木冠层高度模型,采用分水岭分割算法提取单木树高的研究具有重要理论和实践意义。以位于云南省富民县的天然云南松纯林为研究对象,通过大疆Phantom 4 Pro无人机获取低空可见光遥感影像,利用Pix4D Mapper对无人机影像进行预处理及三维重建,生成三维点云,利用LiDAR360处理三维点云,构建DSM,DEM并生成CHM;采用分水岭分割算法对不同郁闭度条件下获得的CHM进行单木分割及树高提取,对提取结果进行精度评价。结果表明:分水岭分割算法能够准确分割CHM,利用无人机可见光遥感影像进行单木树高提取是可行的;将基于无人机可见光影像提取的树高值与野外实地调查得到的树高值进行对比,R2为0.893,RMSE为1.23m,估测精度为87.58%;同时,林分郁闭度会对单木树高估测产生影响,根据不同郁闭度条件下提取的3组样木树高与实地测量树高的决定系数(R2)分别是0.857,0.939和0.921,RMSE分别为1.450,1.097,0.896m,在低郁闭度林分内树高估测的精度显著高于高郁闭度林分。  相似文献   

5.
采用树干解析法,考虑立地条件(Ⅰ:山脚山腰厚土型,Ⅱ:山顶山脊薄土型)和林木起源(1:第1代林,2:第2代林)等因素,对架空线下速生桉和湿地松优势木的高生长规律进行研究,结果表明:速生桉高生长高峰期第1代林为栽后前4年、第2代林为栽后前3年,高峰期平均年高生长Ⅰ-1、Ⅱ-1、Ⅰ-2、Ⅱ-2分别为4.13 m、3.5 m、5.0 m、4.5 m;速生桉林木起源相同时,树高生长ⅠⅡ;速生桉第2代林前期生长快,后期生长速度显著减弱,第1代林前期生长速度不如第2代林,但后期速度降低也慢,6年生时,树高排序为Ⅰ-1Ⅰ-2Ⅱ-1Ⅱ-2;立地条件对湿地松的树高生长影响很大,24年生湿地松树高Ⅰ(19.5 m)Ⅱ(13.5 m);湿地松树高生长高峰Ⅰ为前11年,树高可达16.0 m,Ⅱ为前9年,树高为9.0 m;速生桉和湿地松的树高生长曲线均服从以树高为因变量、年龄为自变量的多项式模型,除速生桉Ⅱ-1为2次多项式外,其他均为3次多项式,相关系数(R2)均在0.995以上。通过树高生长模型可预测架空走廊树木随时间的生长高度,结合导线弧垂变化规律,可构建超高树木安全距离预警系统,提前排除超高树木隐患,有效提高架空线路的运行安全性。  相似文献   

6.
基于无人机数据的人工林森林参数估测   总被引:2,自引:0,他引:2  
《林业资源管理》2019,(5):61-67
无人机凭借低成本、高精度的优势在森林资源调查中被广泛应用,基于无人机高分影像及点云数据的森林主要参数估测及评价方法研究,可以为无人机技术在人工林调查中的推广应用提供科学参考。选取南京林业大学树木园内东方杉(Taxodium mucronatum)人工实验林为研究对象,以2018年无人机高分影像、点云数据以及地面实测数据为主要信息源,通过局部最大值以及种子点分割的方法对株数、树高、冠幅、郁闭度等森林参数进行提取,并进行精度检验。研究结果表明:1)提取的株树探测率为0.92,株数准确率为0.97,F参数为0.95。2)单木树高估测的决定系数(R~2)为0.795 7,均方根误差(RMSE)为0.594 0;单木冠幅直径的决定系数(R~2)为0.800 8,均方根误差(RMSE)为0.897 8。3)提取的总冠幅的提取率达到0.95,准确率达到0.93,f参数达到0.94。4)提取的样地郁闭度相对误差只有0.32%。基于无人机高分数据及少量地面实测数据的人工林主要参数估测,可以在很大程度上替代全林实测,在人工林中具有较大的推广价值。  相似文献   

7.
基于遥感图像的林况因子提取研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
随着遥感技术的不断发展,部分林况因子调查逐渐从传统的人工地面调查转向遥感调查,虽然提高了工作效率和精度,但也存在一些尚未解决的问题。文中系统总结了基于遥感图像的树种、树高、树冠、胸径、位置、郁闭度、年龄、株数、蓄积量、生物量等林况因子目视判读和计算机提取研究的现状及存在的问题,并对今后发展提出了建议。  相似文献   

8.
基于FCM和分水岭算法的无人机影像中林分因子提取   总被引:2,自引:0,他引:2  
【目的】研究高精度小型无人机获取林分调查因子方法,将林分调查因子在低空无人机影像上识别并提取出来,获取树高、冠径等测树因子,建立林分因子测量方法,实现经济、高效、快捷、精准的森林资源调查和监测,及时掌握森林资源及相关林分因子的时空变化特征。【方法】以东北林业大学城市林业示范基地樟子松人工林为研究对象,以多旋翼无人机影像为数据源,基于FCM聚类算法和分水岭分割算法以及形态学运算、阈值分割、图像平滑、灰度化、二值化等一系列数字图像处理技术,提取樟子松人工林林分因子。FCM聚类算法和阈值分割法用于提取树梢标记图像,分水岭分割算法对树梢标记图像进行迭代处理从而获得单木树冠分割图像,根据单木树冠分割结果提取单木特征进而计算各林分因子值。【结果】在林地提取中,根据影像的颜色特征绿度分割成功地将林地部分与非林地部分分离开来,确定单木树冠分割范围。在单木树冠分割中,阈值分割法和FCM聚类算法均可有效将树梢标记从林地图像中提取出来;将基于标记的分水岭分割算法用于单木树冠分割取得较好效果,大多数单木树冠被单独分割出来,但某些区域仍然存在一定的欠分割或过分割问题。在林分因子提取中,提取的林分因子包括林分郁闭度、林地面积、立木株数和平均冠幅,其中林分郁闭度的测量精度为96.67%,林地面积的测量精度为81.23%,立木株数和平均冠幅的测量精度与单木树冠分割中的树梢提取方法(阈值分割法和FCM聚类算法)及分水岭分割中的2个参数(形态学腐蚀的结构元素大小和中值滤波的窗口大小)有关。针对2种树梢提取方法,分别进行参数组合试验,结果显示2种树梢提取方法使用适当参数组合所得各林分因子测量精度均在80%以上,平均测量精度均在90%以上,其中阈值分割法的最高平均测量精度为94.49%,FCM聚类算法的最高平均测量精度为93.17%。【结论】利用无人机拍摄的人工林影像进行森林资源调查,将先进的计算机科学技术和无人机技术应用到林业领域中,可有效提高森林资源调查的效率和精度。本研究提出的林分因子提取方法适用于高郁闭度林分,测量精度满足实际需求。  相似文献   

9.
从无人机RGB影像中提取单木位置时,由于树冠与非树冠植被的颜色相似,以及树冠之间存在粘连的问题,导致单木位置提取精度不高。针对这些问题,提出一种结合冠层高度模型(CHM)和形态学细化算法的人工林单木位置提取方法。首先根据无人机RGB影像生成数字正射影像(DOM)、数字高程模型(DEM)、数字表面模型(DSM),利用可见光波段差异植被指数(VDVI)对DOM进行植被与非植被的分离;其次利用DSM和DEM构建人工林区的CHM,从高程差异上将树冠与非树冠植被进行分离;最后,为提高单木位置提取精度,利用形态学图像细化算法去除树冠之间的粘连,提取单木位置并进行精度验证。以昆明理工大学呈贡校区内的一片人工林为试验区域,分别采用本研究方法和直接基于VDVI的方法对人工林区单木位置进行提取。本研究方法提取的单木位置准确率为91.67%,漏提率为8.33%,错提率为0.24%;而直接基于VDVI提取的单木位置准确率为88.05%,漏提率为11.95%,错提率为21.58%。试验结果表明,本研究方法提取的人工林单木位置精度更高。  相似文献   

10.
基于两期无人机影像的针叶林伐区蓄积量估算   总被引:1,自引:0,他引:1  
【目的】提出一种基于两期无人机影像的针叶林伐区蓄积量估算方法,为促进无人机数据在多类型林业样地资源调查中的深度应用提供依据。【方法】以福建省三明市将乐县金森林业股份有限公司伐区森林小班为试验区,首先,利用无人机遥感获取分辨率优于10 cm的两期影像,经Pix4D软件处理得到点云数据,在此基础上将小班区域未采伐前的林冠点云匹配到采伐后的小班地形点云上;然后,通过布料模拟滤波算法(CSF)分离匹配后的林冠点云和地形点云,采用自然领域插值法分别将林冠点云数据插值生成数字表面模型(DSM)、地形点云数据插值生成数字高程模型(DEM),二者相减获得冠层高度模型(CHM);接着,基于改进的局域最大值法搜索冠层高度模型中的林冠顶点,提取树高;最后,根据野外采集的400株马尾松和杉木树高、胸径数据,建立5个适用于福建省马尾松和杉木的胸径-树高模型,选择相关系数最高的模型推算胸径,并利用福建省单木材积公式估算小班区域蓄积量。【结果】1)两期无人机数据的点云匹配能较好消除陡峭地形对树高提取的影响;2)改进的局域最大值法可有效减少固定窗口搜索林冠顶点时出现的多提和漏提错误;3)小班区域估算株数为339株,实测株数为366株,估算的平均树高为18 m,实测平均树高为19 m,估算蓄积量为182 m~3,实测蓄积为199 m~3,株数、树高和蓄积量的估算精度均较高。【结论】借助无人机遥感技术,可实现森林蓄积量自动化估算,降低传统野外调查成本,推动森林资源的快速调查和更新。  相似文献   

11.
基于机载LiDAR的单木结构参数及林分有效冠的提取   总被引:4,自引:0,他引:4  
【目的】基于机载激光雷达(LiDAR)数据提取单木树冠三维结构参数(树冠顶点位置、树高、冠幅和冠长),并在此基础上对林分有效冠进行提取,为进一步研究林分尺度上的有效冠结构及其动态提供依据,以更好掌握并改进林业经营措施。【方法】采用一定规则下的局部最大值窗口搜索树冠顶点,进行单木树冠顶点探测和单木树高提取;以树冠顶点为标记,利用标记控制分水岭分割算法提取单木冠幅;采用垂直方向点云高程检测方法获取枝下高位置,提取冠长;在标记控制分水岭分割出的树冠边界,提取树冠接触高,取平均值作为该样地的林分有效冠高。【结果】树冠分割正确率为88.5%;结合样地实测参数对提取值进行相关性分析,树高R~2=0.886 2,冠幅R~2=0.786 4,冠长R~2=0.800 0,树高、冠幅和冠长精度分别为90.34%、86.80%和89.90%;同一林分内单木接触高相对比较稳定,对提取的林分有效冠高进行单因素方差分析,无显著差异。【结论】基于机载LiDAR数据,采用可变大小的动态窗口搜索局部最大值点,能提高单木结构参数的提取精度;利用树冠顶点标记控制分水岭算法,将高空间分辨率航片作为辅助数据,可完成较高精度的单木冠幅提取;垂直方向点云高程检测方法可提取单木冠长;LiDAR点云数据可对林分有效冠进行提取,在同一林分中,不同样本数量对接触高提取的变异性影响不大,有效冠高大致相同。机载LiDAR数据具有良好的单木树冠三维结构参数提取能力,能够满足现代林业调查对单木结构参数提取的需要,实现对林分有效冠的提取。  相似文献   

12.
在象片上可以判读和测定的林木因子有树种、树高、树冠郁闭度、树冠直径、立木株数和色调。而实际工作中用肉眼比较容易判读的因子有树种、树高和树冠郁闭度,用此三因子区划林相能够满足区划小班的要求,且树高和郁阴度与林分蓄积相关紧密。为此,这次试验调查采用这三因子进行林相区划。  相似文献   

13.
基于UAV遥感的单木冠幅提取及胸径估算模型研究   总被引:1,自引:0,他引:1  
在森林资源调查中冠幅和胸径是重要的测树因子,自动获取冠幅和胸径值可以提高森林资源调查效率。以云南松为研究对象,基于无人机影像自动提取单木冠幅参数,拟合不同密度等级样地的单木冠幅和树冠面积与胸径的关系以估测单株胸径。首先利用标记控制分水岭分割算法对样地冠层高度模型(CHM)中的单株树冠进行分割,获取最大、最小冠幅和树冠面积,并与实测数据进行精度评价,然后将提取冠幅与树冠面积与实测胸径进行拟合,建立不同密度等级样地的一元回归模型和二元回归模型。结果表明:单木树冠分割准确率为86.26%,冠幅相对误差平均值为6.04%,冠幅面积的相对误差平均值为11.23%;在拟合的模型中,冠幅树冠面积-胸径模型的拟合效果最好,决定系数均在0.7以上,该模型验证数据相对误差均不超过5%,符合A类森林资源调查胸径误差值低于5%的要求。提出的基于无人机影像提取冠幅及预测树木胸径的方法较为准确,可推动森林资源调查自动化发展。  相似文献   

14.
针对无人机在森林资源监测中的便携性特点,利用无人机RGB三波段影像进行森林计测参数(株数、树高及蓄积量)的提取及精度验证。以华山松人工林为研究对象,以无人机RGB影像为主要信息源,在前期进行5块0.08hm~2华山松人工林标准地单木定位的基础上,采用冠层高度模型(CHM)最大值法和点云分割方法,提取华山松人工林计测参数,建立无人机RGB影像的华山松人工林单木二元材积模型。研究结果表明:1)采用CHM最大值分割法较点云分割方法精度高,单木株数分割精度分别为87.17%和80.79%;提取得到的树高与其地面实测所得树高的R~2相比较,使用CHM方法,R~2为0.71;而使用点云算法,R~2为0.69。2)基于CHM最大值法提取的单株冠幅和树高所建立的二元材积模型,其决定系数(R~2)为0.94,均方根误差(RMSE)为0.033 8m~3;与基于云南省华山松人工林二元材积表的标准地实测蓄积量调查结果相比,基于无人机RGB数据的5块标准地蓄积量监测精度分别为79.72%,81.64%,83.57%,82.49%,80.28%,平均精度达81.54%。基于无人机RGB影像的华山松人工林在森林计测参数提取中,CHM最大值分割法优于点云分割,所建立的树高和冠幅二元材积模型,可为华山松单层人工林无人机遥感监测提供参考。  相似文献   

15.
[目的 ]基于无人机激光雷达(LiDAR)点云数据提取杉木树冠上部结构参数(树冠顶点、树高、冠幅和上部冠长),并进行树冠上部外轮廓模拟与可视化,为树种识别提供树木冠形特征。[方法 ]利用LASTools开源工具从激光雷达点云数据生成无孔洞的冠层高度模型,使用LiDAR360软件,采用局部最大值法检测树冠顶点,基于CHM种子点对点云进行单木分割,并在ArcGIS下手动选取杉木单株点云样本,用Python编程对"欠分割"样本进行单木纯化(之后全部编程方式自动化处理);提取纯化后单株样本的树冠上部结构参数(树冠顶点、树高、冠幅和上部冠长),再对单木点云按照一定高度间隔进行分层切片,使用宽度百分位数法提取单木树冠上部的相对着枝深度、枝条长度作为模型变量,以相对着枝深度分层分别建模与验证样本按照3倍标准差法剔除异常外轮廓点,选取二次多项式、幂函数和指数函数3个基础模型进行模型拟合与验证,最后采用最优拟合模型进行样地尺度的三维可视化。[结果 ]无人机激光雷达综合单木检测率为79.63%,结合实测参数与提取结果进行相关分析,树高线性回归R2为0.890 5,冠幅线性回归R2为0.845 6;二次抛物线、幂函数和对数函数拟合R2分别为0.807 0、0.817 0、0.806 0,幂函数对杉木树冠上部外轮廓的拟合效果更优。[结论 ]在高林分密度条件下,单木点云的有效提取纯化对客观描绘树冠形状非常重要;基于无人机激光雷达拟合的杉木树冠上部外轮廓反映了杉木的树冠上部形态,可为杉木的树种识别提供参考。  相似文献   

16.
【目的】森林生物量的精确测定,对于全球气候变化和碳循环研究具有重要的意义。【方法】以东北林业大学城市林业示范基地为研究区域,首先利用无人机平台获取整个研究区域的高分辨率无人机影像;然后在研究区域四种人工林样地中分别选取20 m×20 m的4块建模样方和4块测试样方,通过每木检尺法实测建模样方内林木的树高和胸径数据,建立H-DBH(树高-胸径)估算模型,并结合已有的DBH-SB(胸径-树干生物量)模型得到测试样方的森林生物量数据;在处理后的数字冠层高度模型(DCHM)基础上利用局部最大值法提取树高与树冠中心点位置,建立一种结合无人机影像提取树高与H-SB(树高-树干生物量)经验模型的森林生物量制图方法。【结果】不同样方的H-DBH模型R2均大于0.70,测试样方的总地上生物量平均值为6915.85 kg,总的估测精度为87%。通过ArcGIS软件结合本研究提出的方法快速得到了整个研究区域的地上生物量分布图,估测总地上生物量为4396.18 t。【结论】研究结果可为快速准确的进行森林生物量的估测提供基础数据和技术参考。  相似文献   

17.
针对传统的森林资源调查方法无法实现大规模快速获取调查因子,提出了一种基于数字正射影像、数字高程模型和数字地表模型的森林资源自动化解译技术。以建德市新安江林场为研究区域,基于航空摄影测量数据及林业专题数据,采用开闭合运算提取极值法获取株数、高度等多种调查因子,进而通过树高-株数-蓄积量方程估算小班蓄积量。研究结果表明:所提算法可快速获取多种调查因子,实现了小班蓄积量估算,估算精度符合《浙江省森林资源规划设计调查规程》的精度要求,为无人机遥感技术服务大范围、多尺度森林资源调查工作提供新的技术手段。  相似文献   

18.
在福建省大田县太华镇调查了天然起源闽楠林不同坡向、不同坡位楠木林及其林下幼苗生长情况,结果表明:(1)坡向、坡位对闽楠林木胸径、树高和郁闭度的生长具有极显著的影响(p<0.01);坡向×坡位交互作用对胸径生长具有极显著的影响(p<0.01),但对树高和郁闭度的影响不显著((p>0.05))。闽楠林木胸径、树高生长阳坡极显著大于阴坡,中、下坡极显著大于上坡;阳坡的中、下坡有利于楠林胸径生长,阳坡、阴坡的下坡有利于林木树高的生长,阴坡的中、下坡则有利于其郁闭。(2)坡向、坡位以及坡向×坡位交互作用均对林下闽楠幼苗的数量和苗高生长均具有极显著影响(p<0.01)。阳坡幼苗的株数和苗高极显著大于阴坡;中坡株数最多、但苗高最矮,下坡株数最少、但苗高最高,上坡株数、苗高均居中;阳坡×中坡最有利于楠木林幼苗株数生长,阳坡×下坡最有利于楠木林幼苗苗高生长,而阴坡×下坡既最不利于幼苗株数生长,也最不利于苗高生长。  相似文献   

19.
为提高森林单木材积估测精度和效率,选取贵州省织金县城郊典型马尾松林为研究对象,基于机载激光雷达点云和样地调查数据,以提取的树高、冠幅、树冠投影面积和树冠体积等单木结构参数为变量,构建基于机载激光雷达点云数据的马尾松单木材积估测模型。结果表明:1)基于点云数据提取的马尾松单木树高和冠幅因子与实际调查数据之间存在良好的相关性,决定系数R2在0.7以上,精度相对较高,可用于构建马尾松单木材积模型。2)在经典非线性CAR模型基础上,利用枚举法对树高、冠幅、树冠投影面积、树冠体积等4个变量组合构建的11个模型中,包含树高、冠幅及树冠体积三个林分因子的模型表现最佳,R2为0.774 1。3)树高、冠幅及树冠体积被确定为马尾松单木材积估测的关键因子,其中,树高的贡献最大且与单木材积呈极显著正相关关系(P<0.001)。利用机载激光雷达点云数据提取单木结构参数,并基于非线性CAR模型构建单木材积模型估测马尾松单木材积的方法是可行的,该方法不仅能满足森林资源调查的精度要求,且能有效提高调查效率。  相似文献   

20.
【目的】针对人工实测与地基激光雷达(TLS)在林业资源调查中数据获取效率低下的问题,以哈尔滨市城市林业示范基地黑皮油松林为研究对象,综合对比地基激光雷达和手持式移动激光雷达(HMLS)两种扫描方式,为高效的森林资源调查和经营管理提供有效的参考。【方法】利用TLS单站与多站扫描以及HMLS获取研究样地单木点云数据,然后基于点云数据处理软件提取单木结构参数并与实测数据进行匹配,综合对比两种扫描方式的数据获取效率、点云质量以及单木结构参数提取精度。【结果】1)HMLS在扫描高郁闭度黑皮油松林样地时扫描速度大约为27 m~2/min,TLS4站扫描该样地速度为10 m~2/min,扫描速度上HMLS扫描约为TLS多站扫描的3倍。2)TLS4站扫描的胸径处点云数量与单木点云数量远高于HMLS,且HMLS相比于TLS4存在冠层点云缺失的问题,但HMLS相较于TLS数据拥有更好的胸径处切片点云完整度。3)HMLS、TLS单站、TLS4站数据胸径估测结果的R~2分别为0.92、0.84、0.95,HMLS与TLS4站扫描均给出了较好的胸径估测结果,单站TLS扫描估测胸径结果较差。HMLS扫描与TLS单站扫描由于冠层点云扫描不完整导致估测树高和树冠面积的决定系数均小于0.5。TLS4站扫描相较于HMLS扫描在树高和树冠面积的估测精度上有了较大提升,R~2达到了0.7以上。【结论】TLS4站扫描拥有最高的点云数据质量与单木结构参数提取精度,但扫描效率最低,而单站扫描由于遮挡效应单木结构提取精度较低但扫描效率最高;HMLS具有较高的扫描效率与胸径估测精度,但由于冠层点云的缺失在树高和树冠面积等参数的估测精度较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号