首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In solid set sprinkler irrigation systems, many factors have influence on water partitioning efficiency and uniformity. Drop size formation in the irrigation process is affected by some of these factors. Soil crustiness and damage to bare soil structure are problems associated with large drops. This study shows the results of measured drop size distributions in medium-sized sprinklers. An optical spectropluviometer (OSP) with infrared beam was used to measure drop size distributions. A variety of factors were checked: sprinkler type, nozzles, jet straightening vane and working pressure. The results showed that working pressure has the most influence on drop sizes; under low-pressure conditions, drops with a diameter of about 9 mm can be formed. The influence of the jet straightening vane and the types of nozzles and sprinklers has also been studied. A good similitude is obtained between the medium drop diameters measured and those simulated with the SIRIAS ballistic simulation model.  相似文献   

2.
Assessing whole-field uniformity of stationary sprinkler irrigation systems   总被引:2,自引:0,他引:2  
The procedure established in the literature for the evaluation of stationary sprinkler irrigation systems is limited in space and time since it is based on a sample of precipitation taken around one sprinkler during a given period of the whole irrigation event. This procedure also ignores what happens in the soil after water infiltrates. A model of the drop trajectory and of the water distribution pattern is formulated here for simulating precipitation from single sprinklers. The operating pressure determines sprinkler flow and maximum throw. Wind and evaporation distort the distribution patterns. The water distribution of individual sprinklers is overlapped to generate precipitation over the whole field and to calculate a coefficient of uniformity. Field effective uniformity is then calculated by averaging precipitation over the extension of plant roots or water redistribution within the soil profile. Application of the model has shown the impact of system management and design, field topography and wind on irrigation uniformity. Management factors such as lateral operation time or riser inclination may account for a large part of the field precipitation variations. A rough topography may also reduce uniformity significantly. Wind speed is important when it exceeds 1.8–2 m s–1. The allowable maximum pressure loss of 20% fixed as a design criterion seems an overly strict limit when other factors may overcome pressure loss as sources of non-uniformity. The sources of non-uniformity have different scales of variation. Large-scale sources, such as lateral operation time or pressure loss, are not dampened by the crop or soil. Sources of smaller-scale variation, such as wind or inclination of the sprinkler riser, are better compensated by the crop and soil. The application of this kind of model to the design and management of sprinkler irrigation systems is discussed. Received: 9 May 1997  相似文献   

3.
为计算有风条件下折射式喷头水量分布及喷灌均匀度,以弹道轨迹理论为基础,依据风速分布模型,建立有风条件下折射式单喷头水量分布计算方法,采用该方法模拟出有风条件下Nelson D3000型喷头倒挂安装方式下水量分布特性,通过与实测资料进行对比,验证了模拟具有较高的准确度,可应用于有风条件下折射式喷头水量分布计算。在此基础上,选用4.76 mm(24号)喷嘴直径,模拟出不工况下单喷头水量分布,计算出组合情况下喷灌均匀度,分析了风速、风向、喷头间距、工作压力和安装高度5种因素对喷灌均匀度的影响,并对蒸发漂移损失进行了分析。结果表明:95%的置信区间下,喷头布置间距对喷灌均匀度的影响最显著,其次是安装高度和喷头工作压力,风速和风向对喷灌均匀度影响不显著。风速、喷头工作压力和安装高度都会对蒸发漂移损失产生影响,其中工作压力影响最大。当选用Nelson D3000型喷头在风速小于6 m/s的环境下喷灌时,应将喷头安装间距固定在2.13~3.04 m范围内。另外,该安装间距范围内,喷头安装高度和喷灌压力增大后,喷灌均匀度增大的效果不明显,因此应采用低压喷灌以降低喷灌系统运行成本;考虑到较高的喷头安装高度会产生较大的蒸发漂移损失,喷灌时还应适当降低喷头安装高度,以提高喷灌水分利用率。  相似文献   

4.
坡地喷灌水滴直径与动能强度分布规律研究   总被引:2,自引:0,他引:2  
在室内无风条件下应用视频雨滴谱仪实时监测了不同坡度下喷洒水滴直径和速度等信息,研究了不同坡度下水滴平均直径及直径频率沿射程方向的变化规律,分别建立了水滴平均直径、速度与坡度等之间的数学关系。以此为基础,结合坡地喷灌水量分布计算方法,提出了无风条件下坡地喷洒水滴动能强度计算模型,并通过试验验证了该模型的正确性。以雨鸟LF1200型喷头为研究对象,应用该模型重点分析了不同喷头布置方式、间距和坡度对组合喷头打击动能强度分布的影响。结果表明:随着喷头间距的增大,动能强度分布越来越不均匀,且动能强度高值区所占比例不断减小;坡度变化对坡面动能强度分布影响并不明显;三角形布置方式对减小坡地喷灌打击动能强度具有一定作用。同时考虑打击动能强度和水量分布,在坡地喷灌系统设计时,若选用雨鸟LF1200型喷头,建议优先采用三角形布置,且间距为0.8倍的平地喷头射程。  相似文献   

5.
针对坡地喷灌水量分布实测困难问题,以坡地喷头射程计算公式为基础,依据喷头射流方向总水量守恒原理,构建了喷灌水量分布由平地转换到坡地的计算模型,并通过试验验证了模型的正确性。利用该模型,分析了喷头布置方式、喷头间距、工作压力和坡度等对坡面喷灌水量分布的影响,结果表明,三角形布置有利于坡地单喷头水量分布的叠加,且其组合喷灌均匀度略高于方形布置;随着喷头间距的增大,组合喷灌均匀度呈下降趋势;喷头低压运行时,组合喷灌均匀度相对较低,不能满足喷灌均匀性的要求,随着喷头工作压力的增大,组合喷灌均匀度逐渐增大;在一定坡度范围内,不同坡度对水量分布和组合喷灌均匀度的影响较小。因此,在坡地喷灌系统设计时,若选用雨鸟LF1200型喷头,建议采用三角形布置,喷头间距宜为1.0~1.2倍平地喷头射程,喷头工作压力宜选用300 k Pa。  相似文献   

6.
考虑水滴运动蒸发的喷灌水量分布模拟   总被引:3,自引:0,他引:3  
提出了有风条件下喷头水滴运动与喷灌水量分布模拟方法,并利用Visual Basic 6.0开发了喷灌水量分布模拟软件.该软件在已知单喷头的径向水量分布数据时,可以模拟出不同风速、风向、空气温湿度等环境条件下单喷头或多喷头组合的喷灌水量分布,计算出喷灌系统的组合喷灌强度、喷灌均匀系数和蒸发损失率.以9708A型喷头为例,分别对工作压力为0.20、0.25和0.30 MPa下单喷头径向水量分布以及喷灌系统组合间距为14 m x 14 m和14 m×12 m时的喷灌水量分布进行了模拟,并与实测值进行了对比,结果表明:模拟的单喷头径向水量分布与实测值总体一致,由模拟水量分布推算的喷头流量与实测值的相对误差为0.83% ~8.01%;喷灌均匀系数模拟值与实测值的相对误差为0.69%~6.36%,蒸发损失率模拟值为0.51% ~ 1.75%,小于实测的水量损失率.模拟了不同组合间距下的喷灌水量分布,得到的喷灌均匀系数模拟值与其他软件比较,相对误差在0.11% ~2.44%之间.  相似文献   

7.
Field experiments were performed to study the effect that wind shelterbelts has on irrigation uniformity of hand move sprinkler irrigation system located in northwest Kenya. Catch can tests were performed to evaluate the distribution of applied water using coefficient of uniformity and distribution uniformity for plots with shelterbelt and without shelterbelt scenarios. Three medium pressure twin nozzle sprinkler head types were tested to determine their water distribution uniformity at varying wind speed and working pressure and obtained results were statistically analysed. The analysis was used to ascertain the performance of the medium pressure sprinklers under varying wind conditions for the two scenarios. Results indicate that uniformity is improved by wind for wind speeds below 1.4?m/s. Analysis of data from sheltered and unsheltered plots showed a significant difference of uniformity parameters on sheltering with coefficient of uniformity for sheltered plots averaging 84?% compared to 74?% for unsheltered plots. Results indicate that the coefficient of uniformity values were higher than the distribution uniformity values although both had a strong linear relationship with a coefficient of determination above 0.96 in both scenarios. It is concluded that shelterbelts improve sprinkler irrigation performance under windy conditions.  相似文献   

8.
The growing necessity to develop more productive agriculture has encouraged the expansion of new irrigated lands. However, water use in agriculture may affect the natural regimes of water systems. This study aims to analyze, for the first time, water use and its dynamics during the creation of a newly irrigated land. Water use was studied through the development of water balances and subsequent application of quality indices for irrigation in two unirrigated years (2004–2005) and three years of gradual implementation of irrigation (2006, 2007 and 2008) in the Lerma basin (752 ha, Spain). Increases in evapotranspiration, drainage and water content in the aquifer were verified during the gradual transformation into irrigated land. Water balances closed adequately, giving consistency to the results and enabling the application of quality indices for irrigation. Irrigation quality analysis showed a use of available water resources equal to 84%. However, the estimated irrigation efficiency presented lower values, mainly due to irrigation drainage (15%) and combined losses by both evaporation and wind drift of sprinkler irrigation systems (13%). The results indicate that the use of water in the Lerma basin is at the same management level of other modern irrigation systems in the Ebro basin, although there is still margin for improvement in irrigation management, such as reducing the irrigation drainage fraction and the evaporation and wind drift losses of sprinkler irrigation systems.  相似文献   

9.
This study analyzes the effects of irrigation modernization on water conservation, using the Riegos del Alto Aragón (RAA) irrigation project (NE Spain, 123354 ha) as a case study. A conceptual approach, based on water accounting and water productivity, has been used. Traditional surface irrigation systems and modern sprinkler systems currently occupy 73% and 27% of the irrigated area, respectively. Virtually all the irrigated area is devoted to field crops. Nowadays, farmers are investing on irrigation modernization by switching from surface to sprinkler irrigation because of the lack of labour and the reduction of net incomes as a consequence of reduction in European subsidies, among other factors. At the RAA project, modern sprinkler systems present higher crop yields and more intense cropping patterns than traditional surface irrigation systems. Crop evapotranspiration and non-beneficial evapotranspiration (mainly wind drift and evaporation loses, WDEL) per unit area are higher in sprinkler irrigated than in surface irrigated areas. Our results indicate that irrigation modernization will increase water depletion and water use. Farmers will achieve higher productivity and better working conditions. Likewise, the expected decreases in RAA irrigation return flows will lead to improvements in the quality of the receiving water bodies. However, water productivity computed over water depletion will not vary with irrigation modernization due to the typical linear relationship between yield and evapotranspiration and to the effect of WDEL on the regional water balance. Future variations in crop and energy prices might change the conclusions on economic productivity.  相似文献   

10.
A field experiment was performed to study the effect of the space and time variability of water application on maize (Zea mays) yield when irrigated by a solid set sprinkler system. A solid set sprinkler irrigation layout, typical of the new irrigation developments in the Ebro basin of Spain, was considered. Analyses were performed (1) to study the variability of the water application depth in each irrigation event and in the seasonal irrigation and (2) to relate the spatial variability in crop yield to the variability of the applied irrigation and to the soil physical properties. The results of this research showed that a significant part of the variability in the Christiansen coefficient of uniformity (CU), and wind drift and evaporation losses were explained by the wind speed alone. Seasonal irrigation uniformity (CU of 88%) was higher than the average uniformity of the individual irrigation events (CU of 80%). The uniformity of soil water recharge was lower than the irrigation uniformity, and the relationship between both variables was statistically significant. Results indicated that grain yield variability was partly dictated by the water deficit resulting from the non-uniformity of water distribution during the crop season. The spatial variability of irrigation water depth when the wind speed was higher than 2 m s–1 was correlated with the spatial variability of grain yield, indicating that a proper selection of the wind conditions is required in order to attain high yield in sprinkler-irrigated maize.  相似文献   

11.
喷灌和软管灌溉两用机组水量分布特性与试验   总被引:1,自引:0,他引:1  
喷灌和软管灌溉两用轻小机组具有喷灌和软管灌溉两种灌水方式,且有高度可升降、喷幅可调等特点.采用理论分析和试验验证相结合的方法,对该机组水量分布特性进行了研究,分析了影响机组水量分布特性的因素,计算了机组在配置喷灌和软管灌溉系统时的喷灌强度、均匀系数,结果表明,影响机组水量分布均匀性的主要因素是所配置灌水器的水量分布特性、灌水器配置间距、行走速率、土壤和地形、风速等.在室内试验时,机组喷灌均匀系数达95%以上,软管灌溉均匀系数达90%,可满足灌溉需要.  相似文献   

12.
One of the most appropriate sprinkler systems for arid or semi-arid areas – where a great deal of irrigating water is required – are the permanent set systems and the continuous-move laterals. To know the reality of water application in this type of areas, many field evaluations of solid set systems and centre pivot irrigation were conducted in Castilla-La Mancha region (Spain). The main factors affecting water application and evaporation and drift losses with these systems (pressure, wind speed, sprinkler type, etc.) were analysed. A set of performance guidelines and recommendations for the design and management of sprinkle irrigation is presented to attain the highest uniformity and efficiency in water application in semi-arid areas. To use working pressure as low as possible, but with sprinklers that produce a great deal of middle size water drops along with night irrigation for minimising evaporation and drift losses are important aspects.  相似文献   

13.
【目的】研究工作压力,喷头组合间距、组合斱式和旋转速度对射流式喷头及多喷头组合喷灌均匀性系数(CU)和分布均匀系数(DU)的影响。【斱法】采用不同工作条件下单喷头和多喷头组合喷灌水量分布的动态仿真代码,对射流式喷头开展了水力性能试验;研究了射流式喷头在不同工作压力及安装高度条件下对喷灌强度、水量分布的影响;建立了水量峰值强度与工作压力的回归关系式;模拟了单喷头在正斱形和三角形组合喷灌下的空间水量分布。【结果】喷头在1.5 m安装高度、100~300 kPa压力条件下,水量峰值集中在5 mm/h附近,标准偏差(STD)为0.23。喷头在100 kPa工作压力,安装高度为1.1、1.3 m的水量峰值强度分别可高达8.9、10.5mm/h。不同工作压力下的单喷头喷灌的DU和CU标准偏差分别为15.5%、9.3%,且DU对压力的变化相对更为敏感。【结论】在实际喷灌工程中正斱形组合喷灌的间距应小于8m,三角形组合喷头之间的间距应布置在8m附近,此时的喷灌均匀度最高,单个喷灌设备覆盖范围最广,成本最低。  相似文献   

14.
The effect of sprinkler irrigation uniformity on crop yield is an important consideration for the design of sprinkler irrigation system. A model that relates yield response to evapotranspiration deficits at special growth stages to evaluate the impacts of uniformity on crop yield was developed from a crop water production function. The simulation results of the model showed that crop yield increased with increasing uniformity. Optimum irrigation amount and uniformity for the maximum net return were determined with the model. The optimum irrigation amount depends on irrigation uniformity and on economic factors, decreasing with the uniformity but increasing with the ratio of product price to water cost. The optimum uniformity increased with an increase of irrigation amount expressed by a ratio between gross and required irrigation amount, but approximated 90% when the ratio exceeded 0.85. Field experiments conducted to study the relationship between spatial distribution of soil moisture and sprinkler application uniformity demonstrated that the water in the soil was more uniformly distributed than that measured for the application at the soil surface.  相似文献   

15.
为研究喷头压力对水量分布模型的影响,以低压喷头为例,对其进行水力性能试验.通过计算矩形组合下不同压力的喷灌组合均匀系数Cu和组合分布均匀系数Du,探索喷头压力对水量分布模型的影响.结果表明:对于低压喷头,喷灌强度随压力增大先逐渐增大,达到一定值后基本保持不变.在距喷头不同距离时,不同压力下的喷灌强度变化情况不同.在低压范围内,压力对喷灌组合均匀系数和组合分布均匀系数的影响较明显.在100~200 kPa范围下,CuDu均随着压力的增大而增大.在200~300 kPa范围下,CuDu均变化不大.最终提出二者的函数关系式,为多因素下水量分布模型的建立提供理论依据.  相似文献   

16.
Assessing whole-field sprinkler irrigation application uniformity   总被引:1,自引:0,他引:1  
In order to assess whole-field sprinkler irrigation uniformity, an experiment was conducted to obtain water distribution profiles at 23 different pressures for each of five different sprinklers: Nelson R33, Nelson R33LP, Nelson R33 with road guard, Nelson R33LP with road guard, and Rainbird Mini Paw/LG-3. A mathematical model was developed to account for pressure variation throughout a fixed sprinkler system on a 10-ha field and to evaluate sprinkler irrigation uniformity for the whole field using interpolated water distribution profiles from the experimental data. The relationships between irrigation application uniformity and sprinkler pressure, sprinkler spacing, pressure variation, sprinkler type, and field topography were studied using the model. The results show that the coefficient of uniformity, CU, decreases rapidly when the pressure is below the low end of the manufacturer-recommended range; however, CU changes very little with pressure within the manufacturer-recommended range. The system application uniformity, CUsys, is usually less when pressure variations at different locations in a field are considered, and a simple previously published equation to predict CUsys is shown to closely approximate the CU from a more stringent calculation method. It was found that the impact of pressure variation (within the tested ranges) on application uniformity is less than that of the sprinkler spacing. Also, the effect of field topography on sprinkler application uniformity is relatively small for the cases tested herein.  相似文献   

17.
【目的】提高太阳能喷灌系统水力性能的稳定性和能量转换效率。【方法】采用激光雨滴谱仪测量技术,对225.7~1145 W/m2之间不同光照强度下的固定式太阳能喷灌系统水力特性参数进行试验研究,分析了单个水滴动能、单位体积水滴动能及动能强度等参数的分布规律,并提出了系统能量转换效率的测量及计算方法。【结果】光照强度对单个水滴动能影响主要集中在距离较近处的直径1 mm以下的小水滴;单位体积水滴动能随光照强度的增大先增大后减小并趋于稳定,其径向分布与建立的四次多项式模型拟合较好;动能强度随径向距离的增大而增大,在射程末端迅速减为0,光照强度为300.8~1018.8 W/m2时波动幅度较小;太阳能喷灌系统能量转换效率在24.59%~37.21%之间波动,光照强度为225.7~416 W/m2时,系统能量强度转换效率较高,稳定在36%左右。【结论】在光照强度为300.8~416W/m2时,动能强度波动幅度最小,能量分布更均匀,能量转换效率更高。  相似文献   

18.
基于水利统计数据,分析了近10 a中国节水灌溉应用分布,发现东北以喷灌为主,西北以微灌为主,华北以低压管灌为主,华东以渠道灌溉为主,具有明显的区域特征,节水灌溉仍有50%发展空间,喷灌技术占比与欧美国家相比仍然偏低.总结回顾了中国喷灌机发展历程、研究进展和发展趋势.从国家政策引导、智慧农业发展、农业种植结构变化和盐碱地耕地改造4个方面,分析了在资源环境约束挑战下中国喷灌机的发展机遇.阐明了喷灌的优势和不可替代作用,指出随着中国高标准农田建设及农业规模化经营稳步推进,喷灌机性能及功能不断增强,使以往喷灌的局限性逐步转变成发展优势.最后从补齐农业全程机械化短板、水肥药一体化作业新模式和无人化智能化方面展望了中国喷灌机未来发展前景.  相似文献   

19.
喷灌水量分布的遗传神经网络模拟与组合均匀度计算   总被引:2,自引:0,他引:2  
喷头的水量分布与工作压力 H、风速 V等密切相关 ,但难以找出描述其间关系的显式方程。这使得喷灌系统的布置优化、模拟仿真乃至运行控制不太方便 ,不利于电算。采用遗传神经网络较好地模拟了喷头水量分布及其与 H、V的关系 ,给出了基于这种模拟的喷灌组合均匀度计算方法 ,并通过实例验证了该方法。  相似文献   

20.
Prior to the discussion on approaches to combine irrigation scheduling and water application practices, several farm irrigation performance indicators are defined and analysed. These indicators concern the uniformity of water distribution along an irrigated field and the efficiency of on-farm water application. Then, the analysis focus is on three main irrigation systems: surface, sprinkler and microirrigation. For each of these systems, the analysis concerns the main characteristics and constraints of the systems, more relevant aspects influencing irrigation performances, and approaches which could lead to a more appropriate coupling of irrigation scheduling and water application methods. Conclusions point out on the need for combined improvements in irrigation scheduling and methods, for expanding field evaluation of irrigation in farmers fields, for improved design of on-farm systems, and for quality control of irrigation equipments and design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号