首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
棉叶螨是影响棉花产量和品质的主要虫害之一。为快速、准确、有效地监测棉叶螨发生情况,利用无人机搭载数码相机获取数码影像,并计算多种可见光植被指数作为初选特征因子,然后采用ReliefF-Pearson特征降维方法选取最佳建模特征,分别构建偏最小二乘回归(PLSR)、BP神经网络(BPNN)、随机森林(RF)的棉花冠层叶片叶绿素相对含量(SPAD)值遥感估测模型和棉叶螨严重度遥感估测模型。结果表明,棉叶螨严重度与棉花冠层叶片SPAD值呈显著负相关关系。经过精度评价,确定RF模型具有最佳性能,模型验证的决定系数和均方根误差为0.74、2.13。该研究结果表明利用棉花冠层叶片SPAD值遥感估测模型可准确估测棉叶螨为害情况,为棉叶螨的无损监测和病虫害防治提供参考依据。  相似文献   

2.
基于机器视觉黄瓜果实自动分级方法   总被引:1,自引:0,他引:1  
为实现黄瓜果实快速准确分级,以摄像头为视频采集模块、DSP核心处理器为主控制模块、机械手为执行模块,并借助质量控制、电机传送等辅助单元,构建了自动化分级平台。参照国家标准NY/T1587-2008,利用图像处理方法对黄瓜果实图像的瓜长、把长、横径差、弓形高度进行了提取和计算。选取长春密刺、龙杂黄七号、露秋一号3个品种240根黄瓜果实作为试验样本,抽取每个品种的20个样本作为图像提取数据分析,其余60个样本作为自动分级平台测试。测试结果显示:该平台的平均分级精度为96.7%,每分钟约检测35根果实,相较人工分级具有快速、无损、准确、客观的特点,为机器视觉技术应用于椭长形果实自动化分级提供了重要依据。  相似文献   

3.
通过近几年调查比较,防治棉叶螨采用的四种机械中,以大型机车带喷雾机效果最好,中型四轮机车带喷雾机其次,弥雾机居第三位,手动式工农16型喷雾器效果最差。  相似文献   

4.
介绍了水果自动分级系统总体设计,并从机器视觉模块和水果图像处理等两方面介绍了系统的视觉模块,最后基于图像处理和PLC控制技术实现了水果自动分级功能.试验结果表明:系统能够对水果进行等级分拣,系统最高精度为98%,具有较高的可靠性、可信性及一定的推广价值.  相似文献   

5.
采用机器视觉技术对新疆哈密瓜进行自动大小分级。线阵相机在线采集哈密瓜样本RGB图像,通过对哈密瓜RGB图像进行灰度化、中值滤波、二值化、去除果梗、特征提取等一系列处理,获得哈密瓜二值化图像。利用椭圆拟合算法对二值化图像进行椭圆特征提取,基于椭圆长轴和椭圆率建立了哈密瓜大小分级标准,并以固定阈值建立分级模型。通过哈密瓜分级机系统进行大小分级,分级准确率达90.29%。  相似文献   

6.
针对目前水果机械化分级效率低、效果差的现状和机器视觉技术在水果分级检测的应用前景,提出了利用机器视觉的技术对火龙果进行分级的方法。通过利用CCD摄像机和DSP处理器对火龙果进行缺陷检测及大小和色度的分级。试验结果表明:基于机器视觉的火龙果自动分级系统可以高效率、高准确率地实现对火龙果的自动分级,为后续产业化机器视觉水果分级系统提供了技术支持。  相似文献   

7.
采用RBF网络的方法,利用MATLAB工具箱并结合气象资料中的平均气温、最低气温、相对湿度和降雨量,建立了预报新疆石河子地区的棉叶螨发生程度的RBF神经网络预报系统.该系统通过实例证实了预报的准确性,并且与常用的BP网络进行了比较.通过程序记时显示RBF网络训练用时0.079 s,比BP网络训练所需的时间要短得多.因此RBF神经网络具有很好的实用价值,为虫情预报系统提供了新思路、开辟了新途径.  相似文献   

8.
基于SVM和AdaBoost的棉叶螨危害等级识别   总被引:1,自引:0,他引:1  
针对自然条件下棉叶螨虫害等级识别难的问题,在自然条件下以普通手机采集棉叶图像作为实验对象,首先使用大津法和连通区域标记算法,将棉花叶片图像与背景分离,然后,提取不同棉叶螨危害等级棉叶图像的颜色、纹理和边缘特征数据,使用支持向量机(Support vector machine,SVM)单独进行分类实验,得到平均识别正确率为76. 25%,最后,采用SVM和AdaBoost相结合的算法,生成最优判别模型,实现对棉叶螨危害等级的识别,平均识别正确率为88. 75%。对比实验表明,提出的棉叶螨危害等级识别方法比BP神经网络的平均识别正确率高13. 75个百分点,比单独采用SVM算法高12. 5个百分点,比单独采用AdaBoost算法高8. 75个百分点,SVM和AdaBoost相结合的算法可较好地对棉叶螨危害等级进行识别,为棉叶螨数字化防治和变量喷药提供了数据支持。  相似文献   

9.
基于机器视觉的苹果大小自动分级方法   总被引:5,自引:1,他引:5  
介绍了采用机器视觉的苹果大小自动分级方法,利用CCD摄像机获取苹果的样本图像,应用MATLAB软件编程实现了对样本图像的背景去除、二值化、图像平滑、特征量提取和图像标定等处理,参照苹果分级的国家标准完成了苹果自动分级.试验表明,此方法分级精度高,且速度快.  相似文献   

10.
采用人工检测的石榴外观品质等级分级方法存在准确率和效率低的问题,提出一种基于机器视觉的石榴品质分级方法。首先,采用机器视觉系统采集石榴样本图像,进行去噪处理与获取掩模图像;其次,提取去噪图像的红、绿、蓝分量,用蓝色分量减去红、绿色分量得到色差图像,并对色差图像进行阈值分割;然后,对分割图像采用数学形态学处理获得连通的疑似缺陷区域的边界,提取纹理特征并根据缺陷与非缺陷区域纹理特征的不同来标记缺陷区域;最后,将缺陷面积与总面积之比和缺陷数目作为划分等级的依据,对石榴品质等级进行划分。试验结果表明:本方法总体分级准确率达到92.9%,能够高效、准确地识别石榴表面缺陷并进行品质分级,为实现自动分级的产业化提供思路。  相似文献   

11.
害虫数量的精准统计,对害虫的综合治理有重要的意义。传统统计害虫的方法是在固定植株上数害虫数量,难以统计受惊飞走的害虫。采用固定位置放置粘虫板捕捉害虫并自动识别,在害虫正常生活习性下,可有效解决飞行类害虫难统计、信息不准确的问题。同时利用自动阈值分割、目标粘连处理、目标识别和利用生物特征干扰去除等机器视觉方法,有效统计田间飞行害虫数量,识别准确率>85%,为病虫害防治提供依据。   相似文献   

12.
13.
提出了基于数学模型的幼苗外观特征自动检测方法,检测项目包括生长状态、子叶参数和胚轴参数。首先经过图像预处理提取幼苗二值图,利用行像素统计图确定特征参数基准点位置。然后以标定胚轴最小矩形倾斜度和宽度判定弯曲状态;子叶跨度通过两子叶端点距离确定,子叶展开角通过两子叶底端平展位置拟合线夹角判定;胚轴弯曲度通过胚轴中心线上曲率最大的位置为分界点分别判断两段斜度而求得,胚轴长、轴径结合斜度补偿求得。与手工测量数据对比,轴长、轴径和子叶跨度的相关系数分别为0.935 1、0.899 9和0.903 4,相对误差分别小于7%、5%和7%,绝对误差分别小于4 mm、0.2 mm和6 mm。  相似文献   

14.
基于机器视觉的马铃薯自动分级与缺陷检测系统设计   总被引:1,自引:0,他引:1  
针对现有的马铃薯分级和检测需要大量的人力物力、检测效率不高,设计了基于机器视觉的马铃薯自动分级与缺陷检测系统.工作时,自动分级系统对大量马铃薯进行快速表皮去泥和分级工作,得到3种规格的马铃薯并逐个运输到缺陷检测系统进行马铃薯缺陷的识别检测;通过多种图像处理算法对比分析,以平均值法灰度化、中值滤波处理、大津法分割等方法得...  相似文献   

15.
李志刚  傅泽田  史岩 《农机化研究》2006,(7):122-124,127
随着精准农业技术的不断发展,机器视觉技术在农田作业播种施肥、植保机械中的研究和应用得到进一步的开展。为此,简要分析了国内外机器视觉技术在植保领域中的应用前景,重点介绍了开发研制基于机器视觉的棉花田间虫害自动识别与施药决策支持软件与硬件系统的总体设计,以及所采取的相关技术措施。  相似文献   

16.
根据农业部发布的农业行业标准NY/T 484-2002,基于M Vision Assistant系列软件对毛叶枣提出了一种自动分级方法.以黑色传送带为背景,采用CCD摄像机在毛叶枣样本的滚动中采集图像,通过对图像进行初步分割、灰度化、平滑去噪、增强、边缘检测、二值化等处理得出样本果实大小、表面缺陷大小以及果梗识别,进而借助机械手完成对毛叶枣品质的自动分级,识别结果与人工挑选结果吻合率分别达到:优等品吻合92.43%,一等品吻合96.34%,二等品吻合95.60%,残次品吻合95.95%.  相似文献   

17.
18.
机器视觉技术在农业工程领域应用已经越来越广泛。为此,首先介绍了利用机器视觉技术的种子自动分选系统,并综述了近年来国内外在利用机器视觉技术对农作物种子进行自动检测方面的研究进展,认为种子的动态在线检测应用前景广阔。同时,指出了当今国内外研究中存在的问题和对今后研究的进一步展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号