首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and precise analytical method was developed for the simultaneous determination of squalene and methyl, ethyl, propyl, and butyl esters of fatty acids present in olive and olive pomace oils. A fraction containing squalene and fatty acid alkyl esters was isolated from the oil by solid phase extraction on silica gel cartridges and quantitatively analyzed by gas chromatography. A modification of the procedure allowed the isolation of squalene and esters separately. Repeatability and recovery of the method were good. The method was applied to extra and lampant virgin olive oil categories and also to oils obtained from olive pomace by second centrifugation and solvent extraction. Extra virgin olive oils contained low amounts of fatty acid methyl and ethyl esters, while oils obtained from altered olive or olive pomace showed high concentrations of fatty acid alkyl esters, mainly ethyl esters. Correlation between oil acidity and ethyl esters concentration was poor.  相似文献   

2.
This paper shows the potential of excitation-emission fluorescence spectroscopy (EEFS) and three-way methods of analysis [parallel factor analysis (PARAFAC) and multiway partial least-squares (N-PLS) regression] as a complementary technique for olive oil characterization. The fluorescence excitation-emission matrices of a set of Spanish extra virgin, virgin, pure, and olive pomace oils were measured, and the relationship between them and some of the quality parameters of olive oils (peroxide value, K232, and K270) was studied. N-PLS was found to be more suitable than PARAFAC combined with multiple linear regression for correlating fluorescence and quality parameters, yielding better fits and lower prediction errors. The best results were obtained for predicting K270. EEFS allowed detection of extra virgin olive oils highly degraded at early stages (with high peroxide value) and little oxidized pure olive oils (with low K270). The proposed methodology may be used as an aid to analyze doubtful samples.  相似文献   

3.
High-field 31P NMR (202.2 MHz) spectroscopy was applied to the analysis of 59 samples from three grades of olive oils, 34 extra virgin olive oils from various regions of Greece, and from different olive varieties, namely, 13 samples of refined olive oils and 12 samples of lampante olive oils. Classification of the three grades of olive oils was achieved by two multivariate statistical methods applied to five variables, the latter being determined upon analysis of the respective 31P NMR spectra and selected on the basis of one-way ANOVA. The hierarchical clustering statistical procedure was able to classify in a satisfactory manner the three olive oil groups. Subsequent application of discriminant analysis to the five selected variables of oils allowed the grouping of 59 samples according to their quality with no error. Different artificial mixtures of extra virgin olive oil-refined olive oil and extra virgin olive oil-lampante olive oil were prepared and analyzed by 31P NMR spectroscopy. Subsequent discriminant analysis of the data allowed detection of extra virgin olive oil adulteration as low as 5% w/w for refined and lampante olive oils. Further application of the classification/prediction model allowed the estimation of the percent concentration of refined olive oil in six commercial blended olive oils composed of refined and virgin olive oils purchased from supermarkets.  相似文献   

4.
A novel electronic nose based on solid-phase microextraction (SPME) coupled with a surface acoustic wave (SAW) sensor array has been used to analyze different quality virgin olive oils. A mathematical model was designed with 37 samples to distinguish lampante from the other virgin olive oils categories (extra-virgin and virgin), because lampante-virgin olive oils cannot be consumed without a previous refining process. The model, successfully validated with a test set of 16 samples, was able to classify 90% of the samples correctly. Misclassifications were explained by SPME-HRGC analyses and a second sensory evaluation.  相似文献   

5.
Capillary electrophoresis (CE) can be effectively used as a fast screening tool to obtain qualitative and semiquantitative information about simple and complex phenolic compounds of extra virgin olive oil. Three simple phenols (tyrosol, hydroxytyrosol, and vanillic acid), a secoiridoid derivative (deacetoxy oleuropein aglycon), and two lignans (pinoresinol and acetoxypinoresinol) were detected as the main compounds in extra virgin olive oils by high-performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). Spectrophotometric indices, radical scavenging activity, and oxidative stability of extra virgin olive oil samples obtained from olives hand-picked at different ripening degrees were statistically correlated with the CZE and HPLC quantification. The concentration of phenols in extra virgin olive oil decreased with ripeness of olive fruits. The high correlations found between CZE and the other analytical results indicate that CE can be applied as a rapid and reliable tool to routinely determine phenolic compounds in extra virgin olive oils.  相似文献   

6.
In this study, the diglyceride contents of 96 samples of virgin olive oils from the regions of Crete, Lesvos, Messinia, Pilion, Zakynthos, Halkidiki, and Ilia, 15 samples of commercial extra virgin and pure olive oils, and 3 samples each of refined olive oils and pomace oils were determined by a facile method introduced in a previous publication. This method is based on the phosphitylation of the free hydroxyls of the diglycerides with 2-chloro-4,4,5,5-tetramethyldioxaphospholane and the integration of the appropriate peaks in the (31)P NMR spectra. This preliminary study showed interesting trends in the diglyceride content of the virgin olive oils from the various regions of Greece that can be used as simple criteria to assess the olive oil characteristics. Analysis of variance has been carried out for the diglyceride content of each region in an attempt to detect possible differences in the diglyceride levels among the various regions. Finally, the relationship between the ratio of 1,2-diglycerides to the total amount of diglycerides and the total amount of diglycerides has been used to monitor the quality of virgin olive oils, commercial olive oils, refined olive oils, and pomace oils.  相似文献   

7.
The evolution of 1,3- and 1,2-isomers of diacylglycerols (DGs) in olive oils obtained from healthy olives and the influence of the olive quality was studied. Healthy olive fruits yielded oils containing almost exclusively 1,2-isomers whereas altered olives produced oils with significant amounts of 1,3-isomers. Virgin olive oils obtained from various olive cultivars and stored at different temperatures showed triacylglycerol hydrolysis and diacylglycerol isomerization depending on the acidity and temperature. The results indicated that the relationship between acidity and total diacylglycerol content has scarce utility for detecting mild refined oil in virgin olive oil. On the other hand, the 1,3-/1,2-DG isomers ratio is useful for assessing the genuineness of virgin olive oils with low acidities during the early stages of storage.  相似文献   

8.
The authentication of extra virgin olive oil and its adulteration with lower-priced oils are serious problems in the olive oil industry. In addition to the obvious effect on producer profits, adulteration can also cause severe health and safety problems. A number of techniques, including chromatographic and spectroscopic methods, have recently been employed to assess the purity of olive oils. In this study Raman spectroscopy together with multivariate and evolutionary computational-based methods have been employed to assess the ability of Raman spectroscopy to discriminate between chemically very closely related oils. Additionally, the levels of hazelnut oils used to adulterate extra virgin olive oil were successfully quantified using partial least squares and genetic programming.  相似文献   

9.
A high-performance liquid chromatography (HPLC) method was developed to quantitatively analyze oleocanthal in extra virgin olive oils. Oleocanthal, a deacetoxy ligstroside aglycone, is known to be responsible for the back of the throat irritation of olive oils and to have probated antiinflamatory activity. Oleocanthal was isolated from small amounts of olive oil sample (1 g) by liquid-liquid extraction. Hexane-acetonitrile was found to be the best solvent system to extract oleocanthal from the oil matrix. The solvent extract was analyzed by reversed-phase HPLC with UV detection at 278 nm. Chromatogaphic separation of oleocanthal from other extracted compounds and of the two geometric isomers of oleocanthal was achieved by an elution gradient with acetonitrile and water. Both the external standard calibration curve and the internal standard calibration curve were established, and quantitation using both calibration curves gave essentially the same result. The reproducibility (RSD = 4.7%), recovery (> 95%), and limit of quantitation (< 1 microg/g) were also determined. Concentrations of oleacanthal in 10 selected throat-burning extra virgin olive oils were determined using the method (ranged from 22 to 190 microg/g) with external standard calibration.  相似文献   

10.
Polyphenols are an important functional minor component of virgin olive oils that are responsible for the key sensory characteristics of bitterness, pungency, and astringency. Polyphenols were isolated from virgin olive oils by using liquid/liquid extraction and then separated by using reverse phase HPLC followed by fraction collection. The sensory qualities of the isolated polyphenols were evaluated, and almost all fractions containing polyphenols were described as bitter and astringent. However, the fraction containing deacetoxy-ligstroside aglycon produced a strong burning pungent sensation at the back of the throat. In contrast, the fraction containing the analogous deacetoxy-oleuropein aglycon, at an equivalent concentration, produced only a slight burning/numbing sensation, which was perceived more on the tongue. No other polyphenol fractions from the analyzed oils produced the intense burning sensation; thus, deacetoxy-ligstroside aglycon is the polyphenol responsible for the majority of the burning pungent sensation found in pungent extra virgin olive oils.  相似文献   

11.
Phenolic extracts from olive tree leaves and olive pomace were used to enrich refined oils (namely, maize, soy, high-oleic sunflower, sunflower, olive, and rapeseed oils) at two concentration levels (200 and 400 μg/mL, expressed as gallic acid). The concentration of characteristic olive phenols in these extracts together with the lipidic composition of the oils to be enriched influenced the mass transfer of the target antioxidants, which conferred additional stability and quality parameters to the oils as a result. In general, all of the oils experienced either a noticeable or dramatic improvement of their quality-stability parameters (e.g., peroxide index and Rancimat) as compared with their nonenriched counterparts. The enriched oils were also compared with extra virgin olive oil with a natural content in phenols of 400 μg/mL. The healthy properties of these phenols and the scarce or nil prices of the raw materials used can convert oils in supplemented foods or even nutraceuticals.  相似文献   

12.
1H high-field nuclear magnetic resonance (NMR) was used to analyze 216 extra virgin olive oils collected in three years (1996, 1997, and 1998) in different Italian areas in order to evaluate the potential contribution of this technique to the geographical characterization of olive oils. A statistical procedure performed on the intensity of selected NMR peaks has been proposed. Tree clustering analysis of NMR data performed without any a priori hypothesis showed the existence of reliable parameters able to group the olive oils according to the location of olive oil production. Linear discriminant analysis applied to selected NMR parameters of olive oils of the same year of production allowed the grouping of samples according to their geographical origin with only very few errors. Moreover, a satisfactory grouping is reached by combining the NMR data of olive oils from two different years (1996 and 1997). Operating on appropriate sampling, a careful analysis of data yielded the conclusion that the place of olive production could be singled out as a discriminating factor regardless of the cultivars from which the olive oils are derived.  相似文献   

13.
The activity of olive microbiota during the oil extraction process could be a critical point for virgin olive oil quality. With the aim to evaluate the role of microbiological activity during the virgin olive oil extraction process, just before oil extraction freshly collected healthy olive fruits were immersed in contaminated water from an olive mill washing tank. The oils extracted were then compared with control samples from the same batch of hand-picked olives. The presence of lactic and enteric bacteria, fungi and Pseudomonas on the surface of olives was proved to be much higher in washed than in control olives, with increments in cfu/g between 2 and 3 orders of magnitude. The biogenesis of volatile compounds and the extraction of olive polyphenols and pigments were significantly influenced by the microbiological profile of olives even without any previous storage. In most cases the effect of olive microbiota on oil characteristics was greater than the effect exerted by malaxation time and temperature. Oils from microbiologically contaminated olives showed lower amounts of C5 volatiles and higher levels of C6 volatiles from the lipoxygenase pathway and some fermentation products. On the other hand, a decrease of chlorophylls, pheophytins, xanthophylls and the ratio chlorophyll/pheophytin was observed in these oils. Likewise, the microbiological activity during oil extraction led to significantly lower amounts of polyphenols, in particular of oleuropein derivatives. These differences in olive oil chemical composition were reflected in oil sensory characteristics by the decrease of the green and bitter attributes and by the modification of the oil color chromatic ordinates.  相似文献   

14.
The aim of this work was to determine the transfer of the chloroplast pigment fractions during the virgin olive oil extraction process, in relation to different factors: the ripening stage of the olive fruits, the irrigation water applied to the olive tree, and the addition of natural microtalc (NMT) during the oil extraction process. Results showed that the percentage of chloroplast pigments transferred from the olive paste to the oil increases with the ripening of the olive fruit (raw material). An excess of the water irrigation applied to the olive tree shows a reduction in the biosynthesis of chloroplast pigments in olive fruits, which is reflected in a low concentration in the virgin oils. Furthermore, the percentage of pigment transfer from the olive paste to the oil during the extraction process is reduced by irrigation, mainly of the chlorophyll fraction. The addition of NMT during the malaxation step produced an increase in the percentage of the total pigments transferred from the olive paste to the oil, in relation to nonaddition.  相似文献   

15.
A simple and precise analytical method for the determination of hydroxy pentacyclic triterpene acids (HPTAs) in vegetable oils was developed. The acidic fraction was isolated by solid-phase extraction using bonded aminopropyl cartridges, and the extract was silylated and analyzed by gas chromatography. Repeatability and recovery of the method were determined. In virgin olive oils, similar amounts of oleanolic (3beta-hydroxyolean-12-en-28-oic) and maslinic (2alpha,3beta-dihydroxyolean-12-ene-28oic) acids and traces of ursolic (3beta-hydroxyurs-12-en-28-oic) acid were found. The main factor affecting HPTA concentration was the oil quality since that increases as the quality decreases, while olive variety, olive ripeness, and oil extraction system had less influence. In crude olive pomace oils, the concentrations were very much higher than in virgin olive oils. During refining processes, total or significant losses of HPTAs were observed. Esterified derivatives of HPTAs were not found.  相似文献   

16.
This paper deals with the characterization of 475 Sicilian virgin olive oils (VOO) produced in 10 different crop years (from 1993 to 2004), according to the cultivar and the geographical origin by means of multivariate statistical analysis applied to fatty acids. In particular, the studied VOOs came from the Peloritana and Maghrebian geological zones. The fatty acid composition was determined by using the official gas chromatographic method. The results suggest that although the effect of the cultivar is significant in the olive oil classification based on the fatty acid composition, a predominant and well-defined geographic effect is also present. This study demonstrated that it is possible to employ an official and inexpensive analytical method coupled with the statistical analysis to ascertain the geographical origin and the cultivar of an extra virgin olive oil.  相似文献   

17.
The authentication of virgin olive oil samples requires usually the use of sophisticated and very expensive analytical techniques, so there is a need for fast and inexpensive analytical techniques for use in a quality control methodology. Virgin olive oils present an intense fluorescence spectra. Synchronous excitation-emission fluorescence spectroscopy (SEEFS) was assessed for origin determination of virgin olive oil samples from five French registered designation of origins (RDOs) (Nyons, Vallée des Baux, Aix-en-Provence, Haute-Provence, and Nice). The spectra present bands between 600 and 700 nm in emission due to chlorophylls a and b and pheophytins a and b. The bands between 275 and 400 nm in emission were attributed to alpha-, beta-, and gamma-tocopherols and to phenolic compounds, which characterize the virgin olive oils compared to other edible oils. The chemometric treatment (PLS1) of synchronous excitation-emission fluorescence spectra allows one to determine the origin of the oils from five French RDOs (Baux, Aix, Haute-Provence, Nice, and Nyons). Results were quite satisfactory, despite the similarity between two denominations of origin (Baux and Aix) that are composed by some common cultivars (Aglandau and Salonenque). The interpretation of the regression coefficients shows that RDOs are correlated to chlorophylls, pheophytins, tocopherols, and phenols compounds, which are different for each origin. SEEFS is part of a global analytic methodology that associates spectroscopic and chromatographic techniques. This approach can be used for traceability and vindicates the RDOs.  相似文献   

18.
Samples of Spanish virgin olive oils (VOOs) from different categories, origins, varieties, and commercial brands were analyzed by HPLC with a programmable fluorescence detector to determine the content of nine heavy polycyclic aromatic hydrocarbons (PAHs): benzo(a)anthracene, chrysene, benzo(e)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perilene, and indeno(1,2,3-c,d)pyrene. Samples of olive pomace and crude olive pomace oils were also investigated. Benzo(a)pyrene concentrations were below the allowed limit in the European Union (2 microg/kg) in 97% of the VOO samples. Only those samples coming from contaminated olive fruits or obtained in oil mills with highly polluted environments exceeded this value. High correlation coefficients (<0.99) were obtained between the contents of benzo(a)pyrene and the sum of the nine PAHs for all of the analyzed categories, suggesting that benzo(a)pyrene could be used as a marker of the content of these nine PAHs in olive oils.  相似文献   

19.
Static headspace (SHS), headspace solid phase microextraction (HS-SPME), headspace sorptive extraction (HSSE), and direct thermal desorption (DTD) were applied to the analysis of four French virgin olive oils from Corsica. More than 60 compounds were isolated and characterized by GC-RI and GC-MS. SHS was not suited to the characterization of olive oil volatile compounds because of low sensitivity. The SPME and HSSE techniques were successfully applied to olive oil headspace analysis. Both methods allow the characterization of volatile compounds (mainly C(6) aldehydes and alcohols), which contribute significantly to the "green" flavor note of virgin olive oils. The PDMS stir bar showed a higher concentration capacity than a DVB/CAR/PDMS SPME fiber due to the higher volume of polymeric coating. DTD was a very good tool for extracting volatile and especially semivolatile compounds, such as sesquiterpenes, but requires a significant investment like that for HSSE. Finally, SPME may be a more appropriate technique for routine quality control due to its operational simplicity, repeatability, and low cost.  相似文献   

20.
Emissions of low molecular weight aldehydes (LMWAs) from deep-frying of extra virgin olive oil, olive oil, and canola oil (control) were investigated at two temperatures, 180 and 240 degrees C, for 15 and 7 h, respectively. The oil fumes were collected in Tedlar bags and then analyzed by gas chromatography-mass spectrometry. Seven alkanals (C2-C7 and C9), eight 2-alkenals (C3-C10), and 2,4-heptadienal were found in the fumes of all three cooking oils. The generation rates of these aldehydes were found to be dependent on heating temperature, showing significant increases with increases in temperature. The LMWA emissions from both kinds of olive oils were very similar and were lower than those observed from canola oil under similar conditions. These results suggest that frying in any type of olive oil, independent of its commercial category, will effectively decrease the generation of volatile aldehydes in the exhaust. This fact is important because less expensive refined olive oil is usually used for deep-frying operations, whereas extra virgin olive oil is usually used as salad dressing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号