首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The endometrium of sheep consists of plenty of raised aglandular areas called caruncular (C), and intensely glandular intercaruncular areas (IC). In order to better understand the endometrium involved mechanisms of implantation, we used LC-MS/MS technique to profile the proteome of ovine endometrial C areas and IC areas separately during the peri-implantation period, and then compared the proteomic profiles between these two areas. We successfully detected 1740 and 1813 proteins in C areas and IC areas respectively. By comparing the proteome of these two areas, we found 170 differentially expressed proteins (DEPs) (P < 0.05), functional bioinformatics analysis showed these DEPs were mainly involved in growth and remodeling of endometrial tissue, cell adhesion and protein transport, and so on. Our study, for the first time, provided a proteomic reference for elucidating the differences between C and IC areas, as an integrated function unit respectively, during the peri-implantation period. The results could help us to better understand the implantation in the ewes. In addition, we established a relatively detailed protein database of ovine endometrium, which provide a unique reference for further studies.  相似文献   

2.
Background:Early pregnancy failure has a profound impact on both human reproductive health and animal production.2/3 pregnancy failures occur during the peri-implantation period;however,the underlying mechanism(s)remains unclear.Well-organized modification of the endometrium to a receptive state is critical to establish pregnancy.Aberrant endometrial modification during implantation is thought to be largely responsible for early pregnancy loss.Result:In this study,using well-managed recipient ewes that received embryo transfer as model,we compared the endometrial proteome between pregnant and non-pregnant ewes during implantation period.After embryo transfer,recipients were assigned as pregnant or non-pregnant ewes according to the presence or absence of an elongated conceptus at Day 17 of pregnancy.By comparing the endometrial proteomic profiles between pregnant and non-pregnant ewes,we identified 94 and 257 differentially expressed proteins(DEPs) in the endometrial caruncular and intercaruncular areas,respectively.Functional analysis showed that the DEPs were mainly associated with immune response,nutrient transport and utilization,as well as proteasome-mediated proteolysis.Conclusion:These analysis imply that dysfunction of these biological processes or pathways of DEP in the endometrium is highly associated with early pregnancy loss.In addition,many proteins that are essential for the establishment of pregnancy showed dysregulation in the endometrium of non-pregnant ewes.These proteins,as potential candidates,may contribute to early pregnancy loss.  相似文献   

3.

Background

Early pregnancy failure has a profound impact on both human reproductive health and animal production. 2/3 pregnancy failures occur during the peri-implantation period; however, the underlying mechanism(s) remains unclear. Well-organized modification of the endometrium to a receptive state is critical to establish pregnancy. Aberrant endometrial modification during implantation is thought to be largely responsible for early pregnancy loss.

Result

In this study, using well-managed recipient ewes that received embryo transfer as model, we compared the endometrial proteome between pregnant and non-pregnant ewes during implantation period. After embryo transfer, recipients were assigned as pregnant or non-pregnant ewes according to the presence or absence of an elongated conceptus at Day 17 of pregnancy. By comparing the endometrial proteomic profiles between pregnant and non-pregnant ewes, we identified 94 and 257 differentially expressed proteins (DEPs) in the endometrial caruncular and intercaruncular areas, respectively. Functional analysis showed that the DEPs were mainly associated with immune response, nutrient transport and utilization, as well as proteasome-mediated proteolysis.

Conclusion

These analysis imply that dysfunction of these biological processes or pathways of DEP in the endometrium is highly associated with early pregnancy loss. In addition, many proteins that are essential for the establishment of pregnancy showed dysregulation in the endometrium of non-pregnant ewes. These proteins, as potential candidates, may contribute to early pregnancy loss.

Electronic supplementary material

The online version of this article (doi:10.1186/s40104-015-0017-0) contains supplementary material, which is available to authorized users.  相似文献   

4.
In cattle, the mechanisms underlying implantation and placental development are still unclear. Synepitheliochorial placentation in cattle is noninvasive, and thus generates limited interest in terms of degradation and remodeling of endometrial tissues. The overall purpose of this study was three-fold: (1) to examine the gene circuitry around the implantation window, (2) to understand development of the placenta during the peri-implantation period by using a uteroplacental cDNA microarray, and (3) to study the roles of molecules involved in endometrial remodeling. Bovine trophoblastic binucleate cell-specific molecules, such as pregnancy-associated glycoproteins (PAGs), placental lactogen (PL), and prolactin-related proteins (PRPs), were markedly expressed in binucleate cells (BNCs) around implantation. The expression of PRP-1 was specific to the caruncular (CAR) area of the gravid uterine horn. Gelatinases (MMP-2 and -9) in association with heparanase may be central to endometrial remodeling. In situ hybridization analyses of PAGs, PRPs, PL, and heparanase suggested that BNCs expressed these molecules simultaneously. Future studies will further investigate the specific roles of these molecules in placentogenesis. The uteroplacental cDNA microarray presented cascades of molecular signatures not only for the endometrium but also for the intricate dialogue at the level of the feto-maternal interface in cattle. Placentome morphogenesis potentially parallels the dynamic multigenic circuitry and regulates the cell cycle in the endometrium. The roles of BNCs and their secreted molecules remain an enigma, particularly with regard to the adhesion process and endometrial remodeling, which is the focus of this study.  相似文献   

5.
The objective of this study was to determine expression and potential functions of α(v) and β(3) integrin subunits in ovine endometrium during the peri-implantation period (days 8-17 after fertilization). The morphologic changes in the endometrium were observed histochemically following haematoxylin/eosin (HE) staining, whereas the expressions of α(v) and β(3) integrin subunits were analysed by RT-PCR, immunohistochemistry and Western blot. The filamentous conceptus attached to the luminal epithelium (LE) on day 17 of pregnancy, with no differences in endometrial morphology between days 8-12 of pregnancy. However, endometrial glands in the endometrial stroma (S) underwent extensive hyperplasia from day 14 to day 17, increased reductus of the LE with an obvious proliferation of caruncles, and an increased number and diameter of blood vessels (V) in the endometrium. The relative expression levels of α(v) and β(3) integrin subunits mRNA gradually increased until day 16, but sharply declined on day 17. Western blot analysis revealed that the expression pattern of α(v) and β(3) integrin subunit proteins paralleled that of the corresponding mRNA. In addition, immunohistochemical localization of α(v) and β(3) integrin subunits confirmed their presence in the glandular epithelium (GE), LE and endometrial stroma. Immunostaining on LE and stroma varied with the increasing days of pregnancy, with the strongest immunostaining on days 16 and 17. In conclusion, expression of α(V) and β(3) integrin subunits was closely related to the early progression of pregnancy and conceptus attachment; therefore, we inferred that α(v) β(3) integrin may participate in conceptus attachment by the regulation of endometrial morphology during peri-implantation in ovine.  相似文献   

6.
7.
A disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) is a secreted protease. Through the regulation of extracellular matrix remodeling or developmental processes or both, ADAMTS1 is involved in several biological functions, including ovulation and embryo receptivity. However, the expression and possible role of ADAMTS1 in bovine endometrium is unknown. In this study, we analyzed ADAMTS1 mRNA expression in bovine endometrium during the estrous cycle, peri-implantation period, and at different stages of gestation by using quantitative real-time RT-PCR (qPCR) and in situ hybridization. The qPCR results indicated that the expression of ADAMTS1 mRNA was not affected by the day of the estrous cycle and was similar to cyclic levels on day 35 of gestation; however, the expression was more abundant in cotyledonary tissues of the placenta during late gestation. The in situ hybridization study showed that ADAMTS1 mRNA was detected mainly in uterine luminal epithelia and stromal cells during the estrous cycle and peri-implantation period. A disintegrin and metalloproteinase with thrombospondin motifs 1 mRNA was also expressed in the peri-implantation conceptus as well as in trophoblast cells, which include binucleate cells, and increased during late gestation. Furthermore, treatment of stromal cell with progesterone (300 nM) stimulated the expression of ADAMTS1 mRNA. This study indicates that ADAMTS1 participates in bovine endometrial remodeling, which is required for implantation and placental development in coordination with ovarian steroids.  相似文献   

8.
9.
Uterine has a pivotal role in implantation and conceptus development. To prepare a conducive uterine condition for possibly new gestation during the estrous cycle, uterine endometrium undergoes dramatic remodeling. In addition, angiogenesis is an indispensable biological process of endometrium remodeling. Furthermore, essential protein expressions related to important biological processes of endometrium remodeling, which are vascular endothelial growth factor (VEGF), myoglobin (MYG), collagen type IV (COL4), fucosyltransferase IV (FUT4), and cysteine‐rich protein 2 (CRP2), were detected in the endometrial tissue reported in many previous studies and recently discovered in histotroph substrates during the estrous cycle. Those proteins, which are liable for provoking new vessel development, cell proliferation, cell adhesion, and cell migration, were expressed higher in the histotroph during the luteal phase than follicular phase. Histotroph proteins considerably contribute to endometrium remodeling during the estrous cycle. To that end, the following review will discuss and highlight the relevant information and evidence of the uterine fluid proteins as endometrial‐secreted factors that adequately indicate the potential role of the uterine secretions to be involved in the endometrial remodeling process.  相似文献   

10.
The present study was conducted to decipher the proteome of in vivo-produced pre-implantation ovine embryos. Ten locally adapted Morana Nova ewes received hormonal treatment and were inseminated 12 hr after ovulation. Six days later, 54 embryos (morula and blastocyst developmental state) were recovered from eight ewes and pooled to obtain sufficient protein for proteomic analysis. Extracted embryo proteins were analysed by LC-MS/MS, followed by identification based on four database searches (PEAKS, Proteome Discoverer software, SearchGUI software, PepExplorer). Identified proteins were analysed for gene ontology terms, protein clusters and interactions. Genes associated with the ovine embryo proteome were screened for miRNA targets using data sets of TargetScan ( http://www.targetscan.org ) and mIRBase ( http://www.mirbase.org ) servers. There were 667 proteins identified in the ovine embryos. Biological processes of such proteins were mainly related to cellular process and regulation, and molecular functions, to binding and catalytic activity. Analysis of the embryo proteins revealed 49 enriched functional clusters, linked to energy metabolism (TCA cycle, pyruvate and glycolysis metabolism), zona pellucida (ZP), MAPK signalling pathway, tight junction, binding of sperm to ZP, translation, proteasome, cell cycle and calcium/phospholipid binding. Sixteen miRNAs were related to 25 pre-implantation ovine embryo genes, all conserved in human, bovine and ovine species. The interaction network generated by miRNet showed four key miRNAs (hsa-mir-106b-5p; hsa-mir-30-5p; hsa-mir-103a-5p and hsa-mir-106a-5p) with potential interactions with embryo-expressed genes. Functional analysis of the network indicated that miRNAs modulate genes related to cell cycle, regulation of stem cell and embryonic cell differentiation, among others. Retrieved miRNAs also modulate the expression of genes involved in cell signalling pathways, such as MAPK, Wnt, TGF-beta, p53 and Toll-like receptor. The current study describes the first major proteomic profile of 6-day-old ovine embryos produced in vivo, setting a comprehensive foundation for our understanding of embryo physiology in the ovine species.  相似文献   

11.
12.
The vascular changes associated with endometrial maturation in preparation for embryo implantation depend on numerous growth factors, known to regulate key angiogenic events. Primarily, the vascular endothelial growth factor (VEGF) family promotes vascular growth, whilst the angiopoietins maintain blood vessel integrity. The aim was to analyse protein levels of VEGFA ligand and receptors, Angiopoietin‐1 and 2 (ANG1/2) and endothelial cell receptor tyrosine kinase (TIE‐2) in the ovine endometrium in the follicular and luteal phases of the oestrus cycle and in response to ovarian steroids. VEGFA and its receptors were localized in both vascular cells and non‐vascular epithelium (glandular and luminal epithelium) and stroma cells. VEGFA and VEGFR2 proteins were elevated in vascular cells in follicular phase endometrium, compared to luteal phase, most significantly in response to oestradiol. VEGFR1 was expressed by epithelial cells and endothelial cells and was stimulated in response to oestradiol. In contrast, Ang‐1 and Ang‐2 proteins were elevated in luteal phase endometrium compared to follicular phase, and in response to progesterone, evident in vascular smooth muscle cells and glands which surround TIE‐2‐expressing blood vessels. Our findings indicate that VEGFA is stimulated by oestradiol, most predominantly in follicular phase endometrium, and Ang‐1 and 2 are stimulated by progesterone and were increased during the luteal phase of the oestrus cycle, during the time of vascular maturation.  相似文献   

13.
14.
15.
Background: Embryonic mortality during the period of implantation strongly affects litter size in pigs. Progesterone receptor(PGR) paracrine signaling has been recognized to play a significant role in embryonic implantation. IHH,NR2F2, BMP2, FKBP4 and HAND2 were proved to involve in PGR paracrine signaling. The objective of this study was to evaluate the expression of IHH, NR2F2, BMP2, FKBP4 and HAND2 in endometrium of pregnant sows and to further investigate these genes' effect on litter size in pigs. Real-time PCR, western blot and immunostaining were used to study target genes/proteins expression in endometrium in pigs. RFLP-PCR was used to detect single nucleotide polymorphisms(SNPs) of target genes.Results: The results showed that the m RNA and protein expression levels of IHH, NR2F2 and BMP2 were up-regulated during implantation period(P 0.05 or P 0.01). All target proteins were mainly observed in luminal epithelium and glandular epithelium. Interestingly, the staining of NR2F2 and HAND2 was also strong in stroma. SNPs detection revealed that there was a-204 C A mutation in promoter region of NR2F2 gene. Three genotypes were found in Large White, Landrace and Duroc sows. A total of 1847 litter records from 625 sows genotyped at NR2F2 gene were used to analyze the total number born(TNB) and number born alive(NBA). The study of the effect on litter size suggested that sows with genotype CC tend to have higher litter size.Conclusions: These results showed the expression patterns of genes/proteins involved in PGR paracrine signaling over implantation time. And the candidate gene for litter size was identified from genes involved in this signaling. This study could be a resource for further studies to identify the roles of these genes for embryonic implantation in pigs.  相似文献   

16.
17.
Heat shock proteins play a crucial role in cellular development, proliferation, differentiation and apoptosis. Heat shock protein 90 (HSP90) has been localised in the human endometrium, where its immunoexpression changes during the menstrual cycle. Similar studies have not been done for the equid species, so the present study aimed to describe endometrial HSP90 immunoexpression in mare endometrium. Endometrial biopsies were formalin-fixed and paraffin-embedded, and sections were stained with haematoxylin–eosin in preparation for HSP90 immunohistochemistry. Immunostaining and morphometric analyses were performed on the epithelial lining, endometrial glands and connective stroma during oestrus, dioestrus phase and anoestrus period (n = 7 per phase or period). Immunoexpression was localised in the basal region of the epithelial cells lining the lumen. Immunoexpression was greater during oestrus than during either dioestrus or anoestrus. During anoestrus, there was little immunostaining in the endometrium, suggesting that HSP90 is involved in the functional modulation of sex steroid receptors in cyclic mares. Indeed, the function of HSP90 as a chaperone in the folding of proteins, such as steroid receptors, might explain the greater intensity of immunostaining during the oestrus and dioestrus phases, compared the anoestrus period. We conclude that, in the mare, HSP90 plays a role in endometrial function and that further studies are needed to test whether it is important in pathological conditions as endometritis.  相似文献   

18.
DNA methylation is maintained by the main elements of methylation complex—tripartite motif containing 28 (TRIM28) and zinc finger protein 57 (ZFP57). Previously, it was found that the activity of TRIM28 and ZFP57 determines the process of DNA methylation and preserves over‐expression of genes. We hypothesized that restricted diet applied during peri‐conceptional period may induce changes in the expression of methylation complex in porcine endometrium and embryos during the peri‐implantation period. The aim of this study was to detect and determine the expression of TRIM28 and ZFP57 in the endometrium and embryos harvested from gilts during the peri‐implantation period (days 15–16 of pregnancy) fed restricted (n = 5) or normal (n = 5) diet during peri‐conceptional period. In restricted‐diet‐fed gilts, endometrial expression of TRIM28 and ZFP57 mRNAs was decreased in comparison with normal‐diet‐fed gilts ( .01), while the embryonic expression of TRIM28 and ZFP57 mRNAs was increased in restricted‐diet‐fed gilts ( .05). The immunofluorescence showed the presence of TRIM28 and ZFP57 in luminal epithelial (LE), glandular epithelial (GE) and stromal cells (ST) of the endometrium as well as in the embryos. Total endometrial and embryonic abundance of TRIM28 and ZFP57 proteins was significantly higher ( .05) in restricted‐diet‐fed gilts than in normal‐diet‐fed gilts. Female under‐nutrition during peri‐conceptional period affects the expression of two main elements of methylation complex in the endometrium and in embryos during the peri‐implantation period and may have the impact on DNA methylation in these tissues.  相似文献   

19.
蛋白质是细胞生理功能的具体执行者,并常以蛋白复合体或与核酸相互作用的形式来发挥作用。蛋白质组代表在一定时间和特定条件下,1个细胞、组织或生物个体所表达的全部蛋白,因此蛋白质组会随着时间和空间的改变而发生动态变化。蛋白质组学从整体水平研究蛋白质组的结构、功能、表达模式及其相互作用的方式。根据研究内容的不同,蛋白质组学可分为表达蛋白质组学、结构蛋白质组学和功能蛋白质组学等。研究蛋白质组学有助于了解蛋白的结构、细胞的功能、生命的本质及活动规律,为疾病的诊断、治疗、疫苗及新药开发提供科学依据。研究蛋白质组学的常用手段主要有:双向聚丙烯酰胺凝胶电泳、质谱、酵母双杂交系统及蛋白芯片法等,文章将对蛋白质组学常用的技术方法及应用进行综述。  相似文献   

20.
为了有效地研究胚泡附植的分子机制.本研究建立了一套适合兔子宫内膜蛋白分析的双向电泳技术体系.包括蛋白质含量测定、第1向IEF—PAGE和第2向SDS—PAGE的凝胶配方及电泳参数的选择、电极溶液的选择,并运用该技术体系分析了未孕兔和受孕2、4、6、9d兔子宫内膜蛋白。结果表明,在给定的时期内,兔子宫内膜蛋白质的含量有变化,但差异不显著;用所建立的双向电泳体系分析子宫内膜蛋白质后发现,双向电泳图谱的重复性好,蛋白质点的分辨率高,共同蛋白质点多。差异蛋白质点少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号