首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Alcoholic extracts of leaves and stems of Vanilla fragrans were fractionated with ethyl acetate and aqueous butanol. All three fractions of ethyl acetate, butanol, and water were screened for toxic bioactivity against mosquito larvae. The results of these experiments showed that the fractions from the ethyl acetate and butanol phases were both active in the bioassay. Bioactivity of the ethyl acetate fraction was found to be much greater than that from the butanol fraction in mosquito larvae toxicity. The water phase appeared to contain no substances that impaired mosquito larval growth. Repeated column chromatography of the ethyl acetate fraction on silica gel led to the isolation of 4-ethoxymethylphenol (1), 4-butoxymethylphenol (2), vanillin (3), 4-hydroxy-2-methoxycinnamaldehyde (4), and 3,4-dihydroxyphenylacetic acid (5). Compounds 4 and 5 were isolated from Vanilla species for the first time and 2 has not been reported to have been found in a natural form. 4-Ethoxymethylphenol (1) was the predominant compound, but 4-butoxymethylphenol (2) showed the strongest toxicity to mosquito larvae. The structures of the compounds were determined on the basis of their mass spectra and (1)H or (13)C NMR data.  相似文献   

2.
Monoterpenoids (terpenes and biogenically related phenols) commonly found in plant essential oils were tested for acute toxicity via topical application to tobacco cutworms (Spodoptera litura Fab.). The most toxic among 10 such compounds was thymol (LD(50) = 25.4 microg/larva) from garden thyme, Thymus vulgaris. The compounds were then tested for sublethal effects, specifically inhibition of larval growth after topical application of low doses. Among 6 compounds tested, an LD(10) dose reduced growth by 20% on average 3 days after administration. Feeding deterrence was determined using a cabbage leaf disk choice test. The most deterrent compound was thymol, with a DC(50) of 85.6 microg/cm(2) leaf disk area. Because minor constituents in complex essential oils have been suggested to act as synergists, binary mixtures of the compounds were tested for synergy vis à vis acute toxicity and feeding deterrence. trans-Anethole acted synergistically with thymol, citronellal, and alpha-terpineol, in terms of both acute toxicity and feeding deterrence. On the basis of these findings, several complex mixtures were developed and tested as leads for effective control agents. Candidate mixtures demonstrated good synergistic effects. The observed LD(50) of mixture 3 was 40.6 microg/larvae compared to an expected value of 74.6 microg/larvae. The result of this research is a proprietary product suitable for commercial production.  相似文献   

3.
The insecticidal activity of materials derived from the fruits of Piper nigrum against third instar larvae of Culex pipiens pallens, Aedes aegypti, and A. togoi was examined and compared with that of commercially available piperine, a known insecticidal compound from Piper species. The biologically active constituents of P. nigrum fruits were characterized as the isobutylamide alkaloids pellitorine, guineensine, pipercide, and retrofractamide A by spectroscopic analysis. Retrofractamide A was isolated from P. nigrum fruits as a new insecticidal principle. On the basis of 48-h LC(50) values, the compound most toxic to C. pipiens pallens larvae was pipercide (0.004 ppm) followed by retrofractamide A (0.028 ppm), guineensine (0.17 ppm), and pellitorine (0.86 ppm). Piperine (3.21 ppm) was least toxic. Against A. aegypti larvae, larvicidal activity was more pronounced in retrofractamide A (0.039 ppm) than in pipercide (0.1 ppm), guineensine (0.89 ppm), and pellitorine (0.92 ppm). Piperine (5.1 ppm) was relatively ineffective. Against A. togoi larvae, retrofractamide A (0.01 ppm) was much more effective, compared with pipercide (0.26 ppm), pellitorine (0.71 ppm), and guineensine (0.75 ppm). Again, very low activity was observed with piperine (4.6 ppm). Structure-activity relationships indicate that the N-isobutylamine moiety might play a crucial role in the larvicidal activity, but the methylenedioxyphenyl moiety does not appear essential for toxicity. Naturally occurring Piper fruit-derived compounds merit further study as potential mosquito larval control agents or as lead compounds.  相似文献   

4.
We investigated contributions of leaf litter, root litter and root-derived organic material to tundra soil carbon (C) storage and transformations. 14C-labeled materials were incubated for 32 weeks in moist tussock tundra soil cores under controlled climate conditions in growth chambers, which simulated arctic fall, winter, spring and summer temperatures and photoperiods. In addition, we tested whether the presence of living plants altered litter and soil organic matter (SOM) decomposition by planting shoots of the sedge Eriophorum vaginatum in half of the cores. Our results suggest that root litter accounted for the greatest C input and storage in these tundra soils, while leaf litter was rapidly decomposed and much of the C lost to respiration. We observed transformations of 14C between fractions even when total C appeared unchanged, allowing us to elucidate sources and sinks of C used by soil microorganisms. Initial sources of C included both water soluble (WS) and acid-soluble (AS) fractions, primarily comprised of carbohydrates and cellulose, respectively. The acid-insoluble (AIS) fraction appeared to be a sink for C when conditions were favorable for plant growth. However, decreases in 14C activity from the AIS fraction between the fall and spring harvests in all treatments indicated that microorganisms consumed recalcitrant C compounds when soil temperatures were below 0 °C. In planted leaf litter cores and in both planted and unplanted SOM cores, the greatest amounts of 14C at the end of the experiment were found in the AIS fraction, suggesting a high rate of humification or accumulation of decay-resistant plant tissues. In unplanted leaf litter cores and planted and unplanted root litter cores most of the 14C remaining at the end of the experiment was in the AS fraction suggesting less extensive humification of leaf and root detritus. Overall, the presence of living plants stimulated decomposition of leaf litter by creating favorable conditions for microbial activity at the soil surface. In contrast, plants appeared to inhibit decomposition of root litter and SOM, perhaps because of microbial preferences for newer, more labile inputs from live roots.  相似文献   

5.
The influence of pH was examined, over the range from 6 to 14, on the amounts of p-hydroxybenzoic, vanillic, p-coumaric, ferulic and syringic acids, p-hydroxybenzaldehyde and vanillin, extracted from four soils and associated roots or leaf litter. Adjustment of pH was obtained by the addition of graded amounts of Ca(OH)2 to water or by 2 m NaOH. The roots associated with three of the soils were from permanent pasture, perennial ryegrass and red clover, while the leaf litter associated with the fourth soil was from beech.The amounts of each phenolic compound extracted increased continuously with increasing pH, from a “threshold” value which varied between pH 7.5 and 10.5. The amounts extracted by water alone from the soil under permanent pasture, at pH 5.8, were equivalent to concentrations in the soil solution ranging from 1.4 μm for p-hydroxybenzoic acid to < 10 nm for ferulie acid. Amounts of up to 2000 times greater than these were extracted by 2 m NaOH. Similar effects of extractant pH were found with the other soils.Comparisons of the amounts of the phenolic compounds extracted from the soils, with the amounts extracted from the associated roots or leaf litter, suggested that substantial proportions of the soil phenolic compounds were either derived from organic residues more than 4 yr old or were the result of microbial synthesis.  相似文献   

6.
In this study, we describe the seasonal variation in 13C abundance in the litter of two Sphagnum species and four vascular plant species during 3 years of field decomposition in an Italian alpine bog. Litter bags were periodically retrieved at the end of summer and winter periods, and the δ13C in residual litter was related to mass loss, litter chemistry, and climatic conditions. In Sphagnum litter, higher rates of decomposition during summer months were associated with an increase of δ13C probably due to the incorporation of microbial organic compounds rich in 13C in the residual litter. In the litter of Eriophorum vaginatum, Carex rostrata and Calluna vulgaris, we observed a decrease of δ13C with an increase in the concentration of lignin-like compounds. The residual litter of Potentilla erecta showed a decrease of 13C abundance during the first 2 years, but on proceeding the decomposition, the δ13C increased again probably reflecting the incorporation of microbial organic compounds.  相似文献   

7.
We examined whether the decomposition rate of trembling aspen (Populus tremuloides) leaf litter differed when decomposed for one year in litter bags placed within adjacent monotypic stands of trembling aspen, Engelmann spruce, and lodgepole pine trees in four replicate blocks in the San Juan mountains of Colorado, and whether they were metabolized into different metabolic byproducts. Mass loss was 6-8% lower in pine stands than in spruce or aspen stands, but this trend was not significant (p = 0.27). Water-soluble leaf litter metabolites were characterized using ultra-performance liquid chromatography coupled to a quadrapole time-of-flight mass spectrometer (UPLC-MS). Aspen leaf litter metabolomes were highly chemically complex; thousands of unique molecular features were identified in each sample. Although many of the molecular features were common to litter decomposed in all three forest types, we identified a subset of features that differed in abundance among the forest types. Our results suggest that the decomposer communities associated with each forest type not only affected the overall decomposition rate, but also produced many compounds in the diverse suite of metabolic byproducts at different rates, which could be an important control on the long-term sequestration of C in soil organic matter.  相似文献   

8.
We assessed soil N and C dynamics in a decomposition experiment at microcosm scale with leaf litter of evergreen shrubs and perennial grasses of the Patagonian Monte. We hypothesised that eventual changes in leaf-litter quality in arid Patagonian ecosystems disturbed by grazing would lead to changes in C and N dynamics in decaying leaf litter and the associated soil. We constructed microcosms with local soil and litterbags containing leaf litter of three perennial grass and three evergreen shrub species. Microcosms were incubated at field capacity during 12, 42 and 84 days. We assessed N, C, phenolics and lignin concentrations in leaf litter before incubation, and N and C concentrations after incubation. We estimated inorganic and total N and organic C in soil before and after incubation. We calculated C and N budgets and the associated rates of C and N losses from leaf litter, microbial respiration, N immobilisation in litter and soil, and N mineralisation at microcosms of each species by inverse modelling techniques. Initial leaf-litter N concentration was significantly higher and C:N ratio lower in evergreen shrubs than in perennial grasses. Leaf litter of perennial grasses was very similar in initial chemical composition among species. In contrast, evergreen shrubs displayed a large variability in the concentration of secondary compounds among species. Accordingly, microcosms of perennial grasses showed similar rates of C and N processes while those of evergreen shrubs showed diverse patterns and rates of processes among them. Process rates in microcosms of one of the evergreen shrub species were closely related to those of perennial grasses. In contrast, process rates in microcosms of the two other evergreen shrub species were quite different between them and from those of perennial grasses. We conclude that (i) the replacement of perennial grasses by evergreen shrubs or the shifting of species within evergreen shrubs in ecosystems disturbed by grazing could have different effects on ecosystem processes depending on the species involved, and (ii) species rather than life forms should be used to predict leaf-litter decomposability and associated soil C and N dynamics particularly in evergreen shrubs.  相似文献   

9.
In a litterbag study in a tropical montane rainforest in Ecuador we assessed the impact of leaf litter species identity and richness on decomposition. We incubated leaf litter of six native tree species in monocultures and all possible two and four species combinations and analysed mass loss over a period of 24 months. Mass loss in monocultures averaged 30.7% after 6 month and differed significantly between species with variations being closely related to initial concentrations of lignin, Mg and P. At later harvests mass loss in monocultures averaged 54.5% but did not vary among leaf litter species and, unexpectedly, did not increase between 12 and 24 months suggesting that litter converged towards an extremely poor common quality retarding decomposition. After 6 months mass loss of leaf litter species was significantly faster in mixtures than in monocultures, resulting in synergistic non-additive mixture effects on decomposition, whereas at later harvests mass loss of component litter species was more variable and leaf litter mixture effects differed with species richness. Mass loss in the two species mixtures did not deviate from those predicted from monocultures, while we found antagonistic non-additive mixture effects in the four species mixtures. This suggests that litter species shared a poor common quality but different chemistry resulting in negative interactions in chemically diverse litter mixtures at later stages of decomposition. Overall, the results suggest that interspecific variations in diversity and composition of structural and secondary litter compounds rather than concentrations of individual litter compounds per se, control long term leaf litter decomposition in tropical montane rainforests. Plant species diversity thus appears to act as a major driver for decomposition processes in tropical montane rainforest ecosystems, highlighting the need for increasing plant conservation efforts to protect ecosystem functioning of this threatened biodiversity hotspot.  相似文献   

10.
The insecticidal activity of phytochemicals isolated from the roots of Phryma leptostachya var. asiatica against third instar larvae of Culex pipiens pallens, Aedes aegypti, and Ocheratatos togoi was examined. The two constituents of P. leptostachya var. asiatica roots were identified as the leptostachyol acetate (I) and 8'-acetoxy-2,2',6-trimethoxy-3,4,4',5'-dimethylenedioxyphenyl-7,7'-dioxabicyclo[3.3.0]octane (II) by spectroscopic analysis. Compound I was lethal to C. pipiens pallens, A. aegypti, and O. togoi at 10 ppm. Compound II showed weak or no insecticidal activity against three mosquito species at 10 ppm. The LC(50) values of I against C. pipiens pallens, A. aegypti, and O. togoi were 0.41, 2.1, and 2.3 ppm, respectively. Naturally occurring P. leptostachya var. asiatica root-derived compounds merit further study as potential mosquito larval control agents or lead compounds.  相似文献   

11.
In fast-growing tree plantations, decomposition of leaf litter is considered as a key process of soil fertility. A three-month field experiment, spanning both rainy and dry seasons, was conducted to determine how changes in litter decomposition affect the main parameters of litter quality—namely, the concentrations of phenolic and non-phenolic carbon (C) compounds, nitrogen (N), and fibres, and the litter C mineralization rate. This study was conducted to test (1) if these changes vary according to the compound and to the season, and if they are greater for soluble compounds, and (2) if after a three-month period of field decomposition, the chemical composition of the remaining litter drives C mineralization, as measured in laboratory conditions, through a greater influence on the concentration of N and lignin. We found that the concentrations of water- and methanol-soluble phenolic compounds and the concentrations of non-phenolic compounds decreased during decomposition in all plots and in each season, while the fibre and N concentrations increased. The relationships among litter decomposition, C mineralization, and litter quality depended on the season, which strongly suggests that different processes are involved in dry and rainy seasons. The C mineralization rates were driven by soluble organic compounds in the initial litter and by soluble phenolic compounds in the decomposed litter.  相似文献   

12.
The transformation of leaf litter into fecal pellets by saprophagous macroarthropods has long been suggested to play an important role in litter decomposition by altering microbial processes. However, conflicting results are reported in the literature, and it is currently not clear to what extent varying initial litter quality contributes to distinct microbial responses to the transformation of litter into feces. Here we performed a screening test using a wide range of distinct leaf litter from 26 tree species. We fed these litters to the macroarthropod species Glomeris marginata during one week under controlled conditions, and compared microbial responses in uningested leaf litter with that of feces produced from the 26 different leaf litter types. We assessed substrate induced respiration (SIR) as an integrative measure of microbial responses. We found that litter SIR was highly variable across species and well related to initial litter quality. However, variability in feces SIR was strongly reduced and only weakly related to initial litter quality. Moreover, the difference between feces and litter SIR decreased with increasing litter SIR as a result of higher microbial stimulation in litter with low associated litter SIR. Our data clearly showed that the direction and magnitude of microbial stimulation in feces depend strongly on the litter type. Therefore, the consequence of litter transformation into macroarthropod fecal pellets for microbial decomposers and possibly for subsequent decomposition of feces is specific to litter species.  相似文献   

13.
A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.  相似文献   

14.
Little is known about the collembolan community involved in the decomposition of fine root (≤2.0 mm in diameter) litter, which is largely different from leaves in both litter quality and position. The collembolan communities involved in root and leaf litter decomposition were compared in a litterbag experiment in a coniferous forest of Chamaecyparis obtusa. A two-factor experiment (litter type × litter position) was conducted to evaluate the relative effects of litter quality and position. Litterbags of roots and leaves were each placed at two positions (on the soil surface and in the soil), and were collected at seven different times over three years. Abundance and biomass of Collembola involved in root decomposition in the soil were higher than those involved in leaf decomposition on the soil surface, and the collembolan community composition largely differed between these two types of litterbag. Differences between root and leaf decomposition were mainly caused by litter position, but effects of litter type were also detected at species-level. Species that preferred roots were abundant at an early stage of litter decomposition in the soil. Because the early stage of decomposition in the soil is naturally achieved only by root litter initially deposited in the soil, root litter may function as an essential resource for certain species. The results of this study indicate that root litter contributes to collembolan community organization as a spatially and qualitatively different resource than leaf litter. This also suggests that root litter is decomposed via different soil faunal processes than leaf litter.  相似文献   

15.
Cellulose and lignin degradation dynamics was monitored during the leaf litter decomposition of three typical species of the Mediterranean area, Cistus incanus L., Myrtus communis L. and Quercus ilex L., using the litter bag method. Total N and its distribution among lignin, cellulose and acid-detergent-soluble fractions were measured and related to the overall decay process. The litter organic substance of Cistus and Myrtus decomposed more rapidly than that of Quercus. The decay constants were 0.47 year−1, 0.75 year−1 and 0.30 year−1 for Cistus, Myrtus and Quercus, respectively. Lignin and cellulose contents were different as were their relative amounts (34 and 18%, 15 and 37%, 37 and 39% of the overall litter organic matter before exposure, for Cistus, Myrtus and Quercus, respectively). Lignin began to decrease after 6 and 8 months of exposure in Cistus and Myrtus, respectively, while it did not change significantly during the entire study period in Quercus. The holocellulose, in contrast, began to decompose in Cistus after 1 year, while in Quercus and Myrtus immediately. Nitrogen was strongly immobilized in all the litters in the early period of decay. Its release began after the first year in Cistus and Myrtus and after 2 years of decomposition in Quercus. These litters still contained about 60, 20 and 90% of the initial nitrogen at the end of the experiment (3 years). Prior to litter exposure nitrogen associated with the lignin fraction was 65, 54 and 37% in Cistus, Myrtus and Quercus, while that associated with the cellulose fraction was 30, 24 and 28%. Although most of the nitrogen was not lost from litters, its distribution among the litter components changed significantly during decomposition. In Cistus and Myrtus the nitrogen associated with lignin began to decrease just 4 months after exposure. In Quercus this process was slowed and after 3 years of decomposition 8% of the nitrogen remained associated with lignin or lignin-like substances. The nitrogen associated with cellulose or cellulose-like substances, in contrast, began to decrease from the beginning of cellulose decomposition in all three species. At the end of the study period most of the nitrogen was not associated to the lignocellulose fraction but to the acid-detergent-soluble substance (87, 88 and 84% of the remaining litter nitrogen).  相似文献   

16.
Human alteration of atmospheric composition affects foliar chemistry and has possible implications for the structure and functioning of detrital communities. In this study, we explored the impacts of elevated carbon dioxide and ozone on aspen (Populus tremuloides) leaf litter chemistry, earthworm (Lumbricus terrestris) individual consumption and growth, and springtail (Sinella curviseta) population growth. We found that elevated carbon dioxide reduced nitrogen and increased condensed-tannin concentrations in leaf litter. These changes were associated with decreases in earthworm individual growth, earthworm growth efficiency, and springtail population growth. Elevated ozone increased fiber and lignin concentrations of leaf litter. These changes were not associated with earthworm consumption or growth, but were associated with increased springtail population growth. Our results suggest that changes in litter chemistry caused by increased carbon dioxide concentrations will have negative impacts on the productivity of diverse detritivore taxa, whereas those caused by increased ozone concentrations will have variable, taxon-specific effects.  相似文献   

17.
Tree species-rich tropical rainforests are characterized by a highly variable quality of leaf litter input to the soil at small spatial scales. This diverse plant litter is a major source of energy and nutrients for soil microorganisms, particularly in rainforests developed on old and nutrient-impoverished soils. Here we tested the hypothesis that the variability in leaf litter quality produced by a highly diverse tree community determines the spatial variability of the microbial respiration process in the underlying soil. We analyzed a total of 225 litter-soil pairs from an undisturbed Amazonian rainforest in French Guiana using a hierarchical sampling design. The microbial respiration process was assessed using substrate-induced respiration (SIR) and compared to a wide range of quality parameters of the associated litter layer (litter nutrients, carbon forms, stoichiometry, litter mass and pH). The results show that the variability of both litter quality and SIR rates was more important at large than at small scales. SIR rates varied between 1.1 and 4.0 μg g−1 h−1 and were significantly correlated with litter layer quality (up to 50% of the variability explained by the best mixed linear model). Total litter P content was the individual most important factor explaining the observed spatial variation in soil SIR, with higher rates associated to high litter P. SIR rates also correlated positively with total litter N content and with increasing proportions of labile C compounds. However, contrary to our expectation, SIR rates were not related to litter stoichiometry. These data suggest that in the studied Amazonian rainforest, tree canopy composition is an important driver of the microbial respiration process via leaf litter fall, resulting in potentially strong plant-soil feedbacks.  相似文献   

18.
Chemical compositions of leaf essential oils from eight provenances of indigenous cinnamon (Cinnamomum osmophloeum Kaneh.) were compared. According to GC-MS and cluster analyses, the leaf essential oils of the eight provenances and their relative contents were classified into five chemotypes-cinnamaldehyde type, linalool type, camphor type, cinnamaldehyde/cinnamyl acetate type, and mixed type. The larvicidal activities of leaf essential oils and their constituents from the five chemotypes of indigenous cinnamon trees were evaluated by mosquito larvicidal assay. Results of larvicidal tests demonstrated that the leaf essential oils of cinnamaldehyde type and cinnamaldehyde/cinnamyl acetate type had an excellent inhibitory effect against the fourth-instar larvae of Aedes aegypti. The LC(50) values for cinnamaldehyde type and cinnamaldehyde/cinnamyl acetate type against A. aegypti larvae in 24 h were 36 ppm (LC(90) = 79 ppm) and 44 ppm (LC(90) = 85 ppm), respectively. Results of the 24-h mosquito larvicidal assays also showed that the effective constituents in leaf essential oils were cinnamaldehyde, eugenol, anethole, and cinnamyl acetate and that the LC(50) values of these constituents against A. aegypti larvae were <50 ppm. Cinnamaldehyde had the best mosquito larvicidal activity, with an LC(50) of 29 ppm (LC(90) = 48 ppm) against A. aegypti. Comparisons of mosquito larvicidal activity of cinnamaldehyde congeners revealed that cinnamaldehyde exhibited the strongest mosquito larvicidal activity.  相似文献   

19.
郭晓燕  陶国峰  张露  易敏  程子珊  黄若 《核农学报》2019,33(12):2499-2508
为探究毛红椿凋落叶水浸液的自毒作用,采用生物测试法研究毛红椿凋落叶水浸液对自身种子发芽和幼苗生长的影响,并结合气相色谱质谱联用(GC-MS)技术分析凋落叶水浸液石油醚、乙醚、氯仿、甲醇4种不同极性萃取组分中存在的自毒物质。结果表明,凋落叶水浸液对毛红椿种子发芽及幼苗生长、存活率等均有抑制作用,浓度越高抑制作用越强,中浓度溶液(100 g·L-1)对种子发芽和茎长达到显著抑制水平,对种子发芽率、发芽势、发芽指数、茎长的抑制率分别为18%、31%、31%和17%;低浓度溶液(10 g·L-1)对根长的抑制达到显著水平,抑制率为25%。毛红椿凋落叶水浸液4种不同极性萃取组分中共鉴定到22种化合物,总体含酰胺类、长链脂肪酸、酚类、苯甲酸衍生物、烷烃类、腈类、二甲苯、松油烯及谷甾醇等物质,其中酰胺类、长链脂肪酸、酚类、苯甲酸衍生物成分可能为毛红椿自毒物质。本研究结果为探索毛红椿的濒危机制,促进毛红椿的实生更新提供了理论依据。  相似文献   

20.
Aberrant protein aggregation and misfolding are key pathological features of many neurodegenerative disorders, including Huntington's and Parkinson's diseases. Compounds that offer protection from toxicity associated with aggregation-prone neurodegenerative proteins may have applications for the treatment of a multitude of disorders. A high-throughput bioassay system with parallel electrospray ionization mass spectrometry screening has been designed for critical evaluation of milligram quantities of natural product extracts, including dietary substances, for compounds of pharmacological relevance to the treatment of human neurodegenerative diseases. Using Saccharomyces cerevisiae strains engineered to express mutant human huntingtin and alpha-synuclein, we are able to identify extracts and compounds that protect cells from toxicity associated with these proteins. Applying this screening paradigm, we determined that a bioactive green tea extract contains an assemblage of catechins that were individually characterized for their respective protective effects against huntingtin and alpha-synuclein toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号