首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

Paulownia, one of the fastest growing broad-leaved tree species in the world, is widely distributed in the warm temperate regions of China. However, there are few commercial-scale Paulownia plantations, and there is only limited information available about the most suitable soil quality for Paulownia fortunei growth in mid-subtropical, Hunan Province, China.

Materials and methods

To understand the effect of the growth of P. fortunei on soil conditions, 25 soil property parameters under Paulownia plantations were studied in Hunan Province, China. Seventy-two standard plots of eight different stand types were analyzed by three statistical approaches to assess soil quality (SQ) in the different P. fortunei plantations.

Results and discussion

The results revealed that a majority of the soil characteristics when intercropping with oilseed rape and the pure P. fortunei (plantation III) were better than intercropping with Camellia oleifera, orange trees, and Cunninghamia lanceolata (Lamb.). Available calcium, available magnesium, available potassium, available phosphorus, soil thickness, slope, soil organic matter, available sulfur, available copper, dehydrogenase, and available zinc were selected as the minimum data set (MDS). The SQ index (SQI) showed that three classes for soil quality among the eight P. fortunei plantations ranged from 0.48 to 0.88 and these were correlated with standing volume (p?<?0.05).

Conclusions

From the results, we concluded that selected MDS indicators can describe the soil fertility quality of P. fortunei plantations, and that the relationship between SQI and standing volume has a biological significance. P. fortunei plantations intercropped with Camellia oleifera, orange trees, and Cunninghamia lanceolata (Lamb.) caused a deterioration in SQ, but intercropping oilseed rape and pure P. fortunei plantations produced an improvement in SQ.
  相似文献   

2.
A field experiment investigating the phytoremediation potential of six plant species—Goosegrass (Eleusine indica), Bermuda grass (Cynodon dactylon), Sessile joyweed (Alternanthera sessilis), Benghal dayflower (Commelina benghalensis), Lovanga (Cleome ciliata), and Chinese violet (Asystasia gangetica)—on soil contaminated with fuel oil (82.5 ml/kg of soil) have been conducted from March to August 2016. The experiments consider three modalities—Tn: unpolluted planted soils, To: unplanted polluted soils, and Tp: polluted planted soil—randomized arranged. Only three (E. indica, C. dactylon, and A. sessilis) of the six species survived while the others died 1 month after the beginning of experimentations. The relative growth indexes showed a strong similarity between the growth parameters of E. indica and C. dactylon, each on polluted and control soils, unlike A. sessilis. Total petroleum hydrocarbons (TPHs) removal efficiency were 82.56, 80.69, and 77% on soil planted with E. indica, C. dactylon, and A. sessilis, respectively; and 57.25% on non-planted soil. According to the bioconcentration and translocation factors, E. indica and A. sessilis are involved on rhizodegradation and phytoextraction of hydrocarbons whereas C. dactylon is only involved into rhizodegradation. Overall, E. indica and C. dactylon out-yielded A. sessilis in the phytoremediation capacity of fuel oil-contaminated soils.  相似文献   

3.
Phenolics from root exudates or decaying residues are usually referred as autotoxins of several plant species. However, how phenolics affect soil microbial communities and their functional significances are poorly understood. Rhizosphere bacterial and fungal communities from cucumber (Cucumis sativus L.) seedlings treated with p-coumaric acid, an autotoxin of cucumber, were analyzed by high-throughput sequencing of 16S rRNA gene and internal transcribed spacer amplicons. Then, feedback effects of the rhizosphere biota on cucumber seedlings were evaluated by inoculating non-sterilized and sterilized rhizosphere soils to sterilized background soils. p-Coumaric acid decreased the bacterial diversity of rhizosphere but increased fungal diversity and altered the compositions of both the bacterial and fungal communities. p-Coumaric acid increased the relative abundances of microbial taxa with phenol-degrading capability (such as Chaetomium, Humicola, and Mortierella spp.) and microbial taxa which contained plant pathogens (such as Fusarium spp.). However, p-coumaric acid inhibited the relative abundances of Lysobacter, Haliangium, and Gymnoascus spp., whose species can have pathogen-antagonistic and/or plant-growth-promoting effects. The positive effect of cucumber rhizosphere microbiota on cucumber seedling growth was reduced by p-coumaric acid. Overall, our results showed that, besides its direct phytotoxicity, p-coumaric acid can inhibit cucumber seedling growth through generating negative plant-soil microbial interactions.  相似文献   

4.

Purpose

The presence of high concentrations of trace elements (TEs) in mine soils like those in the Sierra Minera of La Unión-Cartagena (SE Spain) limits the development of a vegetation cover on such sites, and pollution dispersion by water and wind erosion represents a serious risk for the surrounding ecosystems. The aim of this study was to evaluate different phytostabilisation procedures based on the co-culture of a legume (Bituminaria bituminosa) and a high-biomass (Piptatherum miliaceum) species for this type of soils.

Materials and methods

A pot experiment was carried out where B. bituminosa was tested as a soil pre-treatment strategy. Five different procedures were followed to study the growth stimulation or competition of both species in a contaminated soil from the Sierra Minera: (i) sowing of P. miliaceum without B. bituminosa (control treatment), (ii) sowing of P. miliaceum for co-cultivation of both species, (iii) sowing of P. miliaceum and co-cultivation of both species in soil with compost, (iv) harvesting and elimination of the aerial part of the plants before sowing of P. miliaceum and (v) harvesting and incorporation to the soil of the aerial part of B. bituminosa before sowing of P. miliaceum.

Results and discussion

The results showed that the co-culture of both species favoured the growth of P. miliaceum, whilst incorporating the aerial part of the legume to the soil increased nitrogen concentration in P. miliaceum but reduced its growth. The use of compost improved both the growth and N uptake of P. miliaceum and did not inhibit nodulation in B. bituminosa. TE extractability in the soils and accumulation in the plants were rather low and very little affected by the addition of the amendments or by co-culture of species.

Conclusions

Nitrogen availability plays an important role in P. miliaceum growth in TE-contaminated mine soils. The addition of compost together with legume cultivation is proposed as an effective combination for the cultivation of P. miliaceum in these soils, as both plant growth and soil conditions were improved following this procedure.
  相似文献   

5.
With the development of the industrial era, environmental pollution by organic and inorganic pollutants increased and became a worldwide issue. Particularly, former industrial sites often present high concentrations of metal(loid)s. These pollutions have adverse effects not only on the environment but also to human health, as pollutants can enter the food chain. Therefore, contaminated sites need rehabilitation. Phytoremediation is a clean and low-cost solution to remediate such sites. However, vegetation establishment can be difficult on such extreme soils from both a physical and a chemical point of view. Consequently, amendments, like biochar and garden soil, must be applied. Biochar, product of biomass pyrolysis under low-oxygen conditions, showed beneficial effects on soil fertility and plant growth, as well as metal(loid) sorption properties. The aims of this study were to investigate the effects of two organic amendments, biochar and garden soil, alone or combined, on the physico-chemical properties of a post-industrial soil and the growth of two Salix species (Salix alba and Salix viminalis) and evaluate the phytostabilizing capacities of the two Salix species. In this goal, a greenhouse experiment was performed, using garden soil at 50% (v/v) and/or biochar at 2 or 5% (w/w). The results showed that biochar did not improve soil physico-chemical properties, neither did it affect plant parameters (dry weight, organ metal(loid)s concentrations). Moreover, higher metal(loid) concentrations were found in the roots compared to the upper parts. Finally, S. alba presented lower metal(loid) concentrations in the aboveground parts compared to S. viminalis, associated with a good growth, which make it a better candidate for phytostabilization of the studied soil.  相似文献   

6.

Purpose

Rhizosphere soil bacterial communities are crucial to plant growth, health, and stress resistance. In order to detect how bacterial communities associated with the rhizosphere of phylogenetically related plant species vary in terms of composition, function, and diversity, we investigated the rhizosphere bacterial community structure of two perennial shrub species, Caragana jubata and Caragana roborovskyi, under natural field conditions in northwest China and analyzed the influence of soil properties and environmental factors.

Materials and methods

Eighteen root samples, eight for C. jubata, and ten for C. roborovskyi, along with any adherent soil particles, were collected from multiple sites in northwest China. The rhizosphere soil was washed from the roots, and bacterial communities were analyzed using Illumina MiSeq sequencing of 16S rRNA gene amplicons. Then, α-diversity and β-diversity were calculated using QIIME.

Results and discussion

Across species, Proteobacteria (29 %), Actinobacteria (15 %), Chloroflexi (10 %), Acidobacteria (10 %), Bacteroidetes (8 %), Firmicutes (8 %), Planctomycetes (7 %), Gemmatimonadetes (4 %), and Verrucomicrobia (3 %) were the most abundant phyla in the rhizosphere of C. jubata and C. roborovskyi. However, principal co-ordinates analysis indicated strong interspecific patterns of bacterial rhizosphere communities. Further, the richness of Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia, Firmicutes, and Nitrospirae was significantly higher in the rhizosphere of C. jubata compared with C. roborovskyi, while the opposite was found for Actinobacteria and Cyanobacteria. However, the Shannon index showed no significant difference in α-diversity between C. jubata and C. roborovskyi. Distance-based redundancy analysis indicated that soil properties and environmental factors exerted strong influences on the structure of the rhizosphere bacterial community and explained 47 and 46 % of community variances between samples, respectively.

Conclusions

Our results showed strong interspecific clustering of the bacterial rhizosphere communities of C. roborovskyi and C. jubata. Altitude explained most of the variation in the composition of bacterial rhizosphere communities of C. roborovskyi and C. jubata, followed by soil pH, water content, organic matter content, total nitrogen content, and mean annual rainfall.
  相似文献   

7.

Purpose

Biochar has been suggested as a soil conditioner to improve soil fertility and crop productivity while simultaneously mitigate global climate change by storing carbon in the soil. This study investigated the effect of pine (Pinus radiata) biochar application on soil water availability, nitrogen (N) and carbon (C) pools and growth of C3 and C4 plants.

Materials and methods

In a glasshouse pot trial, a pine biochar (untreated) and nutrient-enriched pine biochar were applied to a market garden soil with C3 (Spinacia oleracea L.) and C4 (Amaranthus paniculatus L.) plants at rates of 0, 1.0, 2.0, and 4.0 % (w/w). Plant biomass, soil pH, moisture content, water holding capacity (WHC), hot water extractable organic C (HWEOC), and total N (HWETN), total C and N, and their isotope compositions (δ 13C and δ 15N) of soils and plants were measured at the end of the experimentation.

Results and discussion

The soil moisture content increased while plant biomass decreased with increasing untreated biochar application rates. The addition of nutrient-enriched biochar significantly improved plant biomass in comparison to the untreated biochar addition at most application rates. Biochar application also increased the levels of labile organic C and N pools as indicated by HWEOC and HWETN.

Conclusions

The results suggested that the addition of pine biochar significantly improved soil water availability but not plant growth. The application of nutrient-enriched pine biochar demonstrated that the growth of C3 and C4 plants was governed by biochar nutrient availability rather than its water holding capacity under the pot trial condition.
  相似文献   

8.
This study evaluated the effect of silicate fertilizer on denitrification and associated gene abundance in a paddy soil. A consecutive trial from 2013 to 2015 was conducted including the following treatments: control (CK), mineral fertilizer (NPK), NPK plus sodium metasilicate (NPK + MSF), and NPK plus slag-based silicate fertilizer (NPK + SSF). Real-time quantitative PCR (qPCR) was used to analyze the abundances of nirS, nirK, and nosZ genes. Potential N2O emissions and ammonium and nitrate concentrations were related to the nirS and nirK gene abundance. Compared with the NPK treatments, the addition of a Si fertilizer decreased N2O emission rates and denitrification potential by 32.4–66.6 and 22.0–59.2%, respectively, which were probably related to increased rice productivity, soil Fe availability, and soil N depletion. The abundances of nirS and nirK genes were decreased by 17.7–35.8% and 21.1–43.5% with addition of silicate fertilizers, respectively. Rates of total N2O and N2O from denitrification (DeN2O) emission were positively correlated with the nirS and nirK gene abundance. Nitrate, exchangeable NH4 +, and Fe concentrations were the main factors regulating the nirS and nirK gene abundance. Silicate fertilization during rice growth may serve as an effective approach to decreasing N2O emissions.  相似文献   

9.

Purpose

We examined the effects of vermicompost application as a basal fertilizer on the properties of a sandy loam soil used for growing cucumbers under continuous cropping conditions when compared to inorganic or organic fertilizers.

Materials and methods

A commercial cucumber (Cucumis sativus L.) variety was grown on sandy loam soil under four soil amendment conditions: inorganic compound fertilizer (750 kg/ha,), replacement of 150 kg/ha of inorganic compound fertilizer with 3000 kg/ha of organic fertilizer or vermicompost, and untreated control. Experiments were conducted in a greenhouse for 4 years, and continuous planting resulted in seven cucumber crops. The yield and quality of cucumber fruits, basic physical and chemical properties of soil, soil nutrient characteristics, and the soil fungal community structure were measured and evaluated.

Results and discussion

Continuous cucumber cropping decreased soil pH and increased electrical conductivity. However, application of vermicompost significantly improved several soil characteristics and induced a significant change in the rhizosphere soil fungal community compared to the other treatments. Notably, the vermicompost amendments resulted in an increase in the relative abundance of Ascomycota, Chytridiomycota, Sordariomycetes, Eurotiomycetes, and Saccharomycetes, and a decrease in Glomeromycota, Zygomycota, Dothideomycetes, Agaricomycetes, and Incertae sedis. Compared to the organic fertilizer treatment, vermicompost amendment increased the relative abundance of beneficial fungi and decreased those of pathogenic fungi. Cucumber fruit yield decreased yearly under continuous cropping conditions, but both inorganic and organic fertilizer amendments increased yields. Vermicompost amendment maintained higher fruit yield and quality under continuous cropping conditions.

Conclusions

Continuous cropping decreased cucumber yield in a greenhouse, but basic fertilizer amendment reduced this decline. Moreover, basal fertilizer amendment decreased beneficial and pathogenic fungi, and the use of vermicompost amendment in the basic fertilizer had a positive effect on the health of the soil fungal community.
  相似文献   

10.
The structure of algological and mycological complexes in Al–Fe-humus podzols (Albic Podzols) under pine and birch forests of the Pasvik Reserve is characterized. The number of micromycetes is higher in more acid soils of the pine forest, while the species diversity is greater under the birch forest. The genus Penicillium includes the largest number of species. The greatest abundance and occurrence frequency are typical for Penicillium spinulosum, P. glabrum, and Trichoderma viride in pine forest and for Umbelopsis isabellina, Mucor sp., Mortierella alpinа, P. glabrum, Aspergillus ustus, Trichoderma viride, and T. koningii in birch forest. Cyanobacteria–algal cenoses of the investigated soils are predominated by green algae. Soils under birch forest are distinguished by a greater diversity of algal groups due to the presence of diatoms and xanthophytes. Species of frequent occurrence are represented by Pseudococcomyxa simplex and Parietochloris alveolaris in soils of the pine forest and by Tetracystis cf. aplanospora, Halochlorella rubescens, Pseudococcomyxa simplex, Fottea stichococcoides, Klebsormidium flaccidum, Hantzschia amphioxys, Microcoleus vaginatus, and Aphanocapsa sp. in soils under birch forest  相似文献   

11.
The taxonomic and functional structures of the actinomycetal complex in the litter and upper horizon of the brown forest soil was studied in a Pinus brutia var. pendulifolia forest on the eastern coast of the Aegean Sea. The complex of actinomycetes included representatives of the Streptomyces and Micromonospora genera and oligosporus forms. Streptomycetes predominated (73.8%) in the soil, and micromonospores (66.7%) were dominants in the litter. Thirty isolates of ten Streptomyces species from five series and three sections prevailed. In the upper soil horizon, species of the Helvolo-Flavus Helvolus section predominated (48%); the S. felleus species occurred most frequently. Among the isolated cultures, the S. globisporus and S. sindenensis species capable to produce antitumor antibiotics were found. The testing of the antimicrobial activity of the natural isolates showed that five strains inhibit the growth of pathogenic Fusarium sp., Alternaria sp., Acremonium sp., and Bipolaris sorokiniana fungi. When testing the effect of streptomycetes on the production of cellulases, a high-efficient strain belonging to the S. noboritoensis species was revealed. All the streptomycetes isolated from the brown forest soil produced auxins at the rate of 7.8 to 19.7 μg of indole acetic acid/mL of the liquid medium in the presence of 200 mg/L of tryptophan. Twelve isolates of streptomycetes were transferred to the collection of biotechnologically promising cultures for studying their properties.  相似文献   

12.
The influence of edaphic and orographic factors on the formation of algal diversity in biological soil crusts was studied in mountain tundras of the Polar and Subpolar Urals. Bare spots developed in the soils on different parent materials and overgrown to different extents were investigated. Overall, 221 algal species from six divisions were identified. Among them, eighty-eight taxa were new for the region studied. The Stigonema minutum, S. ocellatum, Nostoc commune, Gloeocapsopsis magma, Scytonema hofmannii, Leptolyngbya foveolarum, Pseudococcomyxa simplex, Sporotetras polydermatica species and species of the Cylindrocystis, Elliptochloris, Fischerella, Leptosira, Leptolyngbya, Myrmecia, Mesotaenium, Phormidium, Schizothrix genera were permanent components of biological soil crusts. The basis of the algal cenoses in soil crusts was composed of cosmopolitan cyanoprokaryotes, multicellular green algae with thickened covers and abundant mucus. The share of nitrogen fixers was high. The physicochemical properties of primary soils forming under the crusts of spots are described. The more important factors affecting the species composition of algae in the crusts are the elevation gradient, temperature, soil moisture, and the contents of Ca, Mg, mobile phosphorus, and total nitrogen.  相似文献   

13.
New methodological approaches and an algorithm for the quantitative assessment of accumulating a substance by a plant (C p ) with due regard for its concentration in the soil (C n ) are proposed. The first approach is the approximation of concentration curves by the functions C p = f(C n ) and their parameters. The second one is the standardization of the coefficients of biological sorption (K b ) of a substance upon its stable concentration in the soil using the function K b = f(C n ). As compared to the variation-statistical values of the mean and extreme concentrations, or the coefficients K b , the proposed parameters are characterized by a higher accuracy and sensitivity. They may be successfully used for quantitative studies of the mechanism and the intensity of the absorption of substances by plants, for the prediction of the accumulation of substances in the trophic chain, and the assessment of soil self-purification (detoxification) and comparative ratings.  相似文献   

14.

Purpose

The extract of Stevia residue is an ideal substitute for cultivation of the purple nonsulfur bacterium, like Rhodopseudomonas palustris (R. palustris). But the influence of R. palustris grown under residue extract on its downstream application is still not well-characterized. The objective of this study was to assess the effect of foliar spray of R. palustris grown under Stevia residue extract on the plant growth and soil microbial properties.

Materials and methods

A pot experiment was carried out under the greenhouse condition, consisting of four treatments varying in the sprayed substances: sterilized water (control), R. palustris grown under the chemical medium supplemented with L-tryptophan (SyT), R. palustris grown under Stevia residue extract supplemented with L-tryptophan (ExT), and R. palustris grown under Stevia residue extract supplemented with NH4Cl (ExT). The net photosynthesis rate of the uppermost leaves was measured with a portable photosynthesis system. Soil microbial activity was analyzed by microcalorimetry. Soil bacterial community components were determined by real-time quantitative PCR (qPCR) and high-throughput sequencing techniques.

Results and discussion

Compared with SyT, the R. palustris grown under Stevia residue extract not only improved the plant biomass and the net photosynthetic rate to a large extent, but also increased soil microbial metabolic activity and altered community compositions as well. The treatments receiving R. palustris, especially ExT and ExN, increased the relative abundances of some functional guilds involved in C turnover and nutrient cycling in soil, including Acidobacteria, Actinobacteria, Proteobacteria, Gemmatimonadaetes, Nitrospirae, and Planctomycetes.

Conclusions

R. palustris grown under the Stevia residue extract showed advantages over that under the chemical medium on both plant growth and soil microbial properties. One of the possible reasons could result from the increases in microbial activity and several bacterial keystone guilds involved into C and nutrient cycling, both of which potentially contribute to the improved plant growth. The results would be conducive to the downstream application of R. palustris in an economical way.
  相似文献   

15.
To quantify the relationship between the soil organic matter and color parameters using the CIE-Lab system, 62 soil samples (0–10 cm, Ferralic Acrisols) from tea plantations were collected from southern China. After air-drying and sieving, numerical color information and reflectance spectra of soil samples were measured under laboratory conditions using an UltraScan VIS (HunterLab) spectrophotometer equipped with CIE-Lab color models. We found that soil total organic carbon (TOC) and nitrogen (TN) contents were negatively correlated with the L* value (lightness) (r = –0.84 and –0.80, respectively), a* value (correlation coefficient r = –0.51 and –0.46, respectively) and b* value (r = –0.76 and –0.70, respectively). There were also linear regressions between TOC and TN contents with the L* value and b* value. Results showed that color parameters from a spectrophotometer equipped with CIE-Lab color models can predict TOC contents well for soils in tea plantations. The linear regression model between color values and soil organic carbon contents showed it can be used as a rapid, cost-effective method to evaluate content of soil organic matter in Chinese tea plantations.  相似文献   

16.
We evaluated the impact of exponential fertilization in nursery and weed removal in the field on growth and nitrogen (N) retranslocation and uptake from the soil of jack pine (Pinus banksiana Lamb.) seedlings planted on an oil sands reclaimed soil. Exponential fertilization is a method of supplying nutrients at an exponential rate to achieve constant internal nutrient concentrations in seedlings without changing their size during their growth in the nursery. The N retranslocation in seedlings was traced using 15N isotope labeling. Exponential fertilization increased nutrient reserve in the seedling in nursery production, and increased height (P = 0.003), root collar diameter (P < 0.001), total biomass (P < 0.001), and N content (P < 0.001) of seedlings at the end of first growing season in the field growth. Conventionally fertilized seedlings allocated a greater percent of biomass to roots than to current-year needles. The 15N isotope analysis showed that 59 to 82% of total N demand of new growth was met by retranslocation from old tissues. Exponential fertilization increased N retranslocation by 147% (P < 0.001) and N uptake from the soil by 175% (P = 0.012). Weed removal marginally increased (P = 0.077) N uptake from the soil but decreased (P = 0.046) N retranslocation with no net effect on total N content in new tissues. We conclude that exponential fertilization improves the early growth of jack pine and can help improve revegetation in reclaiming disturbed oil sands sites.  相似文献   

17.
The asymbiotic diazotrophic bacteria are important for nitrogen (N) input to soil. Here, we investigated asymbiotic diazotrophic bacteria in an acidic red soil from functional, phylogenetic, and ecological perspectives. We firstly confirmed that phosphorus (P) availability determines the overall asymbiotic N fixation potential in the red soil. Then, we analyzed the soil bacterial community and N fixing (nifH) gene composition. Long-term different fertilizations significantly affected the composition of soil bacterial community. In addition, long-term organic cultivations increased most of the asymbiotic diazotrophic bacteria and the corresponding nifH gene abundances. Few asymbiotic diazotrophic bacteria, belonging to Chloroflexaceae, Methylocystaceae, Enterobacteriaceae, and Pseudomonadaceae, and their corresponding nifH genes were more abundant in N and P co-limited than in not co-limited soils, suggesting that some bacterial taxa from these families might be activated under nutrient limited conditions. Our findings provided new information for the distribution of asymbiotic diazotrophic bacteria in red soil and gave insights into the ecology of diazotrophic bacteria.  相似文献   

18.
The saturated hydraulic conductivity (Ks) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of Ks using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate Ks by using available soil data and fractal parameters. There were found significant correlations between Ks and fractal parameters of particles and microaggregates. Estimation of Ks was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve Ks estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of Ks. Generally, fractal parameters can be successfully used as input parameters to improve the estimation of Ks in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to Ks.  相似文献   

19.

Purpose

Chickpea is generally cultivated after seed treatment with host-specific Mesorhizobium ciceri, the nitrogen-fixing bacterium forming root nodules. Some species of free-living cyanobacteria are capable of nitrogen fixation. We examined the rhizosphere microbiota changes and the potential for plant growth promotion by applying a free-living, nitrogen-fixing cyanobacterium and the biofilm formulation of cyanobacterium with M. ciceri, relative to M. ciceri applied singly, to two each of desi and kabuli varieties of chickpea.

Materials and methods

Denaturing gradient gel electrophoresis (DGGE) profiles of archaeal, bacterial and cyanobacterial communities and those of phospholipid fatty acids (PLFAs) were obtained to evaluate the changes of the microbial communities in the chickpea rhizosphere. Plant growth attributes, including the pod yields and the availabilities of soil macronutrients and micronutrients, were monitored.

Results and discussion

The DGGE profiles showed distinct and characteristic changes due to the microbial inoculation; varietal differences exerted a marked influence on the archaeal and cyanobacterial communities. However, bacterial communities were modulated more by the type of microbial inoculants. Abundance of Gram-negative bacteria (in terms of notional PLFAs) differed between the desi and the kabuli varieties inoculated with M. ciceri alone, and the principal component analysis of PLFA profiles confirmed the characteristic effect of microbial inoculants tested. Microbial inoculation led to increases in the 100-seed weight and differential effects on the concentrations of available nitrogen and phosphorus, and those of iron, zinc and copper, suggesting their increased cycling in the rhizosphere.

Conclusions

Microbial inoculation of chickpea brought out the characteristic changes in rhizosphere microbiota. Consequently, the growth promotion of chickpea and nutrient cycling in its rhizosphere distinctively differed. Further studies are needed to analyse the association and dynamic changes in the microbial communities to define the subset of microorganisms selected by chickpea in its rhizosphere and the influence of microbial inoculation.
  相似文献   

20.
There is an increasing interest in elemental S as a S fertiliser source, but to be available to plants, elemental S has to be oxidised to sulphate. Elemental S oxidation is known to be affected by soil properties and environmental conditions, but it is still unclear if elemental S oxidation is related to the abundance and diversity of S-oxidising bacteria in cropping soils. In this study, we investigated the abundance and diversity of S-oxidising bacteria by targeting a functional gene (soxB) and assessed their relationship with elemental S oxidation in ten cropping soils. Positive correlations between soil C, N and S contents on the one hand and the abundances of soxB and 16S ribosomal deoxyribonucleic acid (rRNA) genes on the other suggested that the abundances of S oxidising bacteria in particular and of bacteria in general depend on soil C and nutrient supply. Both soxB and 16S rRNA gene abundances were significantly correlated with the oxidation rate of elemental S (P < 0.05). In addition, more than 80% of the variation in the oxidation rate of elemental S could be explained by the combination of soxB or 16S rRNA gene abundances and soil pH, suggesting that pH not only affected bacterial abundances but also their activity during elemental S oxidation. Clone libraries constructed with the soxB primers showed genera belonging to Alphaproteobacteria, Betaproteobacteria and Deltaproteobacteria and Actinobacteria. The phylogenetic diversity and relative distribution of soxB clones revealed great differences across soils. However, no direct linkage was found between the diversity of S-oxidising bacteria and elemental S oxidation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号