首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In mountainous Mediterranean regions, land abandonment processes in past decades are hypothesized to trigger secondary vegetal succession and homogenization, which in recent years has increased the size of burned areas. We conducted an analysis of temporal changes in landscape vegetal spatial pattern over a 15-year period (1984–1998) in a rural area of 672.3 km2 in Eastern Spain to investigate the relationship between local landscape heterogeneity and wildfire occurrence. Heterogeneity was analyzed from textural metrics derived from non-classified remote sensing data at several periods, and was related to wildfire history in the study area. Several neural network models found significant relationships between local spatial pattern and future fire occurrence. In this study, sensitivity analysis of the texture variables suggested that fire occurrence, estimated as probability of burning in the near future, increased where local homogeneity was higher.  相似文献   

2.
Socioeconomic changes in many areas in the tropics have led to increasing urbanization, abandonment of agriculture, and forest re-growth. Although these patterns are well documented, few studies have examined the drivers leading to landscape-level forest recovery and the resulting spatial structure of secondary forests. Land cover transitions from agricultural lands to secondary forest in the island of Puerto Rico have been ongoing since the 1940s. This study is a glimpse into this landscape level trend from 1991 to 2000. First, we relied on Landsat images to characterize changes in the landscape structure for forest, urban, and agricultural land classes. We found that although forest cover has increased in this period, forest has become increasingly fragmented while the area of urban cover has spread faster and become more clustered. Second, we used logistic regression to assess the relationship between the transition to forest and 21 biophysical, socioeconomic, and landscape variables. We found that the percentage of forest cover within a 100 m radius of a point, distance to primary roads and nature reserves, slope, and aspect are the most important predictors of forest recovery. The resulting model predicts the spatial pattern of forest recovery with accuracy (AUC-ROC = 0.798). Together, our results suggest that forest recovery in Puerto Rico has slowed down and that increasing pressure from urbanization may be critical in determining future landscape level forest recovery. These results are relevant to other areas in the tropics that are undergoing rapid economic development.  相似文献   

3.
This landscape study was based on the sampling of 20 replicated landscape sites (1 km2 each) that were located within the floodplain of the river Seine. For each site, 13 landscape variables were measured at three dates (1963–1985–2000). The aim of this study was to investigate the overall landscape variability through its different dimensions (space vs. time) and to assess the relative importance of each dimension. We used a new statistical method, i.e., partial triadic analysis (PTA), which allowed us to assess both (1) the spatial variability of the floodplain landscape and its dynamics in time and (2) the dynamic trajectories of the landscape variables for each site. The results showed, at the floodplain scale, the same landscape pattern has emerged since 1963, although a major trend was observed which consisted in a decrease in meadows resulting from an increase in arable crops. At the site scale, landscape sites, even if they were all influenced by this general trend during the 40-year period, showed contrasting trajectories. These results suggest that similar sites in 2000 do not necessarily share common histories and that contrasting sites in 2000 may have originated from similar patterns in 1963. The issue of biodiversity surrogates is then discussed, suggesting that new landscape metrics should be developed, emphasising spatial variability and (or) temporal dynamics.  相似文献   

4.
Long-term societal trends which include decreasing population in structurally poorer regions and changes in agricultural policies have been leading to land abandonment in various regions of Europe. One of the consequences of this development includes spontaneous forest regeneration of formerly open-land habitats with likely significant effects on plant and animal diversity. We assess potential effects of agricultural decline in Switzerland (41,000 km2) and potential impacts on the spatial distribution of seven open-land species (insects, reptile, birds) under land-use change scenarios: (1) a business-as-usual scenario that extrapolates trends observed during the last 15 years into the future, (2) a liberalisation scenario with limited regulation, and (3) a lowered agricultural production scenario fostering conservation. All scenarios were developed in collaboration with socio-economists. Results show that spontaneous reforestation is potentially minor in the lowlands since combinations of socio-economic (better accessibility), topographic (less steep slopes), and climatic factors (longer growing seasons) favour agricultural use and make land abandonment less likely. Land abandonment, spontaneous reforestation, and subsequent loss of open-land, however, are potentially pronounced in mountainous areas except where tourism is a major source of income. Here, socio-economic and natural conditions for cultivation are more difficult, leading to higher abandonment and thus reforestation likelihood. Evaluations for open-land species core habitats indicate pronounced spatial segregation of expected landscape change. Habitat losses (up to 59%) are observed throughout the country, particularly at high elevation sites in the Northern Alps. Habitat gains under the lowered agricultural production scenario range between 12 and 41% and are primarily observed for the Plateau and the Northern Alps.  相似文献   

5.
McGarigal  Kevin  Romme  William H.  Crist  Michele  Roworth  Ed 《Landscape Ecology》2001,16(4):327-349
In the southern Rocky Mountains of temperate North America, the effects of Euro-American activities on disturbance regimes and landscape patterns have been less ubiquitous and less straightforward in high-elevation landscapes than in low-elevation landscapes. Despite apparently little change in the natural disturbance regime, there is increasing concern that forest management activities related mainly to timber harvest and to the extensive network of roads constructed to support timber harvest, fire control, and recreation since the late 1800s have altered disturbance regimes and landscape structure. We investigated the magnitude of change in landscape structure resulting from roads and logging since the onset of timber harvest activities in 1950. We found limited evidence for significant impacts in our study area when all lands within the landscape were considered. The relatively minor changes we observed reflected the vast buffering capacity of the large proportion of lands managed for purposes other than timber (e.g., wilderness). Significant changes in landscape structure and fragmentation of mature forest were, however, evident on lands designated as suitable timberlands. Roughly half of the mature coniferous forest was converted to young stands; mean patch size and core area declined by 40% and 25%, respectively, and contrast-weighted edge density increased 2- to 3-fold. Overall, roads had a greater impact on landscape structure than logging in our study area. Indeed, the 3-fold increase in road density between 1950–1993 accounted for most of the changes in landscape configuration associated with mean patch size, edge density, and core area. The extent of area evaluated and the period over which change was evaluated had a large impact on the magnitude of change detected and our conclusions regarding the ecological significance of those changes. Specifically, the cumulative impact on landscape structure was negligible over a 10-year period, but was notable over a 40-year period. In addition, the magnitude of change in landscape structure between 1950–1993 varied as a function of landscape extent. At the scale of the 228000 ha landscape, change in landscape structure was trivial, suggesting that the landscape was capable of fully incorporating the disturbances with minimal impact. However, at intermediate scales of 1000–10000 ha landscapes, change in landscape structure was quite evident, suggesting that there may be an optimal range of scales for detecting changes in landscape structure within the study area.  相似文献   

6.
Forty-eight years of landscape change on two contiguous Ohio landscapes   总被引:5,自引:0,他引:5  
This study analyzes the current and historic structure of two contiguous, rural landscapes covering approximately 242 km2 in central Ohio, USA: a till plain landscape with relatively homogeneous topography and soils, and a moraine landscape with greater geomorphological diversity and heterogeneity. These landscapes were chosen because they were both heavily dominated by agriculture during 1900–1940 and were both initially surveyed by the metes-and-bounds system. They differed, however, in the temporal pattern of settlement and development and in the inherent agricultural capability of their soils. We combined analysis of aerial photographs from 1940, 1957, 1971, and 1988 with historical archives and other available mapped data in a GIS data base to facilitate analysis of both spatial and temporal patterns of change. On the moraine, the agricultural matrix decreased over time as forest, urban/suburban areas, and industry increased. In contrast, on the till plain agricultural landcover increased through 1988, with concommitant decreases in upland forest and oak savanna. The moraine landscape exhibited greater diversity and equitability than the till plain on each date. The till plain had its greatest diversity and equitability in 1940, whereas the moraine increased in diversity and equitability during each time period. The undulating topography of the moraine encouraged landcover dynamism rather than stability, whereas the more homogeneous till plain exhibited considerable inertia. Patch and matrix shape remained constant and predominantly angular over the 48 year study period. Differences in the physical environment, especially topography and soil capability, and the socioeconomic environment, especially agricultural policies and patterns of urbanization, resulted in these two contiguous landscapes having different trajectories of change. It is clear from this study that socioeconomic factors must be combined with the physical setting to fully understand patterns of change in human-dominated landscapes.  相似文献   

7.
Land-use legacies can persist for hundreds to thousands of years, influencing plant species composition, nutrient cycling, water flows, and climate. To understand how land use has affected regional land-cover composition in Wisconsin (USA), we assessed the magnitude and direction of change in land cover between: (1) c.1850, at the onset of Euro-American settlement; (2) c.1935, the period of maximum clearing for agriculture following widespread forest logging; and (3) 1993, which, especially in northern Wisconsin, follows farm abandonment and forest recovery. We derived land-cover maps using U.S. Public Land Survey records (c.1850), the Wisconsin Land Economic Inventory (c.1935), and Landsat TM satellite data (1993). We stratified Wisconsin (145,000 km2) into two ecological provinces and used spatial error models, multinomial logistic regression, and non-metric multi-dimensional scaling ordination to examine change. Between 1850 and 1935, forest cover in the North declined from 84% to 56%, cropland increased to 24%, and mixed/coniferous forests and savannas were replaced by deciduous forests. In the South, formerly dominant savannas (69%) and prairies (6%) were mostly converted to cropland (51%) and pasture (11%). Remnant deciduous savannas and coniferous forests and savannas were replaced by deciduous forests. Remarkably little recovery to pre-settlement land-cover classes occurred from 1935 to 1993. Less cropland was abandoned than expected, and there was little net gain in coniferous/mixed forest. Based on these general land-cover classes, current cover is significantly different from that in 1850, but not from that in 1935, and thus continues to reflect historical logging and agricultural patterns. These results provide a historical framework for measuring associated changes in ecosystem function and can be used to guide restoration where desirable and feasible.  相似文献   

8.
The influence of prey density, within-field vegetation, and the composition and patchiness of the surrounding landscape on the abundance of insect predators of cereal aphids was studied in wheat fields in eastern South Dakota, USA. Cereal aphids, aphid predators, and within-field vegetation were sampled in 104 fields over a three year period (1988–1990). The composition and patchiness of the landscape surrounding each field were determined from high altitude aerial photographs. Five landscape variables, aggregated at three spatial scales ranging from 2.6 km2 to 581 km2, were measured from aerial photographs. Regression models incorporating within-field and landscape variables accounted for 27–49% of the variance in aphid predator abundance in wheat fields. Aphid predator species richness and species diversity were also related to within-field and landscape variables. Some predators were strongly influenced by variability in the composition and patchiness of the landscape surrounding a field at a particular spatial scale while others responded to variability at all scales. Overall, predator abundance, species richness, and species diversity increased with increasing vegetational diversity in wheat fields and with increasing amounts of non-cultivated lands and increasing patchiness in the surrounding landscape.  相似文献   

9.
Fallow periods used in slash-and-burn agriculture in the Bragantinaregion, the oldest agricultural frontier in the Brazilian Amazon, are beingreduced. The objective of this study was to analyze the effects of a shortenedfallow period on the Bragantina landscape dynamics and equilibrium. Dynamicswere characterized by landscape structural changes, particularly in the spatialdistribution of secondary forests, and by transition matrix. Equilibrium wasdefined by temporal and spatial parameters, and by the increment ofagriculturalareas from 1985 to 1996, analyzed with 6 LANDSAT-TM images. I worked with 6areas of 250 ha each, 3 with short fallow periods (2–4years)and 3 with long fallow periods (about 10 years). Results showed that shortfallow period areas did not present an equilibrium situation. In these areas,developed secondary vegetation tended to disappear and agricultural areas werebeing expanded at an average rate of 3% per year. Landscape structure changespointed out that a reduction in fallow period was occurring in already shortfallow period areas. Long fallow period areas presented a shifting mosaicsteady-state condition, where punctual changes due to agricultural uses werecompensated by field abandonment rate. Both agricultural uses and fieldabandonment rates were lower in long fallow period areas when compared withshort ones. Comparisons with indigenous traditional cropping-fallow cyclesindicate that sustainable conditions could be maintained with 11 years offallowfor each cropping year, while shorter cycles would break down the system ifagricultural improvements are not implemented.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

10.
This study aimed at capturing the spatial variability of landscape patterns and their trajectories of change from 1950 to 2000 within a watershed, which is representative of areas of intensive agricultural use. After an analysis of landscape features changes for the entire watershed based on aerial photographs, hierarchical clustering analysis provided a typology of landscape patterns for the cadastral lots. Following that, the trajectory of change of each lot was characterized (nature, importance, direction, rate of change). Seven types of landscape patterns are distinguished by the relative importance of different classes of landscape features and 51 trajectories of change were identified for the lots. The analysis shows that although the majority of lots were subjected to a homogenization of their landscape patterns since 1950, this trend is not entirely uniform and that since 2000 it occurs alongside trends towards diversification of certain landscape features on some lots. Furthermore, nearly a third of the lots are not following the main trajectories of change detected. Thus, the results suggest that extrinsic forces (policies, technologies) that are directing main changes in areas of intensive agricultural use toward uniformity could be modulated by internal forces (uses and values of the population). A better understanding of theses internal forces seems crucial to manage landscapes. From a methodology standpoint, although the hierarchical clustering analyses appear useful for understanding the spatial and temporal variability of landscape patterns, particular attention must be given to validating the typology chosen to characterize them.  相似文献   

11.
We classified NALC (North American Landscape Characterization) imagery to forest-nonforest and examined forest change between 1972 and 1992 in theKlamath-Siskiyou ecoregion (USA) in relation to land ownership and fifth levelwatersheds. We also analyzed changes in forest patterns by land ownership forthree major river basins within the ecoregion (Eel, Klamath, and Rogue) usingFRAGSTATS. Overall, forests covered 66.8% of the ecoregion in 1972 and 62.1% in1992. Approximately 10.5% of the forest area was disturbed overall, translatinginto an annual disturbance rate of 0.53%. Although public lands accounted for aslightly higher total area of forest disturbance, private lands were cut at aslightly higher rate. Forest disturbance within fifth level watersheds averaged13.2%, but reached as high as 93.2%. For the three river basins where spatialpattern of forest disturbance was analyzed, private lands were already morefragmented than public lands in 1972. Over the 20-year time period, forestfragmentation increased on all ownerships. Fragmentation rates on public landswere high for all basins especially the Rogue. Clearcut logging on privatelandswas generally in larger adjacent tracts, whereas cuts on public lands weregenerally smaller and more dispersed. Our results illustrate the importance ofconsidering landscape change history when planning for effective biodiversityconservation in forested ecoregions and when formulating ecologicallysustainable forest management strategies.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

12.
Artificial neural networks were used to quantify the distribution of macroinvertebrate functional feeding groups (FFGs) in relation to physical variables and to land-cover in the Adour–Garonne stream system (SW France; 116,000 km2). The relative abundances of 5 FFGs were calculated from macroinvertebrate data recorded at 165 sampling sites. Each site was characterized using 5 physical variables (elevation, stream order, stream width, distance from the source, slope) and 3 land-cover variables (% forested, % urban areas, % agricultural areas). The sites were first classified using the Self-Organizing Map algorithm (SOM), according to the physical and land-cover variables. Two major clusters of sites corresponded to anthropogenically modified and natural areas, respectively. Anthropogenically modified areas were clearly divided into agricultural and urban landscapes. Each major cluster was divided into 3–4 subsets of sites according to a topographic gradient of physical variables. To examine the variability of the communities, FFG proportions at the 165 sites were examined on the SOM trained with physical and land-cover variables. When the riverine landscape was natural, FFG patterns responded to the upstream–downstream gradient in physical variables. When the landscape was altered by agriculture or urbanization, the effects of land-cover on FFGs overcame the influence of the physical variables. The categorization of the landscape into forested, agricultural, and urban areas was relevant to detect changes in FFG patterns. In light of increasing development along riparian zones, the use of SOMs to detect responses of FFGs to landscape alterations at regional scales exemplifies an effective technique for assessing river health based on ecological indicator groups.  相似文献   

13.
Mander  Ülo  Kull  Ain  Kuusemets  Valdo 《Landscape Ecology》2000,15(3):187-199
Due largely to unprecedented land-use changes in the Porijõgi River catchment (southern Estonia) losses of nutrients and organic matter have decreased significantly. During the period 1987–1997 abandoned lands increased from 1.7 to 10.5% and arable lands decreased from 41.8 to 23.9%. At the same time, the runoff of total-N, total-P, SO4 and organic matter (after BOD5) decreased from 25.9 to 5.1, 0.32 to 0.13, 78 to 48, and 7.4 to 3.5 kg ha–1 yr–1, respectively. The most significant decreases occurred in agricultural subcatchments while the changes were insignificant in the forested upper course catchment. A simple empirical model which incorporates land-use pattern, fertilization intensity, soil parameters and water discharge accurately described the variations of total-N and total-P runoff in both the whole catchment and its agricultural subcatchments (R 2 varies from 0.95–0.99 for N to 0.49–0.93 for P). In small agricultural subcatchments the rate of fertilization is found the most important factor for nitrogen runoff, whereas in larger mosaic watersheds land use pattern plays the main role. Seven alternative scenarios compiled on the base of the empirical model allow to forecast potential nitrogen and phosphorus losses from the catchment. This information can be used in further landscape and regional planning of the whole region.  相似文献   

14.
Mediterranean agroforestry landscapes, dehesas, experience significant structural changes that affect their ability to support habitats for a rich biodiversity. The goal of this study is to provide quantitative information on loss, fragmentation, and alteration of holm oak (Quercus ilex) stands over a 42-year period, based on two sites in the lowlands of Cáceres province, Spain. Aerial photography and orthoimages from 1956, 1984, and 1998 were processed in a geographic information system (GIS). Important changes in demography and land-use were rural depopulation, abandonment of traditional agricultural activities, and a sharp increase in livestock stocking levels. These were related to intensification and extensification of land-uses determined by national and EU agricultural policies. Results of the land cover analysis indicated that dehesas suffered an annual 0.27% and 0.04% decrease in cover in the two sites. From 1984 loss rate had markedly accelerated (0.83% and 0.30%). Most dehesas were lost by shrub encroachment or conversion to open grassland. Fragmentation through roads increased by 28% and 45%, while rural buildings decreased by 17% and 50% from 1956 to 1998. Mean tree density decreased from 1956 to 1984, but a recovery was found since 1984. Significant factors determining stand densities in most time points were altitude (related with different land-uses and geological substrates), ownership, and proximity to villages. This suggests that stand structure is controlled both by human interventions and ecological settings. The findings support the view that opposite trends of land abandonment and intensification of land-uses arise in most northern Mediterranean countries as an effect of the EU Common Agricultural Policy.  相似文献   

15.
This study evaluates the relationship between landscape accessibility and land cover change in Western Honduras, and demonstrates how these relationships are influenced by social and economic processes of land use change in the region. The study area presents a complex mosaic of land cover change processes that involve approximately equal amounts of reforestation and deforestation. Landsat Thematic Mapper (TM) satellite imagery of 1987, 1991 and 1996 was used to create three single date classifications and a land cover change image depicting the sequence of changes in land cover between 1987–1991–1996. An accessibility analysis examined land cover change and landscape fragmentation relative to elevation and distance from roads. Between 1987 and 1991, results follow ‘expected’ trends, with more accessible areas experiencing greater deforestation and fragmentation. Between 1991 and 1996 this trend reverses. Increased deforestation is found in areas distant from roads, and at higher elevations; a result of government policies promoting expansion of mountain coffee production for export. A ban on logging, and abandonment of marginally productive agricultural fields due to agricultural intensification in other parts of the landscape, has led to increased regrowth in accessible regions of the landscape. Roads and elevation also present different obstacles in terms of their accessibility, with the smallest patches of cyclical clearing and regrowth, relating mostly to the agricultural fallow cycle, found at the highest elevations but located close to roads. This research highlights the need to locate analyses of land cover change within the context of local socio-economic policies and land use processes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Housing growth is prevalent in rural areas in the United States and landscape fragmentation is one of its many effects. Since the 1930s, rural sprawl has been increasing in areas rich in recreational amenities. The question is how housing growth has affected landscape fragmentation. We thus tested three hypotheses relating land cover and land ownership to density and spatial pattern of buildings, and examined whether building density or spatial pattern of buildings was a better predictor for landscape fragmentation. Housing locations were mapped from 117 1:24,000-scale USGS topographic maps across northern Wisconsin. Patch-level landscape metrics were calculated on the terrestrial area remaining after applying 50, 100 and 250 m disturbance zones around each building. Our results showed that building density and the spatial pattern of buildings were affected mostly by lake area, public land ownership, and the abundance of coniferous forest, agricultural land, and grassland. A full 40% of the houses were within 100 m of lakeshores. The clustering of buildings within 100 m of lakeshores limited fragmentation farther away. In contrast, agricultural and grassland areas were correlated with higher building density, higher fragmentation, and more dispersed building pattern possible legacies of agricultural settlement patterns. Understanding which factors influence building density and fragmentation is useful for landscape level planning and ecosystem management in northern Wisconsin and areas that share similar social and environmental constraints.  相似文献   

17.
Though fire is considered a natural disturbance, humans heavily influence modern wildfire regimes. Humans influence fires both directly, by igniting and suppressing fires, and indirectly, by either altering vegetation, climate, or both. We used the LANDIS disturbance and succession model to compare the relative importance of a direct human influence (suppression of low intensity surface fires) with an indirect human influence (timber harvest) on the long-term abundance and connectivity of high-risk fuel in a 2791 km2 landscape characterized by a mixture of northern hardwood and boreal tree species in northern Wisconsin. High risk fuels were defined as a combination of sites recently disturbed by wind and sites containing conifer species/cohorts that might serve as ladder fuel to carry a surface fire into the canopy. Two levels of surface fire suppression (high/current and low) and three harvest alternatives (no harvest, hardwood emphasis, and pine emphasis) were compared in a 2×3 factorial design using 5 replicated simulations per treatment combination over a 250-year period. Multivariate analysis of variance indicated that the landscape pattern of high-risk fuel (proportion of landscape, mean patch size, nearest neighbor distance, and juxtaposition with non fuel sites) was significantly influenced by both surface fire suppression and by forest harvest (p > 0.0001). However, the two human influences also interacted with each other (p < 0.001), because fire suppression was less likely to influence fuel connectivity when harvest disturbance was simultaneously applied. Temporal patterns observed for each of seven conifer species indicated that disturbances by either fire or harvest encouraged the establishment of moderately shade-tolerant conifer species by disturbing the dominant shade tolerant competitor, sugar maple. Our results conflict with commonly reported relationships between fire suppression and fire risk observed within the interior west of the United States, and illustrate the importance of understanding key interactions between natural disturbance, human disturbance, and successional responses to these disturbance types that will eventually dictate future fire risk.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

18.
Besides providing habitat to the grizzly bear (Ursus arctos) and other wildlife, the Rocky Mountain foothills of Alberta, Canada hosts considerable mining, seismic oil and gas exploration and production, and forest harvesting activities. Worldwide, such human activities influence the configuration and composition of the landscape. We assessed seismic cutline effects on landscape structure and grizzly bear use during early summer of 1999 and 2000. We studied five female and two male bears, which were GPS-collared in the spring following den emergence. The area available to this population was stratified into 49 km2 hexagon-shaped sub-landscapes. The scale of this stratification was determined by patterns of bear movement. Fourteen compositional and configurational landscape metrics were calculated within each landscape unit, and bear use points were pooled or ‘binned’ within each unit. Landscape use was related to landscape metrics using a Generalized Linear Model (GLM). We found that seismic cutline proportion did not explain landscape use by grizzly bears; however secondary effects of cutlines on landscape structure did. Declining use was mainly associated with increasing proportions of closed forest, and increasing variation of inter-patch distances, while use was mainly increasing with increasing mean patch size. An earlier investigation had demonstrated that adding seismic cutlines to grizzly bear habitat caused increases in the variation of inter-patch distances. Since the landscape structure of this grizzly bear population will continue to change as a function of increased levels of resource extraction activities in the near future, it is crucial to further study the detailed meaning of landscape structure at the large and small scale for effective conservation efforts.  相似文献   

19.
Genxu  Wang  Jinzhong  Yao  Lin  Luo  Ju  Qian 《Landscape Ecology》2004,19(6):621-629
The state of a landscape is primarily reflected by its soil nutrients and organic matter status, which in turn are related to the type, size and number of landscape elements or patches. Evolving landscape patterns inevitably cause an evolution in ecosystem functionality. In particular, in arid regions, gained, lost and existing soil N and C pools have important ecological implications. The impacts of evolving landscapes in the middle reaches of the Heihe River basin of northwest China on soil organic C and N losses were assessed by both quantitative and computer modelling methods. In the period 1987-1997, patch transitions of the regions evolving landscapes have been predominantly characterized by a farmland expansion of 1.5103 km2, and the desertification of 15.12% of existing farmlands into desert. As the result of such changes, alpine steppe and piedmont warm and desert steppe decreased by 43.9% and 2.72% respectively, whereas, plain swamp meadow and gobi and sandy desert increased by 13.2% and 10.77%, respectively. Consequently, soil organic matter and N contents decreased significantly in most landscape patches. In the study region, over these ten years, net soil organic C and N losses reached 5.30 Gg and 0.51 Gg, respectively, a pattern repeated over the entire arid inland region of northwest China, due to similar hydrological resources and patterns of regional development. Large soil C and N losses caused by landscape changes will inevitably result in significant new environmental problems.  相似文献   

20.
In this paper we test the hypothesis that landscape changes in a region of Northern Portugal (Minho) in the last 40 years could be predicted from socioeconomic and political history. The major predicted changes were related to agricultural abandonment and afforestation. We further predicted that these changes contributed to increased fire risk. Analysis of aerial photography for the years 1958, 1968, 1983 and 1995 in a study area of 3700 ha revealed a significant decline in agricultural areas and low shrublands and an increase in tall shrublands and forests. This represented a 20–40% increase in fuel accumulation at a landscape level, suggesting that the abandonment of farming activities is a major driving force of increasing fire occurrence in the region. With one exception, all the predictions were partly or totally confirmed. This study confirms that socioeconomic factors might explain a significant part of the variation in landscape composition across time, in the Mediterranean region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号