首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
To explore how to respond to seasonal freezethaw cycles on forest ecosystems in the context of climate change through thinning,we assessed the potential impact of thinning intensity on carbon cycle dynamics.By varying the number of temperature cycles,the effects of various thinning intensities in four seasons.The rate of mass,litter organic carbon,and soil organic carbon(SOC) loss in response to temperature variations was examined in two degrees of decomposition.The unfrozen season had the highe...  相似文献   

2.
This work studied the effects of tree species composition on soil carbon storage in five mixed stands dominated by oriental beech and grown in the western Caspian region in Guilan province, called Astara, Asalem, Fuman, Chere and Shenrud. The thickness of the litter layer, soil characteristics, tree composition and percentage of canopy coverage were measured in each stand. Total soil organic carbon differed significantly by stand. Total (organic) carbon stores at Fuman, which had the lowest tree species richness with 2 species and least canopy coverage (75%), were significantly (p〈0.05) higher than at other locations. Carbon stor-age in topsoil (0-10 cm) was significantly lower in Shenrud, which had the highest tree species richness with 5 species and highest canopy cov-erage (95%). The high percentage of canopy coverage in Shenrud proba-bly limited the conversion of litter to humus. However, in the second soil layer (10-25 cm), Asalem, with high tree species richness and canopy coverage, had the highest carbon storage. This can be explained by the different rooting patterns of different tree species. In the Hyrcanian forest. According to the results, it can be concluded that not only tree composi-tion but also canopy coverage percentage should be taken under consid-eration to manage soil carbon retention and release.  相似文献   

3.
Terrestrial carbon cycle and the global atmospheric CO2 budget are important foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, a plant-atmosphere-soil continuum nitrogen (N) cycling model was developed and incorporated into the Boreal Ecosystem Productivity Simulator (BEPS) model. With the established database (leaf area index, land cover, daily meteorology data, vegetation and soil) at a 1 km resolution, daily maps of NPP for Lantsang valley in 2007 were produced, and the spatial-temporal patterns of NPP and mechanisms of its responses to soil N level were further explored. The total NPP and mean NPP of Lantsang valley in 2007 were 66.5 Tg C and 416 g?m-2?a-1 C, respectively. In addition, statistical analysis of NPP of different land cover types was conducted and investigated. Compared with BEPS model (without considering nitrogen effect), it was inferred that the plant carbon fixing for the upstream of Lantsang valley was also limited by soil available nitrogen besides temperature and precipitation. However, nitrogen has no evident limitation to NPP accumulation of broadleaf forest, which mainly distributed in the downstream of Lantsang valley.  相似文献   

4.
A study was conducted to assess carbon stocks in various forms and land-use types and reliably estimate the impact of land use on C stocks in the Nam Yao sub-watershed (19°05'10"N, 100°37'02"E), Thailand. The carbon stocks of aboveground, soil organic and fine root within primary forest, reforestation and agricultural land were estimated through field data collection. Results revealed that the amount of total carbon stock of forests (357.62 ± 28.51 Mg·ha-1, simplified expression of Mg (carbon)·ha-1) was significantly greater (P< 0.05) than the reforestation (195.25 ±14.38 Mg·ha-1) and the agricultural land (103.10±18.24 Mg·ha-1). Soil organic carbon in the forests (196.24 ±22.81 Mg·ha-1) was also significantly greater (P< 0.05) than the reforestation (146.83± 7.22 Mg·ha-1) and the agricultural land (95.09 ± 14.18 Mg·ha-1). The differences in carbon stocks across land-use types are the primary consequence of variations in the vegetation biomass and the soil organic matter. Fine root carbon was a small fraction of carbon stocks in all land-use types. Most of the soil organic carbon and fine root carbon content was found in the upper 40-cm layer and decreased with soil depth. The aboveground carbon(soil organic carbon: fine root carbon ratios (ABGC: SOC: FRC), was 5:8:1, 2:8:1, and 3:50:1 for the forest, reforestation and agricultural land, respectively. These results indicate that a relatively large proportion of the C loss is due to forest conversion to agricultural land. However, the C can be effectively recaptured through reforestation where high levels of C are stored in biomass as carbon sinks, facilitating carbon dioxide mitigation.  相似文献   

5.
In light of concerns over climate change and increasing levels of CO2 in the atmosphere,it is of importance to investigate soil organic matter in Mediterranean forests at a profile scale.In-depth studies of the organic fraction are also of interest to improve understanding of carbon balance and to facilitate modelling of carbon fixation in forest soils.This research evaluates the relationships between diverse parameters such as colour,content,and form of soil organic matter(SOM).Two Quercus pyrenica ecosystems with soils classified as inceptisols with a xeric or dry moisture regime,and developed under a Mediterranean climate in Spain,were used to characterize SOM through the complete sequence of layers of the soil profile.The differentiating factor between the two ecosystems was slope gradient.Characterization was done using characteristics of humic substances(HS)as indicators of SOM turnover in inceptisols.Infrared analysis was used to further characterize the humic acids.As soil colour measurements are a tool for soil type classification and soil organic carbon prediction,the relation between HS colour measured by reflection and by transmission was determined in order to establish a relationship between measurement techniques.Infrared analysis and colour provided evidence of a different level of stabilization of HS from both soils,and between the different horizons.Oxidation of humic acids was found to be greater in deeper horizons than in the surface layers.An inverse relationship between HS colour measured by reflection and by transmission was revealed.Both soils showed a clear trend in which horizons presenting lower absorbance numbers showed higher figures of hue and value.A more marked accumulation of humified compounds was found in pedons,(the smallest unit or volume of soil that contains all the soil types),in the less steep slope.This might be explained in terms of the physiographic position affecting infiltration behavior and exposure to runoff.  相似文献   

6.
Soil fauna can sensitively respond to alterations in soil environment induced by land-use changes.However,little is known about the impact of urban land-use changes on earthworm communities.In this study,three land-use types(i.e.,forest,nursery and abandoned lands)were chosen to identify differences in diversity,abundance and biomass of earthworm community in Kunming City.Urban land-use had a pronounced difference in species composition,evenness and diversity of earthworm communities.Forest land had the highest density,biomass and diversity of the earthworm communities.Total abundance was dominated by endogeic species in nursery land(70%)and abandoned land(80%),whereas in the forest land,the earthworm community comprised epigeic,endogeic and anecic species.Temporal changes in earthworm density and biomass were also significantly affected by land-use change.Total density and biomass of earthworms in the forest and nursery lands were highest in September,but highest in the abandoned land in October.The influence of soil physicochemical properties on the earthworm density and biomass also varied with land-use types.Soil temperature significantly affected earthworm density and biomass in the three land-use types.Soil pH was positively correlated with earthworm biomass in the forest land,but negatively associated with earthworm density in the abandoned land.Soil organic matter was positively correlated only with density and biomass of earthworms in the nursery and abandoned lands.Our results suggest that the species composition,abundance and biomass of earthworm communities can be determined by the modification of soil properties associated with urban land-use type.  相似文献   

7.
Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch(Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at100 kg N ha~(-1) a~(-1) to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However,soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However,microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, d13 C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition(1) altered microbial biomass and activity without affecting soil C in light fractions and(2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.  相似文献   

8.
This study evaluated impacts of Coriaria nepalensis Wall.colonization on soil characteristics,vegetation structure and composition,regeneration status and expected future compositional changes,biomass and carbon stock in tree species of a mixed conifer forest of Central Himalaya.Three sites(1 ha each in an old landslide area)differing in Coriaria density(low:20 individuals ha-1;medium:120 indiv.ha-1;high:190 indiv.ha-1)were used to enumerate the tree species.A total of 9 tree species and 2830 individuals were recorded from the three study sites that represented a gradient of Coriaria density.Number of species varied from 3 to 7 and the individuals from 690 to 1270 per site with lowest numbers at low Coriaria density and highest at medium Coriaria density.The number of seedlings increased with increasing Coriaria density,and the sites were unique in their seedling composition,indicating marked temporal dynamics.Site wise regeneration analysis showed that regeneration was poor at the site with low Coriaria density and good at the high-density site where many species emerged as seedlings.These results indicate that the ameliorative effects of Coriaria in terms of soil buildup,and accumulation of nutrients and organic matter helped more species to colonize the area.This facilitative ability of Coriaria can be used to restore degraded forest ecosystems of Indian Central Himalaya.  相似文献   

9.
Background:Successional paludification,a dynamic process that leads to the formation of peatlands,is influenced by climatic factors and site features such as surficial deposits and soil texture.In boreal regions,projected climate change and corresponding modifications in natural fire regimes are expected to influence the paludification process and forest development.The objective of this study was to forecast the development of boreal paludified forests in northeastern North America in relation to climate change and modifications in the natural fire regime for the period 2011–2100.Methods:A paludification index was built using static(e.g.surficial deposits and soil texture)and dynamic(e.g.moisture regime and soil organic layer thickness)stand scale factors available from forest maps.The index considered the effects of three temperature increase scenarios(i.e.+1°C,+3°C and+6°C)and progressively decreasing fire cycle(from 300 years for 2011–2041,to 200 years for 2071–2100)on peat accumulation rate and soil organic layer(SOL)thickness at the stand level,and paludification at the landscape level.Results:Our index show that in the context where in the absence of fire the landscape continues to paludify,the negative effect of climate change on peat accumulation resulted in little modification to SOL thickness at the stand level,and no change in the paludification level of the study area between 2011 and 2100.However,including decreasing fire cycle to the index resulted in declines in paludified area.Overall,the index predicts a slight to moderate decrease in the area covered by paludified forests in 2100,with slower rates of paludification.Conclusions:Slower paludification rates imply greater forest productivity and a greater potential for forest harvest,but also a gradual loss of open paludified stands,which could impact the carbon balance in paludified landscapes.Nonetheless,as the thick Sphagnum layer typical of paludified forests may protect soil organic layer from drought and deep burns,a significant proportion of the territory has high potential to remain a carbon sink.  相似文献   

10.
Southwest China is one of three major forest regions in China and plays an important role in carbon sequestration.Accurate estimations of changes in aboveground biomass are critical for understanding forest carbon cycling and promoting climate change mitigation.Southwest China is characterized by complex topographic features and forest canopy structures,complicating methods for mapping aboveground biomass and its dynamics.The integration of continuous Landsat images and national forest inventory data provides an alternative approach to develop a long-term monitoring program of forest aboveground biomass dynamics.This study explores the development of a methodological framework using historical national forest inventory plot data and Landsat TM timeseries images.This method was formulated by comparing two parametric methods:Linear Regression for Multiple Independent Variables(MLR),and Partial Least Square Regression(PLSR);and two nonparametric methods:Random Forest(RF)and Gradient Boost Regression Tree(GBRT)based on the state of forest aboveground biomass and change models.The methodological framework mapped Pinus densata aboveground biomass and its changes over time in Shangri-la,Yunnan,China.Landsat images and national forest inventory data were acquired for 1987,1992,1997,2002 and 2007.The results show that:(1)correlation and homogeneity texture measures were able to characterize forest canopy structures,aboveground biomass and its dynamics;(2)GBRT and RF predicted Pinus densata aboveground biomass and its changes better than PLSR and MLR;(3)GBRT was the most reliable approach in the estimation of aboveground biomass and its changes;and,(4)the aboveground biomass change models showed a promising improvement of prediction accuracy.This study indicates that the combination of GBRT state and change models developed using temporal Landsat and national forest inventory data provides the potential for developing a methodological framework for the long-term mapping and monitoring program of forest aboveground biomass and its changes in Southwest China.  相似文献   

11.
土壤活性有机碳作为森林土壤有机碳的活跃成分,在凋落物分解和土壤碳循环中发挥着重要作用。林火干扰通过改变土壤底物的数量和理化性质进而影响土壤活性有机碳,因而阐明林火干扰对土壤活性有机碳的影响是开展森林碳循环研究的基础。文中以6种土壤活性有机碳为研究对象,分别阐述林火干扰对土壤活性有机碳影响的研究进展。针对目前研究现状及存在问题,认为应进一步深化探究林火干扰后土壤微生物活性变化机制对土壤活性有机碳的影响,揭示土壤碳库平衡的影响机理;加强林火干扰后C-N耦合循环特征的研究;深入研究林火干扰后影响土壤活性有机碳的内在因素和外在因素的相互作用,综合评价林火干扰对土壤活性有机碳的短期与长期影响;加强林火干扰—土壤碳库—全球气候变化的交互关系研究,深入探讨林火干扰与土壤活性有机碳的相互作用关系及影响机理。  相似文献   

12.
土壤微生物生物量及其影响因素研究   总被引:6,自引:0,他引:6  
土壤微生物生物量的养分贮量比土壤有机质的小,但它既是植物所需养分的有效来源,还是养分的临时贮库。本文根据国内外研究结果综述了一些影响土壤微生物生物量动态的因素。这些因素主要包括 C 和 N 的限制、残留物和营养物质的经营、植物种类、土壤质地、土壤湿度和温度等。通过细致分析,我们认为未来研究应着重于探讨土地利用变化对热带和亚热带土壤微生物生物量的影响。参 55。  相似文献   

13.
在综合阐述人工林碳库动态研究对全球陆地生态系统碳收支和区域林业经济持续发展意义的基础上,对有关土壤碳库动态和稳定性的主要指标,如TOC(总有机碳)、DOC(可溶性有机碳)、MBC(微生物生物量碳)、POMC(颗粒有机物碳)和SR(土壤呼吸)等及其影响因子进行了重点评价,针对我国人工林经营和碳库研究现状,结合国际农林业土壤碳收支和动态研究趋势,认为我国主要人工林碳库研究的2个主要方向为:(1)土壤碳库物理化学稳定性指标与生物的交互作用;(2)土壤碳库动态与全球变化关系及其环境效应评价。  相似文献   

14.
随着全球变化和CO2浓度的上升给全球气候和社会经济发展带来影响,土地利用变化中人工林对大气CO2的吸收已越来越得到人们的关注。本文在肯定人工林生长形成碳汇的基础上,分析了不同研究方法对人工林碳汇大小的影响、人工林的强度管理(如造林前植被的清除、造林整地、森林采伐、施肥和间伐等)对土壤碳库的影响及其人工林地土壤碳库的动态变化。  相似文献   

15.
柳杉人工林皆伐后初期土壤有机碳和微生物量碳动态   总被引:3,自引:0,他引:3  
本文研究了华西雨屏区柳杉人工林皆伐后1年内土壤有机碳和微生物量碳动态。结果表明:柳杉人工林皆伐林地土壤平均有机碳含量比对照(未皆伐林地)减小2.01 gC.kg-1,但差异不显著,而土壤平均有机碳储量及微生物量碳分别比对照减少20.97 tC.hm-2、6.68 mg.kg-1(P0.05);皆伐林地土壤有机碳含量及微生物量碳均随季节的变化而逐渐降低,但有机碳储量随季节的变化无明显减少趋势;皆伐林地土壤四季的有机碳含量、碳储量和微生物量碳差异不显著。皆伐对柳杉人工林土壤有机碳储量的影响主要表现在0~20 cm土层(P0.05);皆伐林地和对照在0~40 cm土层的微生物量碳和有机碳含量都表现出显著相关性(P0.05),但对照的相关性高于皆伐林地。总之,柳杉人工林转变为采伐迹地后,其初期土壤有机碳储量和微生物量碳都明显减少。  相似文献   

16.
The effects of historical land use changes on the global C cycle have mainly been studied by means of bookkeeping models. Here, we investigate with such models the impact of afforestation and deforestation on soil organic carbon (SOC) stocks. This approach, using field-based estimates of the response of SOC upon land use changes, is applied to a pilot area in the Belgian Ardennes over one and a half century (1868–2005). After a small initial decline during the 1868–1888 period due to deforestation for agricultural use, mean SOC stocks increased steadily up to 1990, due essentially to the conversion of deciduous to coniferous forests (in the study area, deciduous forests stored less SOC than coniferous) and the reclamation of heathland, which occurred both at the turn of the 19th and 20th centuries. Simulations showed that SOC stocks decreased recently (1990–2005) because of the slow down of sequestration in coniferous forests and a reversion of some of the coniferous plantations to deciduous forests. Over the entire period, afforestation resulted in a net sequestration of carbon (0.16 t C ha−1 year−1). Monte Carlo simulations demonstrated that the model was highly sensitive to its inputs (initial SOC stocks for each land use) both in term of predicted SOC stocks and rates of SOC stocks change. However, the sensitivity of the model was not large enough to revert the main trends of SOC changes observed. Compared to the amount of carbon sequestered in the biomass, the contribution of soils to the C sink in forest is small. Despite several sources of errors, a detailed reconstruction of land use changes combined with realistic SOC response curves upon land use conversion are required to be able to quantify the contribution of soils to terrestrial carbon fluxes.  相似文献   

17.
Cumulative losses from shifting cultivation in the tropics can affect the local to regional to global balance of carbon and nutrient cycles. We determined whether shifting cultivation in the Southern Yucatán causes feedbacks that limit future forest productivity and carbon sequestration potential. Specifically, we tested how the recovery of carbon stocks changes with each additional cultivation-fallow cycle. Live aboveground biomass, coarse woody debris, fine woody debris, forest floor litter and soil were sampled in 53 sites (39 secondary forests 2–25 years old, with one to four cultivation-fallow cycles, and 14 mature forests) along a precipitation gradient in Campeche and Quintana Roo, Mexico. From the first to the third or fourth cultivation-fallow cycle, mean carbon stocks in live aboveground biomass debris declined 64%. From the first to the third cycle, coarse woody debris declined by 85%. Despite declining inputs to soil with each cultivation-fallow cycle, soil carbon stocks did not further decline after the initial conversion from mature to secondary forest. The combined aboveground and soil carbon stock declined almost 36% after conversion from mature forest, however two additional cultivation cycles did not promote further significant decline, largely because of the stability of the soil carbon pool. Although age was the dominant factor in predicting total carbon stocks of secondary forests under shifting cultivation, the number of cultivation-fallow cycles should not be neglected. Understanding change beyond the first cycle of deforestation will enhance forest management at a local scale by improving predictions of secondary forest productivity and related agricultural productivity. A multi-cycle approach to deforestation is critical for regional and national evaluation of forest-based carbon sequestration. Finally, models of the global carbon cycle can be better constrained with more accurate quantification of carbon fluxes from land-use change.  相似文献   

18.
Ireland has implemented a large afforestation program in recent decades, with much of this taking place since the mid 1980s. This presents Ireland with the opportunity to offset carbon emissions through carbon sequestration in forests, as the latter are known to sequester a large amount of carbon into the tree biomass. However, the effects of afforestation on soil organic carbon in the Irish humid temperate climate are not well understood. In this study we use the paired site methodology to assess the impact of afforestation on the soil organic carbon density (SOCD) of 21 * 2 sites across Ireland. We found that afforestation of Irish soils (0-30 cm depth) resulted in no significant change in SOCD. However, the low number of sites within the study is a source of uncertainty and more work must be done to assess SOCD change before any firm conclusions can be made. This work provides baseline data and future work estimating soil C changes due to land use or management changes should use the equivalent soil mass (ESM) correction method instead of the volume based method. The latter can over- or underestimate SOCD change due to variability in soil bulk density after afforestation. The large afforestation programmes to be implemented in Ireland in the next decade provides an opportunity to greatly improve estimates of Irish SOCD change. We suggest implementing a large number of resampling studies, measuring the change in SOCD following afforestation for a number of factors for a number of years.  相似文献   

19.
Soil carbon (C) stocks in forest ecosystems have been widely estimated to a fixed soil depth (i.e., 0-30 cm) to clarify temporal changes in the C pool. However, surface elevations change as a result of compaction or expansion of the soil under forest management and land use. On the other hand, the calculation of soil C stocks based on “equivalent soil mass” is not affected by compaction or expansion of forest soil. To contribute to the development of a forest C accounting methodology, we compared changes in soil C stocks over 4 years between depth- and mass-based approaches using original soil data collected at 0-30 cm depths in young plantations and secondary forests in West Java, Indonesia. Our methodology expanded on the mass-based approach; rather than using one representative value for the mass-based calculation of soil C stocks, we adjusted individual values, maintaining the coefficient of variance in soil mass. We also considered the effect of an increase or decrease in soil organic matter on equivalent soil mass. Both increasing and decreasing trends in soil C stocks became clearer when the mass-based approach was used rather than the depth-based approach. The trends in soil C stocks based on equivalent soil mass were particularly evident in the surface soil layers (0-5 cm) and in plantation sites, compared with those for soil profiles including subsurface soil layers (0-30 cm) and in secondary forests. These trends in soil C stocks corresponded with temporal trends in litter stocks. We suggest that equivalent mass-basis soil C stock for the upper 30 cm of soil be calculated based on multiple soil layers to reduce estimation errors. Changes in soil organic matter mass had little effect on the estimation of soil C stock on an equivalent mass basis. For the development of a forest C accounting system, the mass-based approach should be used to characterize temporal trends in soil C stocks and to improve C cycle models, rather than simpler methods of calculating soil C stocks. These improvements will help to increase the tier level of country-specific forest C accounting systems.  相似文献   

20.
土壤有机碳影响因素及测定方法探讨   总被引:1,自引:0,他引:1  
土壤有机碳是土壤碳库的重要成分,在碳循环中起重要作用。本文主要从不同陆地生态系统的角度阐述了影响土壤有机碳的自然因素和人为因素、研究方法以及空间分布的研究进展,为陆地生态系统的可持续发展提供理论依据,也为全球碳循环的研究提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号