首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To gain a more comprehensive knowledge of the contribution of recently identified phenol/thiol conjugates to the storage-induced degradation of odorous thiols, the concentrations of the sulfury-roasty smelling key odorant 2-furfurylthiol and the concentrations of the putative thiol-receptive di- and trihydroxybenzenes pyrogallol (1), hydroxyhydroquinone (2), catechol (3), 4-ethylcatechol (4), 4-methylcatechol (5), and 3-methylcatechol (6), as well as of the phenol/thiol conjugates 3-[(2-furylmethyl)sulfanyl]catechol (7), 3-[(2-furylmethyl)sulfanyl]-5-ethylcatechol (8), 4-[(2-furylmethyl)sulfanyl]hydroxyhydroquinone (9), and 3,4-bis[(2-furylmethyl)sulfanyl]hydroxyhydroquinone (10) were quantitatively determined in fresh and stored coffee beverages by means of stable isotope dilution analyses (SIDA). Although 2 was found to be the quantitatively predominant trihydroxybenzene in freshly prepared coffee brew, this compound exhibited a very high reactivity and decreased rapidly during coffee storage to generate the conjugates 9 and 10. After only 10 min, about 60% of the initial amount of 2-furfurylthiol in a coffee beverage reacted with 2 to give 9 and 10. In contrast, conjugate 7 was found to be exclusively formed during coffee roasting because its initial concentration as well as the amount of its putative precursor, phenol 3, was not affected by storage. It is interesting to note that the concentration of 8 was increased with increasing incubation time, but its putative precursor 4 was not affected, thus indicating another formation pathway most likely via the chlorogenic acid degradation product 4-vinylcatechol. This study demonstrates for the first time that the loss of 2-furfurylthiol during coffee storage is mainly due to the oxidative coupling of the odorant to hydroxyhydroquinone (2), giving rise to the conjugates 9 and 10.  相似文献   

2.
Addition of the total melanoidin fraction isolated by water extraction from medium-roasted coffee powder to a model solution containing a set of 25 aroma compounds mimicking the aroma of a coffee brew reduced, in particular, the intensity of the roasty, sulfury aroma quality. Model studies performed by static headspace analysis revealed that especially three well-known coffee odorants, that is, 2-furfurylthiol (FFT), 3-methyl-2-butene-1-thiol, and 3-mercapto-3-methylbutyl formate, were significantly reduced in the headspace above an aqueous model solution when melanoidins were added. In particular, the low molecular weight melanoidins (1500-3000 Da) led to the most significant decrease in FFT. In contrast, for example, aldehydes remained unaffected by melanoidin addition.  相似文献   

3.
Chemical characterization and antioxidant properties of coffee melanoidins   总被引:1,自引:0,他引:1  
Melanoidins, the brown polymers formed through Maillard reaction during coffee roasting, constitute up to 25% of the coffee beverages' dry matter. In this study chemical characterization of melanoidins obtained from light-, medium-, and dark-roasted coffee beans, manufactured from the same starting material, was performed. Melanoidins were separated by gel filtration chromatography and studied by MALDI-TOF mass spectrometry. Results showed that the amount of melanoidins present in the brews increased as the intensity of the thermal treatment increased, while their molecular weight decreased. The antioxidant activity of melanoidins isolated from the different brews was studied by using different methodologies. Melanoidins antiradical activity determined by ABTS(*)(+) and DMPD(*)(+) assays decreased as the intensity of roasting increased, but the ability to prevent linoleic acid peroxidation was higher in the dark-roasted samples. Data suggest that melanoidins must be carefully considered when the relevance of coffee intake in human health is studied.  相似文献   

4.
Eleven odor-active thiols, namely, 2-methyl-1-propene-1-thiol, (Z)-3-methyl-1-butene-1-thiol, (E)-3-methyl-1-butene-1-thiol, (Z)-2-methyl-1-butene-1-thiol, (E)-2-methyl-1-butene-1-thiol, 2-methyl-3-furanthiol, 3-mercapto-2-pentanone, 2-mercapto-3-pentanone, 4-mercapto-3-hexanone, 3-mercapto-3-methylbutyl formate, and 2-methyl-3-thiophenethiol, recently identified in an extract prepared from white sesame seeds, were quantitated in sesame using stable isotope dilution analyses. For that purpose, the following deuterium-labeled compounds were synthesized and used as internal standards in the quantitation assays: [2H6]-2-methyl-1-propene-1-thiol, [2H3]-(E)- and [2H3]-(Z)-2-methyl-1-butene-1-thiol, [2H3]-2-methyl-3-furanthiol, [2H2]-3-mercapto-2-pentanone, [2H3]-4-mercapto-3-hexanone, [2H6]-3-mercapto-3-methylbutyl formate, and [2H3]-2-methyl-3-thiophenethiol. On the basis of the results obtained, odor activity values (OAVs) were calculated as ratio of the concentration and odor threshold of the individual compounds in cooking oil. According to their high OAVs, particularly the 3-methyl-1-butene-1-thiols (OAV: 2400) and the 2-methyl-1-butene-1-thiols (OAV: 960) were identified as the most odor-active compounds in pan-roasted white sesame seeds. These compounds were therefore suggested to be mainly responsible for the characteristic but rather unstable sulfury aroma of freshly pan-roasted white sesame seeds.  相似文献   

5.
The incorporation of chlorogenic acids (CGAs) and their subunits quinic and caffeic acids (QA and CA) in coffee brew melanoidins was studied. Fractions with different molecular weights, ionic charges, and ethanol solubilities were isolated from coffee brew. Fractions were saponified, and the released QA and CA were quantified. For all melanoidin fractions, it was found that more QA than CA was released. QA levels correlated with melanoidin levels, indicating that QA is incorporated in melanoidins. The QA level was correlated with increasing ionic charge of the melanoidin populations, suggesting that QA may contribute to the negative charge and consequently is, most likely, not linked via its carboxyl group. The QA level correlated with the phenolic acid group level, as determined by Folin-Ciocalteu, indicating that QA was incorporated to a similar extent as the polyphenolic moiety from CGA. The QA and CA released from brew fractions by enzymes confirmed the incorporation of intact CGAs. Intact CGAs are proposed to be incorporated in melanoidins upon roasting via CA through mainly nonester linkages. This complex can be written as Mel=CA-QA, in which Mel represents the melanoidin backbone, =CA represents CA nonester-linked to the melanoidin backbone, and -QA represents QA ester-linked to CA. Additionally, a total of 12% of QA was identified in coffee brew, whereas only 6% was reported in the literature so far. The relevance of the additional QA on coffee brew stability is discussed.  相似文献   

6.
Evaluation of the sensory quality of wine or grape-derived beverages led us to study the interactions between flavors and anthocyanins, the colored family of polyphenols. The flavylium cation-ligand complexation, resulting in copigmentation (rise in pigment visible absorption with a concomitant bathochromic shift), was investigated using visible absorption spectroscopy. Sole volatile phenols were found to markedly interact with malvidin-3,5-O-diglucoside. With series of guaiacyl-derived aroma substances, acyl-substituted ligands proved to be better copigments than alkyl-substituted ones. Association constants and 1:1 complex stoichiometry were further determined for several substrates. Decreasing binding to malvin was observed for acetosyringone, syringaldehyde, acetovanillone, vanillin, 3,5-dimethoxyphenol, and 4-ethylguaiacol. Addition of 10% ethanol lowered by one-third the association constants for malvin-ligand couples and for malvidin-3-O-glucoside with acetosyringone and syringaldehyde. The main driving force was ascribed to hydrophobicity, although this study evidenced an influence of the ligand substitution pattern on copigmentation.  相似文献   

7.
This study is the second of two publications that investigate the interactions between volatile and nonvolatile components in coffee brew. The purpose here was to shed some light into the chemical mechanisms responsible for the decrease of volatile thiols when in contact with coffee nonvolatiles. A mixture of volatile thiols covering a large range of physicochemical properties was monitored over time in the presence of a coffee brew model. The binding potential was estimated by SPME-GC-MS. Additives inhibiting specific reaction pathways were preincubated with the coffee brew 1 h prior to addition of the volatile compounds. Degradation kinetics of the volatile thiols were characterized by their rate constants k(obs). The effect of individual additives was shown by calculating k(rel), the relative rate constant as compared to the reference without additive. The conclusion was that thiols, mainly responsible for the "roasty" and "burnt" notes, disappear via two main chemical mechanisms. The results suggest that nucleophilic addition is the major pathway for thiol degradation. Addition occurs on oxidized species generated in the matrix in the presence of air. This mechanism prevails for aliphatic thiols (e.g., ethanethiol, methanethiol). Benzylic thiols (such as 2-furfurylthiol) can react in parallel via another pathway that is slowed in the absence of oxygen and in the presence of a radical scavenger. This points to a radical mechanism, but further work is needed to support this hypothesis. A direct correlation between thiol hydrophobicity and the magnitude of the interactions was shown as well. Therefore, weak physical interactions or hydrophobic assistance accelerating chemical reactions cannot be excluded at this point of the study.  相似文献   

8.
Instant coffees produced from the same green coffee beans were supplied from a company in different roasting degrees, light, medium, and dark. Melanoidins were obtained by ultrafiltration (10 kDa) and subsequent diafiltration. Pure melanoidins were isolated from melanoidins after overnight incubation in 2 M NaCl. The antioxidant activities of instant coffees, melanoidins, and pure melanoidins were tested using the conjugated diene formation from a 2,2'-azobis(2-amidinopropane) dihydrochloride-induced linoleic acid oxidation in an aqueous system. No significant differences were found between melanoidins and pure melanoidins with different roasting degrees. Therefore, the contribution of the pure melanoidin fraction to the total antioxidant activity of melanoidins was significantly lower. More than 50% of the antioxidant activity of melanoidins is due to low molecular weight compounds linked non-covalently to the melanoidin skeleton. A new concept of the overall antioxidant properties of food melanoidins is described, where chelating ability toward low molecular weight antioxidant compounds is connected to the stabilization of these compounds involved in the shelf life of the product.  相似文献   

9.
In food matrices, where starch is often used as a gelling or texturing agent, the occurrence of amylose-aroma complexes and their effect on the release of aroma compounds are difficult to determine. Indeed, thick or gelled systems are known to reduce the diffusion rate of flavor molecules, resulting in an increase of retention. Moreover, interactions between aroma compounds and matrix components might increase the retention of aroma compounds. The complexing behavior of three aroma compounds with amylose was studied by DSC and X-ray diffraction to determine the relative importance of these two factors. Their interaction properties were different: two of them formed complexes, and the third did not. These aroma compounds were added in food matrices containing different starches that induced different textures. Their retention was studied by static headspace analysis. The retention of aroma compounds appeared to depend on the amylose/amylopectin ratio of starch, both from the formation of complexes and by a viscosity effect.  相似文献   

10.
In this work, the galactomannans from roasted coffee infusions were purified by 50% ethanol precipitation, anion exchange chromatography, and phenylboronic acid-immobilized Sepharose chromatography. Specific enzymatic hydrolysis of the beta-(1-->4)-D-mannan backbone allowed us to conclude that the galactomannans of roasted coffee infusions are high molecular weight supports of low molecular weight brown compounds. Also, the molecular weight of the brown compounds linked to the galactomannan increases with the increase of the coffee degree of roast. The reaction pathways of galactomannans during the coffee roasting process were inferred from the detection of specific chemical markers by gas chromatography-electron impact mass spectrometry and/or electrospray ionization tandem mass spectrometry. Maillard reaction, caramelization, isomerization, oxidation, and decarboxylation pathways were identified by detection of Amadori compounds, 1,6-beta-anhydromannose, fructose, glucose, mannonic acid, 2-ketogluconic acid, and arabinonic acid in the reducing end of the obtained oligosaccharides. The implication of the several competitive reaction pathways is discussed and related to the structural changes of the galactomannans present in the roasted coffee infusions.  相似文献   

11.
Traditionally antioxidant activity of melanoidins has only been evaluated in food for implication in shelf life but gastrointestinal digestion is necessary to study their potential bioactivity. In addition, the biological fate of melanoidins has been stressed during the past decade since they did not behave as inert substances. In the present paper a soluble coffee melanoidin isolated from brewed coffee after ultrafiltration with a 10 kDa cutoff membrane was treated ionically and enzymatically collecting the respective high and low molecular weight fractions. Antioxidant activity of these fractions was evaluated with five well-described assays (DPPH, ABTS, ORAC, HOSC, and FRAP) that were previously setup in a plate reader based automatized analysis. Low molecular weight compounds released from melanoidin after gastrointestinal digestion exerted the highest antioxidant activity, even higher than compounds bound ionically to melanoidins. Gastrointestinal digestion is able to modify coffee melanoidins to some extent, as hypothesized from their absolute antioxidant activities. Two options are plausible: by modifying/releasing the ionically bound compounds and/or by genesis of new more active structures from the melanoidin skeleton after enzymatic treatment.  相似文献   

12.
Antioxidant activity of instant coffees produced from the same green coffee beans roasted at three different degrees was analyzed. Coffee melanoidins were obtained by ultrafiltration (10 kDa cutoff) and subsequent diafiltration. Pure melanoidins were isolated from melanoidins after overnight incubation in 2 M NaCl and then ultrafiltered. Filtrates, corresponding to the low molecular weight (LMW) fraction noncovalently linked to the melanoidin skeleton, were also preserved. Antioxidant activity of coffee brews (CB), melanoidins (M), pure melanoidins (PM), and bounded melanoidin compounds (BMC) were tested using the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric reducing power (FRAP) methods. The correlation between the different methods was studied. The higher contribution of melanoidins to the total antioxidant activity of coffees was shown to be caused by the LMW compounds linked noncovalently to the melanoidin skeleton, as data from BMC confirmed. CB, M, and BMC fractions exert the highest antioxidant activity in aqueous media, whereas PM was not dependent on the reaction media. The highest correlation was found between DPPH and FRAP methods.  相似文献   

13.
Application of the aroma extract dilution analysis (AEDA) on the volatile fraction carefully isolated from an American Bourbon whisky revealed 45 odor-active areas in the flavor dilution (FD) factor range of 32-4096 among which (E)-beta-damascenone and delta-nonalactone showed the highest FD factors of 4096 and 2048, respectively. With FD factors of 1024, (3S,4S)-cis-whiskylactone, gamma-decalactone, 4-allyl-2-methoxyphenol (eugenol), and 4-hydroxy-3-methoxy-benzaldehyde (vanillin) additionally contributed to the overall vanilla-like, fruity, and smoky aroma note of the spirit. Application of GC-Olfactometry on the headspace above the whisky revealed 23 aroma-active odorants among which 3-methylbutanal, ethanol, and 2-methylbutanal were identified as additional important aroma compounds. Compared to published data on volatile constituents in whisky, besides ranking the whisky odorants on the basis of their odor potency, 13 aroma compounds were newly identified in this study: ethyl (S)-2-methylbutanoate, (E)-2-heptenal, (E,E)-2,4-nonadienal, (E)-2-decenal, (E,E)-2,4-decadienal, 2-isopropyl-3-methoxypyrazine, ethyl phenylacetate, 4-methyl acetophenone, alpha-damascone, 2-phenylethyl propanoate, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, trans-ethyl cinnamate, and (Z)-6-dodeceno-gamma-lactone.  相似文献   

14.
The iron-reducing activity of coffee beverages was determined by the ferric reducing antioxidant power (FRAP) assay. The influence on FRAP due to the degree of roasting (light, medium, and dark), species (Coffea arabica and Coffea robusta), and caffeine content (regular and decaffeinated) was investigated using ground and soluble coffee samples. The concentration of specific chlorogenic acids and caffeine in the beverages was determined by high-performance liquid chromatography and related to FRAP using Pearson correlation coefficients. All measurements were expressed per unit of soluble solids. Beverages prepared with ground coffee had, on average, 27% higher FRAP values than those prepared with soluble coffee (p < 0.05). In the former beverages, FRAP of C. robusta samples was significantly higher (on average, 50.3%) when compared to that of C. arabica samples, and FRAP values decreased with increasing degree of roasting (p < 0.05). A strong correlation (r > 0.91) was found between FRAP and the total content of chlorogenic acids, particularly that of the caffeoylquinic acid isomers. The iron-reducing activity of coffee beverages was not influenced by caffeine.  相似文献   

15.
The aromas of three espresso coffee (EC) samples from different botanical varieties and types of roast (Arabica coffee, Robusta natural blend, and Robusta Torrefacto blend (special roast by adding sugar)) were studied by static headspace GC-MS and sensory flavor profile analysis. Seventy-seven compounds were identified in all of the EC samples. Among them, 13 key odorants have been quantified and correlated with their flavor notes by applying multivariate statistical methods. Some correlations have been found in the EC samples: some aldehydes with fruity flavors, diones with buttery flavors, and pyrazines with earthy/musty, roasty/burnt, and woody/papery flavors. By applying principal component analysis (PCA), Arabica and Robusta samples were separated successfully by principal component 1 (60.7% of variance), and Torrefacto and Natural Robusta EC samples were separated by principal component 2 (28.1% of total variance). With PCA, the aroma characterization of each EC sample could be observed. A very simple discriminant function using some key odorants was obtained by discriminant analysis, allowing the classification of each EC sample into its respective group with a success rate of 100%.  相似文献   

16.
Together with 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate, already known to contribute to the aroma of passion fruit (Passiflora edulis), 3-mercapto-3-methylbutan-1-ol and 3-mercapto-3-methylbutyl acetate have been identified for the first time in this fruit. 3-Mercaptohexan-1-ol and 3-mercapto-3-methylbutan-1-ol may be produced in vitro from nonvolatile extracts of this fruit by the enzymatic action of a cell-free extract of Eubacterium limosum, which has a beta-lyase activity on S-cysteine conjugates (EC 4.4.1.13). This release strongly suggests that these volatile thiols are present in combined form, as S-cysteine conjugates. It was possible to identify the precursor of 3-mercaptohexan-1-ol as S-(3-hexan-1-ol)-L-cysteine, in the form of trimethylsilylated derivatives from the juice of this fruit, using GC/MS analysis. The presence of free and combined forms of these volatile thiols in this fruit has now been demonstrated.  相似文献   

17.
Viable, heat-and acid-killed Lactobacillus rhamnosus strain GG (LGG) has shown high binding properties with zearalenone (ZEN). To identify the type of chemical moieties and interactions involved in binding with the ZEN, LGG was subjected to different chemical and enzymatical treatments, prior to the binding experiments. Pretreating the viable, heat- and acid-killed bacteria with m-periodate significantly decreased ZEN binding, suggesting that ZEN binds predominantly to carbohydrate components. Pretreatment with Pronase E had no effect on the ability of viable cells to bind ZEN, however, a reduction in the binding of ZEN by heat- and acid-killed cells, suggesting that the new binding sites exposed by heat or acid are proteins in nature. Pretreatment with urea also decreased binding, suggesting that hydrophobic interactions play a role in ZEN binding. The binding of ZEN in concentrations ranging from 0.79 to 62.82 microM and its subsequent dissociation by repetitive aqueous washes was also studied. The binding sites of the bacteria were not saturated by the maximum ZEN concentration studied.  相似文献   

18.
In the present study, the influence of coffee roasting on free and melanoidin-bound phenolic compounds and their relationship with the brews' antioxidant activity (AA), evaluated by TRAP, TEAC, and TRAP, were investigated. Changes in the relative content of free chlorogenic acids (CGA), free lactones, and melanoidin-bound phenolic acids during roasting indicate that phenolic compounds were incorporated into melanoidins mainly at early stages of the process, being thereafter partly oxidized to dihydrocaffeic acid, and degraded. Although less than 1% of CGA in green coffee was incorporated into melanoidins during roasting, the relative content of melanoidin-bound phenolic acids increased significantly during this process, reaching up to 29% of total phenolic compounds in brews from dark roasted coffees. Regardless of the AA assay used and considering all roasting degrees, the overall contribution of CGA to the AA of the whole brews was higher than that of melanoidin-bound phenolic compounds. It was estimated that the latter compounds contributed to 25-47% of the AA, depending on the assay used.  相似文献   

19.
Coffee roasting experiments with air cooling versus water quench cooling were carried out on laboratory scale with a fluidized-bed hot air roasting system (200 g batch size) and on production scale with a rotating bowl roaster (320 kg batch size). Two series of coffees with different water contents resulted, which were stored at 25 degrees C under normal atmospheric conditions. Carbon dioxide desorption was followed and stability of selected aroma compounds was tested with headspace solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and stable isotope labeled compounds as internal standards. Degassing is faster in water-quenched coffees with higher moisture content, but pore size distribution in the different coffee samples did not correlate with degassing behavior. Bean firmness, which increases with increasing moisture content, might have an influence on degassing. Air- and water-quenched coffees exhibit similar stability of most aroma compounds despite different degassing behavior. However, evolution of dimethyl trisulfide was different in coffees with increased water content. This suggests higher thiol oxidation rates, a factor that is cited to be related to a faster loss of freshness attributes.  相似文献   

20.
The role of 2-methylisoborneol (MIB) in coffee aroma is controversially discussed in the literature. MIB is known as an off-flavor compound in drinking water and food, but it has also been suggested as a key flavor component of Robusta coffee, discriminating Robusta from Arabica coffee. To check this hypothesis the role of MIB in coffee brews was studied. Two reference samples containing pure Arabica and Robusta coffee brews were compared with five samples of Arabica coffee brews containing increasing amounts of MIB. The sensory panel consisting of 12 assessors perceived a distinct difference in the Arabica coffee odor and flavor in the presence of 10-25 ng/kg MIB, which is close to its threshold value in water. The sensory impression was described as musty, mold-like, and earthy. The intensity increased with increasing concentration of MIB. The panelists agreed that there was no similarity with the Robusta reference sample. The Arabica coffee brew spiked with MIB was no longer palatable due to the odor and flavor defect formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号