首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rapid stiffening of a well-developed gluten network able to entrap swollen starch granules is a key factor for the high quality of durum wheat pasta during cooking. Good resistance and firmness, low stickiness and limited release of organic materials into the cooking water are quality traits of primary importance for traditional pasta. In gluten-free (GF) pasta, the formation of a scaffold of retrograded starch can be an alternative to gluten networking: it confers rigidity to the cooked product and reduces pasta stickiness and loss of soluble materials into the cooking water. In a previous paper, 14 commercial GF spaghetti samples were studied as uncooked products from a chemical, biochemical and physical point of view. The aim of this study was to determine the cooking behaviour of these samples. A durum wheat pasta was also included as reference. Suitable cooking conditions were adopted and different conventional and innovative evaluations (i.e. compression test, creep test) were performed as a function of cooking time. Different behaviours were evidenced, often related to the ultrastructural organization of the uncooked products. In particular, the creep test revealed to be very effective in discriminating among the properties of the different GF spaghetti.  相似文献   

2.
Nutritionally enhanced spaghetti was prepared from durum semolina fortified with 0–30% desi chickpea ‘besan’ flour. This study examined the dough rheology, processing ease and quality attributes of the fortified spaghetti including protein, starch, texture (firmness, resilience and stickiness), colour, cooking loss, and organoleptic acceptability. Chickpea-fortified spaghetti was acceptable to consumers, had reasonable pasta quality, including lower cooking loss and less stickiness than the control spaghetti and retained firmness better than durum after refrigeration. This study suggests that chickpea-fortified spaghetti may be suited to uses such as fresh pasta, in soups, canning, and microwave re-heating. In addition, this study has added to the understanding of the underlying mechanisms of pasta quality. The main findings were: (1) gluten content/composition appears to be more important than protein content for pasta firmness; (2) the protein–polysaccharide matrix appears to be more important than the starch composition for cooking loss; (3) increased protein and amylose contents were associated with decreased pasta stickiness; (4) cooking loss and stickiness were not necessarily as strongly related as commonly believed. Further research into these theories is necessary to fully understand the underlying mechanisms of pasta quality.  相似文献   

3.
The quality of nine spaghetti typologies, produced by using wheat durum semolina as a base plus the addition of buckwheat and durum wheat bran, was investigated. The quality of the produced spaghetti was compared with that of spaghetti made only of durum semolina (CTRL). Tests were run on the samples to determine breakage susceptibility and colour of dry spaghetti, the cooking resistance, instrumental stickiness at optimal cooking time (OCT) and overcooking, the cooking loss and sensorial attributes at the optimal cooking time. Results suggest that the breakage susceptibility decreases with the addition of 15% and 20% bran, the spaghetti dry colour changes with the addition of buckwheat flour and bran compared to the spaghetti made only of durum semolina, while the cooking resistance, instrumental stickiness and the cooking loss, in general, were equal to that of the CTRL. However, the addition of buckwheat flour and bran affected the sensorial attributes differently.  相似文献   

4.
Effects of suni-bug (Eurygaster spp.) damage on semolina properties and spaghetti quality characteristics of durum wheats (Triticum durum L.) were investigated. The semolinas obtained from sound (control), medium damage (around 20%) and high damage (around 40%) samples of five durum wheat cultivars (cvs. Diyarbakir, Firat, Ege, Svevo and Zenith) were processed into spaghetti. As the bug damage level increased, Glutograph stretch values of all cultivars decreased significantly probably due to deteriorative effects of bug damage on gluten quality. Glutograph relaxation values and gluten spread values of the damaged samples were considerably higher compared to those of sound samples in all cultivars, due to proteolytic degradation. The breaking force of the uncooked spaghetti samples decreased significantly with increasing bug damage level indicating that they were susceptible to breakage and not suitable for handling, packaging and shipment. Panel tests indicated significant deterioration in sensory properties (stickiness, firmness and bulkiness) generally at the medium damage level.  相似文献   

5.
Granule-bound starch synthase, also known as the waxy protein catalyses the synthesis of amylose in wheat endosperm starch. In durum wheats, the genes encoding GBSS are present at the two Wx loci on chromosome 7A and 4A (a segment of 7B that has been translocated). Several null Wx-B1 (missing GBSS protein from chromosome 4A) durum lines were produced from crosses with null-4A bread wheats backcrossed to durum wheats. Semolina milled from 4 normal and 7 null-4A durum wheat lines grown over two seasons (1999 and 2000) in South Australia were analysed for amylose content, starch pasting properties as measured by the Rapid Viscoanalyzer (RVA), swelling power and starch damage, protein content and electrophoretic protein analysis. Spaghetti was prepared with a micro-scale extruder and the cooked pasta evaluated for cooking loss, firmness, stickiness and water absorption. The null-4A lines had significantly lower (ca. 5%) amylose content, higher starch peak viscosities and semolina swelling power. The pasta derived from the null-4A lines had lower cooking loss and in 1999 was more adhesive than the non-waxy lines. Cooking loss was correlated with amylose content, peak starch viscosity, swelling power of semolina and cooked pasta adhesiveness. Semolina swelling power was highly correlated with RVA peak viscosity. Waxy durum wheats appear to have an advantage over the normal types in terms of lower cooking loss, widely used as an indicator of pasta cooking quality.  相似文献   

6.
The usefulness of pasta disc viscoelasticity to predict pasta cooking quality in the durum wheat breeding program was evaluated. Cooked pasta disc viscoelasticity (PDV) was calculated from the creep curve of the viscoelastogram. Two sets of samples with different quality characteristics were tested for protein content, sedimentation volume (SV), Mixograph mixing characteristics, cooked gluten viscoelasticity (CGV) and cooked pasta disc viscoelasticity. Pearson correlation coefficients indicated that cooked pasta disc visoelasticity was associated with Mixograph values, SV and CGV, but not with protein content. The results indicate that the PDV test is useful in breeding programs because it requires small quantities of sample, it is simple and more closely mimics rheological tests used on the final product, pasta. The optimal conditions for measuring PDV are discussed.  相似文献   

7.
Formation of a gluten protein network is fundamental for the texture and the overall quality of pasta. Replacement of the gluten network in gluten-free pasta is a major technological challenge, and the conventional technological processes have to be adapted to non-gluten formulations. The wide variety of raw materials and technologies used in the production of commercial gluten-free pasta stems from the – still on-going – search for solutions to these problems. The aim of this study was to evaluate the characteristics of different commercial gluten-free spaghetti currently available on the market, focusing on starch and protein organisation. Taking into account the chemical and biochemical properties of the samples, and their relationships to the physical characteristics of these products we looked at how some molecular properties relate to the final structure and quality of gluten-free pasta. Phenomena related to starch retrogradation were found to play a central role for the final texture of the products. At the same time, the origin of proteins included in the formulation was found to govern the protein–protein interactions, especially in those samples including proteins from different vegetable sources.  相似文献   

8.
Specific dietary requirements, e.g. celiac disease, as well as increased consumer demand for products of high nutritional value, makes the production of pasta from alternative cereals interesting. Raw material characterisation showed that the utilisation of oat and teff flour is beneficial as these ingredients contain higher levels of fibre and mineral composition is superior to that of wheat. Starch properties significantly influence pasta quality and therefore damaged starch levels, amylase activity, pasting properties and gelatinisation temperatures of the flours were investigated. Fresh egg pasta based on wheat, oat and teff flour was produced. Sensory properties of oat spaghetti were found to be very close to that of wheat pasta but improvement of smoothness and aroma is necessary, while teff spaghetti showed reduced sensory quality. An in vitro enzymatic digestion was performed using a dialysis system to mimic the behaviour of pasta as eaten and make predictions on the glycemic index (GI). The predicted GI was highest for wheat pasta, followed by teff and oat. Ultra structure was studied using confocal laser scanning microscopy, allowing the visualisation of differences in starch granule size and shape as well as gelatinisation occurring during the cooking process.  相似文献   

9.
Grain protein concentration (GPC) affects wheat nutritional value and several critical parameters for bread and pasta quality. A gene designated Gpc-B1, which is not functional in common and durum wheat cultivars, was recently identified in Triticum turgidum ssp. dicoccoides. The functional allele of Gpc-B1 improves nitrogen remobilization from the straw increasing GPC, but also shortens the grain filling period resulting in reduced grain weight in some genetic backgrounds. We developed isogenic lines for the Gpc-B1 introgression in six hexaploid and two tetraploid wheat genotypes to evaluate its effects on bread-making and pasta quality. In common wheat, the functional Gpc-B1 introgression was associated with significantly higher GPC, water absorption, mixing time and loaf volume, whereas in durum wheat, the introgression resulted in significant increases in GPC, wet gluten, mixing time, and spaghetti firmness, as well as a decrease in cooking loss. On the negative side, the functional Gpc-B1 introgression was associated in some varieties with a significant reduction in grain weight, test weight, and flour yield and significant increases in ash concentration. Significant gene × environment and gene × genotype interactions for most traits stress the need for evaluating the effect of this introgression in particular genotypes and environments.  相似文献   

10.
The present study focused on the quality traits of durum wheat grains (protein and content, gluten content, yellow pigment content), semolina (gluten index and yellow index) and pasta (firmness, yellow index, cooking time) obtained from 12 durum wheat genotypes grown under elevated atmospheric CO2 concentration in an open field Free Air CO2 Enrichment (FACE) experiment. The aims were to evaluate the impact of elevated CO2 on durum wheat pasta making related traits as well as investigate genetic differences existing in a panel of old and modern cultivars. The protein content showed a not significant decrease (7%), the GC decreased significantly (13.3%), while the GI showed an increasing significant tendency (14%). The overall pasta quality (firmness and weight) worsened in ELE. Correlation between all traits and pasta firmness demonstrated that the decrease in pasta firmness under ELE was correlated with GPC and GC while it was not with the GI. All varieties, although to different extent, showed lower pasta firmness values compared to the ambient condition. Among the varieties tested, some were more sensitive than others to the increased atmospheric CO2 concentration, a finding that can be exploited by breeding for designing novel genotypes with lower sensitivity to increased atmospheric CO2.  相似文献   

11.
为了解硬粒小麦品种不同磨粉样品和不同类型间的淀粉品质特性,测定了2个硬粒小麦品种4种不同磨粉样品的膨胀势和5个不同类型品种的膨胀势和直链淀粉含量。结果表明,2个硬粒小麦品种不同磨粉样品的膨胀势均以淀粉最高;缺失4A型和7A型的硬粒小麦品种具有膨胀势高、直链淀粉含量低的特性。文中还对我国硬粒小麦品质改良作了讨论。  相似文献   

12.
Durum wheat (Triticum turgidum L. var. durum) is used predominantly for pasta products, but there is increasing interest in using durum for bread-making. The goal of this study was to assess the bread-making potential of 97Emmer19, an Emmer wheat (Triticum turgidum L. var. dicoccum) and in breeding lines derived from crosses of 97Emmer19 with adapted durum wheat cultivars. 97Emmer19 and its progeny were evaluated in 2005 and 2006 along with five durum wheat cultivars. Three bread wheat (Triticum aestivum L.) cultivars were included as checks to provide a baseline of bread making quality observed in high quality bread wheat cultivars. 97Emmer19 exhibited higher LV than all the durum wheat checks and approached the LV achieved with the bread wheat cultivar ‘AC Superb’. Breeding lines derived from 97Emmer19 had higher LV than those of the durum wheat checks, confirming that this trait was heritable. In general, durum wheat cultivars with elevated gluten strength and/or increased dough extensibility were noted to have higher LV. Dough extensibility appeared to be a more critical factor as gluten strength increased. These results indicate that there is potential to select for genotypes with improved baking quality in durum breeding programs.  相似文献   

13.
The effects of grain texture on pastamaking and breadmaking quality were studied in three F8 soft-textured durum wheat lines (SDLs) containing wild-type alleles Pina-D1a and Pinb-D1a as compared with their hard durum sister lines (HDLs). SDLs homozygous for a small 5DS segment, less than 14.4 cM in size, accumulated puroindolines A (Pin-A) and B (Pin-B) and showed SKCS values (19.9-23.6) significantly lower than those (72.6-76.8) of their hard-textured counterparts lacking Pin-A and Pin-B. In addition, SDLs exhibited approximately 24% higher flour extraction rates compared with HDLs. Reducing the kernel hardness decreased farinograph water absorption, dough tenacity (P) and, accordingly, alveograph P/L ratio, but increased farinograph stability, mixing tolerance and dough extensibility (L). Spaghetti cooking quality, as determined by the sensory judgment of firmness, stickiness and bulkiness, was unaffected by the kernel hardness, whereas the loaf volume exhibited a 10% increase associated with kernel softening. Flour and semolina, but not spaghetti, from SDLs showed a substantial reduction in yellowness (b*) and brownness (100 − L*) likely due to their finer particle size compared with HDLs. Alleles Pina-D1a and Pinb-D1a may offer new perspectives for breeding dual purpose (pasta and bread) durum wheat varieties.  相似文献   

14.
Durum wheat is an important crop widely distributed which grain is used in the elaboration of diverse food products. Most notably, durum wheat is used for the production of high quality pasta all around the world, but also for bread, couscous or bulgur, among other products. The end-use quality of these products is heavily determined by the grain quality characteristics, which depend on the wheat variety cultivated, the environmental effects and GxE interactions. The present study was conducted using a collection of 46 commercial durum wheat varieties to describe the phenotypic variation of the main target traits determining wheat quality, ascertain the effects of drought stress (very common in durum areas) on grain quality traits, and to assess the relationship between allelic variations of glutenins composition and gluten properties. Overall the varieties from Australia, USA and Italy showed the best performance in terms of grain quality. Additionally, the effects of drought stress on grain quality traits were analyzed: some traits were favored due to a higher protein concentration but others, such as flour yellowness were not affected by drought stress. The analysis of the varieties' glutenins composition showed the positive or negative effect of some alleles on different quality traits.  相似文献   

15.
The effect of technological processing on the contents of eight minerals – i.e., calcium, copper, iron, magnesium, phosphorous, potassium, selenium, and zinc – was investigated in pasta making. Milling of durum wheat as well as pasta making were carried out in a pilot plant by using three different grain samples. Pasta samples purchased on the market were also surveyed to gain information on the mineral content of commercial products. The effect of cooking was also investigated in order to determine the retention of the selected elements in the final ‘ready-to-eat’ product. Analyte concentrations in whole grains, semolina, pasta and cooked pasta were determined by inductively coupled plasma-mass spectrometry.  相似文献   

16.
Most of the unique properties of waxy wheat have been associated with the lack of amylose, that in turn may affect the mutual interactions between starch and proteins. To address this particular aspect, we carried out molecular, rheological, and calorimetric studies on flours from two waxy wheat lines that were compared with a non-waxy one. Dough thermal properties and water binding capacity were investigated by Differential Scanning Calorimetry (DSC) and by thermogravimetric analysis, respectively. Protein solvation, aggregation, and thiol accessibility were also investigated, together with dough mixing properties and stickiness. Proteins in waxy wheat samples needed more water to complete solvation, likely because of the water-retaining capacity of waxy wheat starch. In waxy wheat dough, water was tightly bound to starch, and DSC studies indicated an increase in gelatinization temperature. Moreover, the low water mobility in waxy wheat resulted in low and retarded gluten hydration and in high stickiness. In samples with the highest stickiness, protein aggregates were stabilized mainly by hydrophobic interactions. Differences between waxy wheat lines may be attributed to a different structural organization of components within each class of biopolymers.  相似文献   

17.
A health claim linking the consumption of barley β-glucan and the lowering of blood cholesterol has been allowed in North America and Europe which resulted in increased interest in barley products. Waxy barley flour rich in β-glucan (10% d.b.) was used to produce barley functional spaghetti and compared to semolina spaghetti. The impact of processing (extrusion, drying and cooking) on the physicochemical properties of barley blends and pasta as the molecular characterization of β-glucan were investigated. Pasta processing did not significantly affect the amount of β-glucan, but it impacted the β-glucan physicochemical properties in the end products. In all pasta, extrusion and drying were detrimental to the β-glucan properties, while cooking significantly increased the extractability and molecular weight of β-glucan, and in turn its viscosity, which determines its physiological effectiveness. In general, replacing wheat semolina with barley flour rich in β-glucan resulted in improved barley pasta containing the recommended amount of β-glucan per serving and enhanced β-glucan properties.  相似文献   

18.
Although pasta is generally not considered for its aromatic properties, some evidence proves that cereal flours release volatile compounds and they might have an effect on the aroma of the transformed products. This work reports on the characterization of the volatile components of semolina and pasta obtained from four durum wheat cultivars (Triticum durum Desf., cvs. PR22D89, Creso, Cappelli, Trinakria). Semolina samples were characterized through polar metabolite profiling and fatty acid analysis to identify potential precursors of the volatile components. The results show significant differences among the samples tested with cv. Trinakria characterized by the highest content of sugars and fatty acids. Volatile composition was investigated both in semolina and in cooked pasta using headspace solid-phase micro-extraction (HS-SPME) and identified by GC–MS. Thirty-five volatile compounds including aldehydes, ketones, alcohols, terpenes, esters, hydrocarbons and a furan were identified. Significant differences were observed between semolina and pasta samples in terms of composition and amount of the volatile compounds. During cooking an increase in aldehyde content, the appearance of ketones and a decrease in alcohol content were observed. Correlations between metabolites and volatiles demonstrate that the flavour of cooked pasta may differ significantly depending on the durum wheat cultivar employed.  相似文献   

19.
为建立可量化的面团粘性评价方法,提高面团粘性鉴定的准确性和科学性,利用改良的方法对96个河南省区域试验参试小麦进行粘性测定,以面团粘性感官鉴定结果为依据评价改良法量值鉴定结果,并对其与小麦主要品质性状的相关性进行了分析。结果表明,改良方法可以准确定量小麦面团粘性值并对其进行分类。不同粘性等级面团间的‘能量’和‘延伸性’存在极显著差异,‘最大拉伸阻力’在等级间存在显著差异;不同粘性等级的面团在改良拉伸仪上呈现不同的图谱;改良方法鉴定的面团粘性结果与面团感官鉴定结果一致,其中‘能量’和‘延伸性’与面团粘性感官鉴定等级呈极显著正相关,相关系数分别达到0.9600和0.9612;面团粘性与蛋白质含量、容重、湿面筋含量、降落数值和吸水量相关性不显著,与沉淀指数、稳定时间、能量、拉伸阻力、延伸性和最大拉伸阻力呈极显著负相关,与弱化度呈极显著正相关。因此,利用改良方法对小麦面团粘性进行量值鉴定是可行的;面团粘性主要取决于蛋白质质量。  相似文献   

20.
Stress–relaxation behaviours of Mixograph semolina–water doughs prepared from Canadian durum wheat cultivars with diverse gluten strength were investigated and related to mixing characteristics, large deformation properties, and bread- and pasta-making quality. Semolina from «strong» (S) and «moderately strong» (MS) durum wheat cultivars required a longer Mixograph mixing time (4–5 min) and higher work input (140–196 Arbitrary Units) to mix to peak dough resistance (PDR) than «weak» (W) and «very weak» (VW) durum cultivars (2–3 min and 80–117 AU). Extensigraph maximum resistance to extension (Rmax/E ratio) and Alveograph P/L (tenacity to length ratio) values were higher for doughs from S cultivars than for MS, W, and VW cultivars. Doughs from S cultivars exhibited higher storage modulus (G′) and lower tan δ values at all frequencies, and slower rates of stress relaxation as compared to MS, W, and VW cultivars. Stress relaxation (times to relax 50% (t50) and 75% (t75) of initial stress) indicated that stronger doughs, which had higher proportions of glutenins, took longer to reach these iso-relaxation states, regardless of their initial relaxation modulus value. The parameters t50and t75were also strongly correlated with dough mixing properties, Extensigraph Rmax/E, Alveograph P/L, mixing energy, mixing time and loaf volume obtained by a long and a short bread-making process. However, for S cultivars loaf volume was 10 to 20% lower than that expected of bread wheat of comparable protein content. Stress relaxation data demonstrated no simple correlation to pasta cooking quality indicating that stronger gluten did not translate into a superior pasta cooking quality. Results are interpreted in the context of multimodal networks and transient networks with reversible crosslinks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号