首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
A model to predict the bending modulus of elasticity (MOE) of oriented strand board (OSB) panels produced by batch processing is presented. The approach developed herein is unique in its comprehensiveness since the MOE is determined from information on the panel structure, temperature and moisture profiles and vertical density profiles obtained from the mat formation and compression models presented in Part 1. Comparison of predicted MOE values with those measured from 24 commercially produced panels shows good agreement considering some of the uncertainties involved. Simulations show that the MOE can be increased by any of the following changes: reduced fines content, increased panel density, better flake alignment in each of the three layers within a panel, increased flake length and a larger difference between the density of the face and core layers. The model was also used in a genetic algorithm to carry out an optimization study of batch OSB manufacturing. This analysis showed that by combining the appropriate reduction in the amount of flakes used, increase in fines content, improvement in flake alignment within each of the face and core layers and shortening of the batch time, a significant theoretical profit increase from the base case scenario can be obtained.  相似文献   

2.
Strandboard panels were experimentally produced from moso bamboo (Phyllostachys pubescens) using various strand lengths and layer structures to evaluate the effects of manufacturing parameters on panel properties. The strandboard was fabricated in a laboratory using diphenylmethane diisocyanate (MDI) resin and laboratory-made strands of four lengths and four different structures. Strand alignment distributions and concentration parameter (k) values were greatly affected by strand length. A linear correlation was found between the value of k and the modulus of rupture (MOR), with correlation coefficients of 0.81 and 0.93 for unidirectional boards and three-layer boards, respectively. This correlation may be used to predict the strength properties of boards. Bending properties were significantly affected by both the strand length and the layer structure of the bamboo strandboard tested. Elasticity data from unidirectional boards and random boards can be used to predict the elastic properties of three-layer boards. The linear expansion (LE) of the random boards increased with decreasing strand length. The difficulty in mat forming and resin distribution for longer strands could cause deviation in modulus of elasticity (MOE) and LE, especially in strand lengths around 80 mm.  相似文献   

3.
人造板阻燃研究中常将分子筛用作阻燃添加剂或协效剂,但合成分子筛通常使用水热方法,耗能大、流程复杂。本研究采用LTA型分子筛的合成前驱体浸渍处理刨花并制备阻燃定向刨花板(OSB)。通过热重分析(TGA)和极限氧指数(LOI)测试对浸渍处理刨花的热分解行为和燃烧性能进行考察,采用锥形量热测试和力学性能测试探究了分子筛前驱体处理刨花对OSB阻燃性能和力学性能的影响,并考察了残炭的微观形貌和元素组成。结果表明:分子筛前驱体浸渍处理提高了刨花的成炭性能和热稳定性,浸渍处理刨花的LOI由19.1%提升到44.0%,达到难燃级别。浸渍处理刨花制备的OSB第1、第2热释放速率峰值分别降低了48.1%和32.2%,总热释放量和总烟释放量较对照组分别降低了42.4%和47.0%。浸渍处理OSB的可燃气体产量减少、残炭量明显提升,同时在刨花表面生成Na2CO3和α-Al2O3等物质,提升了炭层稳定性,表明分子筛前驱体在气相和凝聚相方面均能起到阻燃作用。分子筛前驱体在刨花表面的沉积使刨花含水率提高、胶层的胶接性能下降,导致浸渍处理刨花制备的OSB各项力学性能均有所下降,但仍满足定向刨花板行业标准LY/T 1580—2010中OSB/3型刨花板的性能要求。  相似文献   

4.
This study examined the effects of density and layer structure on the mechanical properties and dimensional stability of strandboard manufactured from moso bamboo (Phyllostachys pubescens). The strandboard was fabricated in a laboratory at five densities and three different structures including a randomly oriented homogenous board, a unidirectionally oriented homogenous board, and a three-layered board with a cross-oriented core layer (BOSB). Bamboo strand alignment distribution could be predicted using the von Mises distribution function. Bending properties increased with increasing density and were affected by layer structure. The modulus of rupture (MOR) of the threelayered board in the parallel direction increased remarkably compared with the random board MOR; in the perpendicular direction, it exhibited less strength reduction. Elastic properties of the three-layered board could be predicted using elastic constants of the unidirectional board. Internal bond strength (IB) was greatly affected by density, but the layer structure effect did not appear in IB. Linear expansion per unit moisture change ranged from 0.017 to 0.022 for random and three-layered boards; these values are comparable with or lower than values for commercial board.  相似文献   

5.
In this study, the effect of nanoclay on some applied properties of oriented strand board (OSB) made from underutilized low quality paulownia wood was investigated. Organo-modified montmorillonite (MMT) at four levels (0, 1, 3 and 5?%) was added to urea formaldehyde (UF) resin. Some chemical properties of paulownia wood (holocellulose, cellulose, lignin and ash contents, pH value and hot and cold water solubility), mechanical [modulus of rupture (MOR), modulus of elasticity (MOE), internal bond strength, screw and nail withdrawal strengths], physical (water absorption and thickness swelling) properties and formaldehyde emission of the strand boards were evaluated. Mechanical properties of all panels complied with the general-purpose OSB minimum property requirements of European Norm. With increasing 5?% nanoclay to UF resin, mechanical and physical properties of the resulting panels improved and formaldehyde emission decreased. However, none of the panels satisfied the thickness swelling and water absorption requirement. The results of X-ray diffraction and transmission electron microscope analysis confirmed the good dispersion of nanoclay in the resulting OSBs. Using paulownia as a fast-growing underutilized species not only can sustain the forests but also can supply raw material to countries facing shortage of wood.  相似文献   

6.
Three-layered composite oriented strand boards were manufactured using very thin hinoki (Japanese cypress, Chamaecyparis obtusa Endl.) strands oriented in the faces and mixtures of sugi (Japanese cedar, Cryptomeria japonica D. Don.) and hinoki particles in the core. The boards were composed of two density levels, with 1:8:1, 0.5: 9 : 0.5, and 0: 10 : 0 face: core: face ratios. Polymeric and emulsion type isocyanate resins were used. The resin contents for the strands in the face and particles in the core were 10% and 5%, respectively. The steam-injection press was applied at 0.62MPa (160°C), and the steam-injection time was 2min. The mechanical and physical properties of the boards were evaluated based on the Japanese Industrial Standard. The parallel moduli of rupture and elasticity along the strand orientation direction and the wood screw retaining force increased with increasing face/core ratios. Incorporation of 10%–20% of thin strands in the face of the boards improved the parallel moduli of rupture and elasticity by 47%–124% and 30%–65%, respectively. In addition, the thickness swelling after water-soaking at 20°C for 24h, and the parallel linear expansion after boiling for 2h and water-soaking at 20°C for 1 h, of the three-layered composite boards were below 8% and 0.15%, respectively, despite a short steam-injection press time. The thickness swelling of the boards decreased with increasing face/core ratios. In contrast, the presence of face strands seems to have a minimal effect on the moduli of rupture and elasticity along the perpendicular direction of the three-layered composite boards. A similar trend was observed for the internal bond strength, hardness, and linear expansion along the perpendicular direction.This paper was presented at the 47th annual meeting of the Japan Wood Research Society, Kochi, April 1997  相似文献   

7.
Bamboo has gained increasing attention as an alternative raw material for use in the manufacture of composite boards. Three-layer OSBs were made using Betung bamboo (Dendrocalamus asper (Schultes.f) Backer ex Heyne) strands to evaluate the effects of strand length and pre-treatment techniques on the physical, mechanical, and durability properties. Three different strand lengths, namely 50, 60, and 70?mm, were prepared. Prior to the manufacture into OSB, the strands were immersed in cold water for 24?h and in 6% acetic anhydrides solution for 48?h. The OSBs were fabricated using 5% MDI resin based on the strand dry weight. The results indicated that MOR and MOE values in perpendicular to the grain direction were much influenced by strand length. The dimensional stability of OSB was slightly improved by immersing the strands in acetic anhydride solution. Immersing strands in cold water and acetic anhydride solution improved the resistance of OSB against subterranean termite (Macrotermes gylvus) attack under the adopted experimental condition. All OSB parameters manufactured in this experiment were better than the minimum requirement of CSA 0437.0 (Grade O–2) standard.  相似文献   

8.
A model to predict bending stiffness of oriented strandboard (OSB) was tested with pilot plant experimental data. The experimental procedure developed in this study is unique in that it allows the model to be tested for extensive vertical configurations of strand angle distribution. After validation, the model was used to simulate a typical three-layer cross-oriented OSB panel with a vertical density profile and strand angle distribution measured on industrial panels. Analysis of the simulated vertical distribution of modulus of elasticity (MOE) indicated that the layers near the panel surfaces contributed much more to the effective parallel panel MOE than those close to the panel thickness center, with 80% of parallel MOE coming from the top 41% of weight and 32% of thickness. The effectiveness of methods to increase parallel bending stiffness through improving mat structure was evaluated. Increasing face/core weight ratio from 54/46 to 66/34 resulted in a 3.7% increase in simulated parallel MOE. Alignment of strands in face layers was identified having a greater potential to increase parallel MOE. Simulations with three improved strand angle distributions showed gains of 5.7, 12.0 and 19.8% in parallel MOE compared with a typical strand angle distribution of industrial OSB panels.  相似文献   

9.
The balance of strength between the flange and web parts of veneer strand flanged I-beam was investigated by the following methods: (1) use of different web material types, such as plywood, oriented strand board (OSB), particleboard (PB), and medium density fiberboard (MDF), that have different strength properties; and (2) fabrication of I-beams with low-density flanges using low-density strands with PB web material. Replacing PB or MDF with plywood showed slight significant improvement in the modulus of rupture but not in the modulus of elasticity of the entire I-beam. However, PB and MDF showed competent performance in comparison with OSB, thus strengthening the promising future of the use of PB or MDF as web material to fabricate I-beams. Hot-pressing conditions used for I-beam production exerted slightly adverse effects on the bending properties of PB, but not on MDF, OSB, and plywood web materials. The flange density of 0.60 g/cm3 was considered to be the lower limit that provides I-beams with balanced mechanical properties and dimensional stability.  相似文献   

10.
Abstract

The objective of the study was to compare the properties of oriented strand boards (OSBs) made from the following mixtures: European beech and poplar, beech and pine, poplar and pine and 100% pine (i.e. the conventional raw material for OSB in Europe). Panels with 50–50% of beech-poplar/beech-pine/poplar-pine at two density levels of 650 kg/m3 and 720 kg/m3 were made with 5% pMDI (poly methylene di-isocyanate) as binder at 180°C and 240s as press conditions. Results showed that panels comprising a mixture of European beech and poplar have higher mechanical properties compared to panels made with mixtures of pine-beech or pine-poplar. In addition, for all panels, when density is increased from 650 kg/m3 to 720 kg/m3, mechanical properties increased. Internal bond values for all designs were in the same range, especially at higher density (720 kg/m3). The pure pine panels showed lower values between different designs. Thickness swelling, an important physical property of OSB, improved when face and core layers consisted of a mixture of beech and poplar strands.  相似文献   

11.
Optimizing the manufacturing conditions of veneer strand-flanged I-beams was continued in this study and focused on the strand density and preparation method. Three levels of strand density were used, while the strands were prepared by either saw or roll-press splitter. The main results indicated that: within the compaction ratios (1.4–2.3) investigated in this study, the strand with lower density showed slight improvement in the dimensional stability and the bond strength between web and flange, but not in bending properties of the I-beams. The strand preparation method was concluded to be dependent on species for akamatsu, sugi, and bamboo strands; roll-press splitter-prepared strands tended to negatively affect dimensional stability and mechanical properties of the I-beams. When using akamatsu or sugi strands, low density allowed the possibility of using lower resin application rates between strands. Part of this paper was presented at the 54th Annual Meeting of the Japan Wood Research Society in Sapporo, August 2004  相似文献   

12.
The technique of image analysis has been used to assess the quality of model oriented strand board panels by investigating the relationships between shape and size of strands, the distribution of strands and bending properties. A batch of commercial strands was analysed by image analysis and the distribution of the shape and size of strands was quantified. The strands were categorised into five strand types as a function of size and aspect ratio. In general, strand shapes were observed to be mostly rectangular and there was also a wide variation in strand dimensions in commercial material. Bigger area strands had low aspect ratios and small strands had high aspect ratios. Half of the commercial strands were longer than 100 mm.Model OSB panels were manufactured in the laboratory by hot pressing strand mats formed from each of the five strand types. Strands were laid up by hand into the forming mat and following pressing the orientation and shape of strands was evaluated by image analysis and the panels were tested in a three point bending. Large area (type 3) strands with high aspect ratios produced model panels with optimum strand orientation and mechanical properties.Type 3 panels were also fabricated from strands dropped through a slotted forming device in order to simulate the delivery of strands to the forming line under factory conditions. As the height of strand delivery increased from 0 to 100 to 200 mm the disorientation of strands in the pressed panels progressively increased and as a result mechanical properties in bending were reduced.Image analysis is therefore a powerful tool for evaluating the distribution of commercial strand shapes and the relationship between strand geometry, strand orientation and the mechanical properties of oriented strand board.  相似文献   

13.
The construction industry has relied heavily on wood and wood-based composites, such as oriented strand board (OSB) and plywood for timber frame construction. Therefore, it is highly imperative to categorize the response of wood-based composites when exposed to elevated temperatures for a sustained period of time. The essence of fire-resistant structural design is to ensure that structural integrity be maintained during and after the fire, prevent collapse and maintain means of egress. Another aspect is to assess post-fire structural integrity and residual strength of existing structure. The objective of this project was (a) to study the effect of exposure time on bending strength (MOR) of OSB and plywood at elevated temperatures, (b) to interpret any relationships between different temperature and time of exposure using a kinetics model for thermal degradation of strength, and (c) to develop a master curve representing temporal behavior of OSB and plywood at a reference temperature. As much as 1,152 samples were tested in static bending as a function of exposure time and several temperatures. Strength (MOR) of both OSB and plywood decreased as a function of temperature and exposure time. These results were fit to a simple kinetics model, based on the assumption of degradation kinetics following an Arrhenius activation energy model. The apparent activation energies for thermal degradation of strength were 54.1 kJ/mol for OSB and 62.8 kJ/mol for plywood. Furthermore, using the kinetics analysis along with time–temperature superposition, a master curve was generated at a reference temperature of 150°C which predicts degradation of strength with time on exposure at that reference temperature. The master curves show that although plywood has a higher initial strength, OSB performs better in terms of strength degradation after exposure to elevated temperature.  相似文献   

14.
竹木复合定向刨花板强度性能研究   总被引:1,自引:0,他引:1  
本文论述了竹材、意大利杨复合定向刨花板的强度性能,就胶种、刨花厚度、竹材所占比率、板密度、板坯结构、施胶量等诸因子对板材强度性能的影响进行了探讨。结果表明:(1)胶种对竹木复合定向刨花板的强度影响不大;(2)降低刨花厚度或提高板密度均可使板材强度提高;(3)单层结构的复合定向刨花板强度最高;(4)提高板材中竹材的比率可使板子强度明显改善;但竹材比率过高时,板材强重比反而下降,呈开口向下的抛物线型变化;(5)酚醛树脂定向刨花板的强度随原料酸性增大而降低。  相似文献   

15.
A model is presented to determine the horizontal density distribution (HDD) and vertical density profile (VDP) of oriented strand board (OSB) panels produced by batch pressing. The HDD is simulated using input distributions of flake dimensions and orientation from plant measurements. Many previous HDD models rely on assumed distributions, which may not accurately characterize current manufacturing processes. The model predicts the VDP based on the compression behaviour of cellular materials in combination with temperature and moisture profiles calculated using a previously published heat and mass transport model. A novel empirical approach is applied rather than the time–temperature–moisture superposition method commonly used. The model predictions compare favourably with plant data and exhibit trends similar to previously reported experimental results. This work is the first of a two-part publication. The second part is concerned with stiffness property prediction and an optimization of the OSB manufacturing process. This work is novel in that no comprehensive model including HDD, VDP, stiffness property prediction and optimization has been reported in the literature.  相似文献   

16.
【目的】研究定向刨花板(OSB)的各向异性,探讨OSB面内剪切模量动态和静态测试方法,以提供一种快速、简便、重复性好、精度高的动态测试方法测量和分析OSB弹性常数。【方法】应用ANSYS程序计算OSB自由板和悬臂板试件的振形系数,给出振形系数依赖于板长宽比和宽厚比的关系式,通过仿真计算、动态试验和方板静态扭转试验验证其正确性。动态试验测试OSB剪切模量试件从一块整张OSB上下料制作,分为3个方向,即沿整板纵向下料制作的试件(0°或x向)、横向方向下料制作的试件(90°或y向)和沿与纵向呈45°方向下料制作的试件;方板扭转试验测试OSB剪切模量试件沿整板纵向或横向下料制作;动态测试OSB纵向、横向和45°方向弹性模量以及面内剪切模量和45°方向剪切模量。【结果】OSB实测纵向弹性模量是横向弹性模量的2.89倍,45°方向剪切模量小于面内剪切模量。正交各向异性材料方板扭转试验测试剪切模量推算公式需用±45°方向应变测量值的差值进行推算,将其用于OSB,测得的静态剪切模量与动态测试的剪切模量相当吻合。【结论】OSB弹性模量具有方向性,纵向最大,横向最小,45°方向介于二者之间;自由板扭转振形法和悬臂板扭转模态法适用于动态测试OSB面内剪切模量,其正确性得到方板扭转试验验证;0°和90°OSB动态测得的剪切模量几乎相等,可作为OSB面内剪切模量Gxy的估计值;OSB不宜按单向复合材料处理,在理论分析时宜按正交各向异性处理,OSB45°方向的剪切模量G45°相似文献   

17.
Randomly oriented strand boards with both uniform and conventional vertical density profiles (VDP) were manufactured, and their properties were evaluated and compared. The bending modulus of elasticity (MOE) of conventional strand boards was predicted using the laminated beam theory and the MOE-density regression equation from the uniform strand boards. The results showed that the predicted MOE of conventional strand boards was close to the measured MOE with a difference of less than 10%. The internal bond strength values of uniform strand boards were found to be higher than conventional strand boards while no significant difference was found in water-related properties. Compared with uniform strand boards, MOE values of conventional strand boards were improved only at higher density level. About 10% of improvement in MOE can be obtained for the strand boards investigated by manipulating the VDP. Steeper VDPs were predicted to be required for thinner boards than for thick boards in order to achieve the same improvement in MOE.  相似文献   

18.
 The objective of this paper is to evaluate the arrangement of wood strands at the surface of oriented strand board (OSB) by image analysis. Two-dimensional image analysis enables the number of strands and the area of each strand to be computed. In addition, the fiber direction of each strand may be measured manually by recording the acute angle between the fiber direction and the longitudinal axis of the specimen. The image analysis results suggest the following: the average strand area is proportional to the reciprocal of the number of strands. Samples containing many smaller strands exhibit a larger variation in strand size. The average strand area does not correlate with the distribution of the strand area represented by the coefficient of variation. However, there is a reasonable correlation between the number of smaller strands in the range 0 to 1 cm2 and the coefficient of variation of strand area. At low average fiber orientations, i.e. better orientation with the principal panel axis, there is smaller variability in orientation. The upper side and lower side of OSB exhibit a different relationship between average fiber orientation and strand area. The upper side of the specimens contains larger strands and exhibits better fiber orientation than the lower side. This is thought to be a function of the production process. The lower side strands fall on a smooth moving substrate, whereas the upper side strands fall on a stable substrate of strands. The number of strands is lower on the upper side of the OSB panel because small size strands tend to migrate to the lower side of the OSB during production. The small particles tend to be vibrated through the strand mat to the lower face before pressing. Received 29 March 1999  相似文献   

19.
The study was conducted to evaluate effect of ratio of face to core particles on mechanical and physical properties of oriented strand board produced from Ethiopian highland bamboo.Three-layered oriented particleboards were manufactured with 4 proportions of face to core particles at 750 kg/m~3 target density.Ten percent urea formaldehyde resin was used as a binder.Strength and dimensional stability performances of all boards were assessed based on ISO standards.The results showed that modulus of rupture...  相似文献   

20.
Three mechanical tests with different loading modes were conducted to evaluate the effect of element type on the internal bond quality of wood-based panels. In addition to the internal bond test, which is commonly used for mat-formed panels, interlaminar and edgewise shear tests were used to test oriented strandboard (OSB), particleboard, medium-density fiberboard (MDF) of two thicknesses, and plywood. The following results were obtained. Epoxy resin proved to be suitable for determining the interlaminar shear modulus instead of hot-melt glue. There was a linear relation between panel density and interlaminar shear modulus and a linear correlation between the interlaminar shear strength and internal bond (IB) strength for the mat-formed panels tested. OSB had the highest edgewise shear modulus, and MDFs had the highest edgewise shear strength in this study. The modulus/strength ratio also depended on both panel type and loading mode. The relation between the shear moduli determined from the edgewise and interlaminar tests indicated the characteristics of the shear properties of panels made of different elements.Part of this paper was presented at the Fourth International Wood Science Symposium, Serpong, Indonesia, September 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号