首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
The formation of acrylamide in crystalline model systems based on asparagine and reducing sugars was investigated under low-moisture reaction conditions. The acrylamide amounts were correlated with physical changes occurring during the reaction. Molecular mobility of the precursors turned out to be a critical parameter in solid systems, which is linked to the melting behavior and the release of crystallization water of the reaction sample. Heating binary mixtures of asparagine monohydrate and anhydrous reducing sugars led to higher acrylamide amounts in the presence of fructose compared to glucose. Differential scanning calorimetry measurements performed in open systems indicated melting of fructose at 126 degrees C, whereas glucose and galactose fused at 157 and 172 degrees C, respectively. However, glucose was the most reactive and fructose the least efficient sugar in anhydrous liquid systems, indicating that at given molecular mobility the chemical reactivity of the sugar was the major driver in acrylamide formation. Furthermore, reaction time and temperature were found to be covariant parameters: acrylamide was preferably formed by reacting glucose and asparagine at 120 degrees C for 60 min, whereas 160 degrees C was required at shorter reaction time (5 min). These results suggest that, in addition to the chemical reactivity of ingredients, their physical state as well as reaction temperature and time would influence the formation of acrylamide during food processing.  相似文献   

2.
The effect of different sugars and glyoxal on the formation of acrylamide in low-moisture starch-based model systems was studied, and kinetic data were obtained. Glucose was more effective than fructose, tagatose, or maltose in acrylamide formation, whereas the importance of glyoxal as a key sugar fragmentation intermediate was confirmed. Glyoxal formation was greater in model systems containing asparagine and glucose rather than fructose. A solid phase microextraction GC-MS method was employed to determine quantitatively the formation of pyrazines in model reaction systems. Substituted pyrazine formation was more evident in model systems containing fructose; however, the unsubstituted homologue, which was the only pyrazine identified in the headspace of glyoxal-asparagine systems, was formed at higher yields when aldoses were used as the reducing sugar. Highly significant correlations were obtained for the relationship between pyrazine and acrylamide formation. The importance of the tautomerization of the asparagine-carbonyl decarboxylated Schiff base in the relative yields of pyrazines and acrylamide is discussed.  相似文献   

3.
The influence of the polyphenolic compound epicatechin on Maillard chemistry was investigated under simulated roast conditions (10% moisture at 220 degrees C for 10 min). Quantitative gas chromatography (GC) analysis indicated that the addition of epicatechin to glucose or fructose/glycine model systems significantly reduced the generation of hydroxyacetone, 2-methylpyrazine, 2,3,5-trimethylpyrazine, furfural, 2-acetylfuran, 5-methylfurfural, 2(5H)-furanone, 2-acetylpyrrole, and furfuryl alcohol. These analytes were reported to be primarily generated from intact C2, C3, C4, C5, and C6 sugar fragments based on gas chromatography/mass spectrometry quantitative isotopomeric analysis of a 1:1 13C6:12C6 hexose sugar/glycine model system. Liquid chromatography/mass spectrometry qualitative isotopomeric analysis of a 1:1 13C6:12C6 hexose sugar/glycine/epicatechin model systems confirmed epicatechin reacted with Maillard reactants in the model systems; two main reaction products were reported, epicatechin-C5 and -C6 sugar fragment adducts. In addition, LC/MS analysis of a model system consisting of only 3-deoxy-2-hexosulose and epicatechin identified 3-deoxy-2-hexosulose as a precursor of the epicatechin-C5 and -C6 sugar fragment adducts reaction products. These results imply that epicatechin quenched 3-deoxy-2-hexosulose (a key source C6 to C1 sugar fragments) and consequently inhibited Maillard product formation.  相似文献   

4.
5.
Only a minor part of Maillard reaction studies in the literature focused on the reaction between carbohydrates and peptides. Therefore, in continuation of a previous study in which the influence of the peptide C-terminal amino acid was investigated, this study focused on the influence of the peptide N-terminal amino acid on the production of pyrazines in model reactions of glucose, methylglyoxal, or glyoxal. Nine different dipeptides and three tripeptides were selected. It was shown that the structure of the N-terminal amino acid is determinative for the overall pyrazine production. Especially, the production of 2,5(6)-dimethylpyrazine and trimethylpyrazine was low in the case of proline, valine, or leucine at the N-terminus, whereas it was very high for glycine, alanine, or serine. In contrast to the alkyl-substituted pyrazines, unsubstituted pyrazine was always produced more in the case of experiments with free amino acids. It is clear that different mechanisms must be responsible for this observation. This study clearly illustrates the capability of peptides to produce flavor compounds such as pyrazines.  相似文献   

6.
Production and consumption of greenhouse gases such as CO2, CH4 and N2O are key factors driving climate change. While CO2 sinks are commonly reported and the mechanisms relatively well understood, N2O sinks have often been overlooked and the driving factors for these sinks are poorly understood. We examined CO2, CH4 and N2O flux in three High Arctic polar deserts under both light (measured in transparent chambers) and dark (measured in opaque chambers) conditions. We further examined if differences in soil moisture, evapotranspiration, Photosynthetically Active Radiation (PAR), and/or plant communities were driving gas fluxes measured in transparent and opaque chambers at each of our sites. Nitrous oxide sinks were found at all of our sites suggesting that N2O uptake can occur under extreme polar desert conditions, with relatively low soil moisture, soil temperature and limited soil N. Fluxes of CO2 and N2O switched from sources under dark conditions to sinks under light conditions, while CH4 fluxes at our sites were not affected by light conditions. Neither evapotranspiration nor PAR were significantly correlated with CO2 or N2O flux, however, soil moisture was significantly correlated with both gas fluxes. The relationship between soil moisture and N2O flux was different under light and dark conditions, suggesting that there are other factors, in addition to moisture, driving N2O sinks. We found significant differences in N2O and CO2 flux between plant communities under both light and dark conditions and observed individual communities that shifted between sources and sinks depending on light conditions. Failure of many studies to include plant-mediated N2O flux, as well as, N2O soil sinks may account for the currently unbalanced global N2O budget.  相似文献   

7.
Covalent Maillard products of the reactions of carbonyl compounds with proteins are often described in the literature, but, until recently, evidence for their existence has been indirect. Cyclotene (2-hydroxy-3-methylcyclopent-2-enone), a common flavor compound, was incubated with a model food protein, ribonuclease, and found to cross-link the protein. Size exclusion high-performance liquid chromatrography and electrospray mass spectrometry of the early stages of the reaction provide strong evidence for covalent adducts that we believe to be intermediates in the cross-linking reaction.  相似文献   

8.
GGN-MRP is an extract from the Maillard reaction products of nitrite with glucose and glycine in the Maillard browning system. No genotoxicity of GGN-MRP in culture hepatocyte was found. A two-stage transformation protocol was used to transform chemically mouse embryo fibroblast C3H10T1/2 cells. To initiate transformation, the cells were treated with benzo[a]pyrene [B(a)P; 0.1 microg/mL], and GGN-MRP (0.01, 0.1, and 1.0 mg/mL) was employed to subsequently complete the transformation process. Malignant transformed foci were formed in B(a)P-initiated and GGN-MRP-promoted C3H10T1/2 cells after 8 weeks. Cells treated with GGN-MRP alone failed to induce transformation. However, cells initiated with B(a)P and promoted by GGN-MRP demonstrated oncogenic properties. Transformed colonies derived from GGN-MRP-treated cells exhibited enhanced growth rate, anchorage independence, and tumorgenicity in animals relative to parent cells. These results indicated that GGN-MRP contains a tumor promoter and may induce tumor promotion by two-stage oncogenesis.  相似文献   

9.
The in vitro mineral binding capacity of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, to Ca, Mg, Cu, Fe, and Zn under sequential simulated physiological conditions of the human stomach, small intestine, and colon was investigated and compared. Apart from releasing most of their endogenous Ca (ranged from 96.9 to 97.9% removal) and Mg (ranged from 95.9 to 96.7% removal), simulated physiological conditions of the stomach also attenuated the possible adverse binding effect of the three sclerotial DFs to the exogenous minerals by lowering their cation-exchange capacity (ranged from 20.8 to 32.3%) and removing a substantial amount of their potential mineral chelators including protein (ranged from 16.2 to 37.8%) and phytate (ranged from 58.5 to 64.2%). The in vitro mineral binding capacity of the three sclerotial DF under simulated physiological conditions of small intestine was found to be low, especially for Ca (ranged from 4.79 to 5.91% binding) and Mg (ranged from 3.16 to 4.18% binding), and was highly correlated (r > 0.97) with their residual protein contents. Under simulated physiological conditions of the colon with slightly acidic pH (5.80), only bound Ca was readily released (ranged from 34.2 to 72.3% releasing) from the three sclerotial DFs, and their potential enhancing effect on passive Ca absorption in the human large intestine was also discussed.  相似文献   

10.
Nitrous oxide (N2O) contributes to greenhouse effect; however, little information on the consequences of different moisture levels on N2O/(N2O+N2) ratio is available. The aim of this work was to analyze the influence of different soil moisture values and thus of redox conditions on absolute and relative emissions of N2O and N2 at intact soil cores from a Vertic Argiudoll. For this reason, the effect of water-filled porosity space (WFPS) values of soil cores of 40, 80,100, and 120% (the last one with a 2-cm surface water layer) was investigated. The greatest N2O emission occurred at 80% WFPS treatment where conditions were not reductive enough to allow the complete reduction to N2. The N2O/(N2O+N2) ratio was lowest (0–0.051) under 120% WFPS and increased with decreasing soil moisture content. N2O/(N2O+N2) ratio values significantly correlated with soil Eh; redox conditions seemed to control the proportion of N gases emitted as N2O. N2O emissions did not correlate satisfactorily with N2O/(N2O+N2) ratio values, whereas they were significantly explained by the amount of total N2O+N2 emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号