首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, the most common neoplastic disease of cattle worldwide and a serious problem for the cattle industry. Previous studies have shown the molecular prevalence of BLV and the coexistence of BLV genotype-1 and -4 in Egyptian dairy cattle; however, the molecular characteristics of BLV in Egyptian beef cattle are unknown. Therefore, we collected blood samples of 168 beef cattle from slaughterhouses in three governorates in Egypt. Based on BLV-CoCoMo-qPCR-2 targeting long terminal repeats and nested PCR targeting the env-gp51 gene, the BLV provirus infection rates were found to be 47/168 (28.0%) and 42/168 (25.0%), respectively. Phylogenetic analysis based on 501 bp of the BLV env-gp51 gene from 42 BLV isolates revealed that at least six distinctive strains (b, e, f, g, x, and z) were prevalent in cattle across the examined regions. Furthermore, phylogenetic analysis of the 420 bp sequence of the BLV env-gp51 region of the six strains against 11 known genotypes showed that the strains b, e, f, and g were clustered into genotype-1, and strains x and z were clustered into genotype-4. Our results also indicated that strains b and x exist in both dairy and beef cattle in Egypt. The present study is the first to detect and genotype BLV among beef cattle in Egypt.  相似文献   

2.
Expression of L‐selectin was determined by single‐ and two‐colour immunofluorescence on granulocytes, peripheral blood mononuclear cells (PBMC) and blasts of bovine origin by means of a monoclonal antibody IVA94 which recognizes bovine L‐selectin (CD62L). Cells were separated from peripheral blood of healthy cattle and colleagues infected with bovine leukaemia virus (BLV). BLV‐infected animals comprised lymphocytotic and non‐lymphocytotic cows. L‐selectin was expressed on 90–98 % of granulocytes in all tested animals. The percentage of PBMC expressing L‐selectin was lower in cattle with persistent lymphocytosis than in non‐lymphocytotic or BLV‐free cattle, and inversely correlated with lymphocyte counts. The ratio of B lymphocytes stained for L‐selectin was significantly decreased from 60.2 ± 1.9 % in BLV‐free cattle to 43.8 ± 3.6 and 22.5 ± 5.7 % in non‐lymphocytotic and lymphocytotic cattle, respectively. B‐lymphocytes stained for L‐selectin exhibited about 50 % reduction in L‐selectin expression in BLV‐infected cattle compared with BLV‐free cattle, as judged by the mean fluorescence intensity (MFI). The percentage of L‐selectin‐positive PBMC not bearing surface immunoglobulin M (predominantly T lymphocytes) was comparable in BLV‐free and BLV‐infected cattle. However, L‐selectin expression on T lymphocytes was reduced (about 50 %) in BLV‐infected cattle, as judged by the MFI. We suppose that BLV infection results in a decreased L‐selectin expression on lymphocytes, and accordingly, it may contribute to deregulation of the host immune system.  相似文献   

3.
ABSTRACT: The inhibitory receptor programmed death-1 (PD-1) and its ligand, programmed death-ligand 1 (PD-L1) are involved in immune evasion mechanisms for several pathogens causing chronic infections. Blockade of the PD-1/PD-L1 pathway restores anti-virus immune responses, with concomitant reduction in viral load. In a previous report, we showed that, in bovine leukemia virus (BLV) infection, the expression of bovine PD-1 is closely associated with disease progression. However, the functions of bovine PD-L1 are still unknown. To investigate the role of PD-L1 in BLV infection, we identified the bovine PD-L1 gene, and examined PD-L1 expression in BLV-infected cattle in comparison with uninfected cattle. The deduced amino acid sequence of bovine PD-L1 shows high homology to the human and mouse PD-L1. The proportion of PD-L1 positive cells, especially among B cells, was upregulated in cattle with the late stage of the disease compared to cattle at the aleukemic infection stage or uninfected cattle. The proportion of PD-L1 positive cells correlated positively with prediction markers for the progression of the disease such as leukocyte number, virus load and virus titer whilst on the contrary, it inversely correlated with the degree of interferon-gamma expression. Blockade of the PD-1/PD-L1 pathway in vitro by PD-L1-specific antibody upregulated the production of interleukin-2 and interferon-gamma, and correspondingly, downregulated the BLV provirus load and the proportion of BLV-gp51 expressing cells. These data suggest that PD-L1 induces immunoinhibition in disease progressed cattle during chronic BLV infection. Therefore, PD-L1 would be a potential target for developing immunotherapies against BLV infection.  相似文献   

4.
Data on the worldwide distribution of bovine immunodeficiency virus (BIV) and bovine leukemia virus (BLV) is limited. A prevalence study of antibodies to BIV and BLV was conducted in six different cattle herds in Brazil. Out of a total of 238 sera analyzed, 11.7% were found positive for anti-BIV p26 antibodies as determined by Western blot analysis, 2.1% were positive for anti-BLV gp51 antibodies as detected by immunodiffusion test. Peripheral blood mononuclear cells from BIV seropositive cattle were found to have BIV-provirus DNA, as detected by nested polymerase chain reaction. A nucleotide sequence corresponding to a 298 bp fragment of the BIV pol gene was also analyzed. Amino acid sequences of these Brazilian pol gene products showed 98.0 to 100% homology to the American strain BIV R29, 97.0 to 99.0% to Japanese BIV isolates, and divergence ranged from 0 to 4.0% among Brazilian BIV isolates. This evidence of the presence of BIV and BLV infections in Brazil should be considered a health risk to Brazilian cattle populations and a potential causative agent of chronic disease in cattle.  相似文献   

5.
Horizontal transmission is recognized as a major infection route for bovine leukemia virus (BLV), and cattle with high viral loads are considered to be a major infectious source in a herd. However, a correlation between viral loads and the risk of infection has been insufficient to use as a foundation for BLV control strategies. In this report, we examined the epidemiology of BLV infection and the infectious source in a local area. In 2013–2014, BLV infection was investigated in 1,823 cattle from 117 farms in two adjacent districts, Miyazaki, Japan. Seropositive samples for BLV were detected with 88 cattle and in 14 farms. Phylogenetic analysis revealed that 94% of the isolates clustered into genotype I and the remaining isolate into genotype III. Among genotype I, genetically distinct strains were spread at each farm, and cattle infected with less than 3 copies/100 cells did not transmit BLV to other cattle for more than thirty months. This is the first report of concrete data of viral load in relation to viral horizontal transmission under the field condition. The data facilitate farmers and veterinarians understanding the status of BLV infected cattle. This research contributes to BLV infection control and the development of effective BLV eradication programs.  相似文献   

6.
7.
Twenty-seven cattle with lymphoma and 46 cows from a known bovine leukemia virus (BLV)-infected herd were tested for anti-BLV antibody by the agar gel immunodiffusion (AGID) test and an enzyme-linked immunosorbent assay (ELISA). The polymerase chain reaction (PCR) and Southern hybridization were used to detect BLV provirus in the tumor DNA of the 27 cattle with lymphoma. The PCR was used to detect BLV provirus in the peripheral blood mononuclear cell DNA of the 46 normal known-exposed cattle. Two presumed false negative AGID test results compared to ELISA were found. Of ten cattle three years of age or less with "sporadic" forms of lymphoma, four had BLV provirus in tumor DNA, detectable by PCR. In two of these four, BLV provirus was clonally integrated based on digestion of tumor DNA with restriction enzymes followed by Southern hybridization. The BLV provirus was not detected by PCR in 5 of 17 cattle with "enzootic" lymphoma and two of these five were seronegative. Among normal BLV-exposed cows, 6.5% (3 of 46) were serologically positive and PCR negative; serologically negative and PCR positive cows occurred with the same frequency. Serological and PCR test results, when considered in all cattle (n = 73), had a concordance rate of 83.6%. Discordant test results occurred with approximately equal frequency between serologically positive and PCR negative (7 of 73, 9.6%) and serologically negative and PCR positive (5 of 73, 6.8%) groups. These data suggest that the role of BLV in some "sporadic" bovine lymphomas, previously unassociated with BLV, should be reexamined. The BLV provirus was not demonstrable in the tumor DNA from five adult cattle with lymphoma, suggesting that BLV may not be the etiological agent in all adult bovine lymphomas. The findings of persistently seronegative PCR positive and seropositive PCR negative cattle indicate that further work is needed to more fully understand the host-virus interaction. Present serological screening methods may not have sufficient sensitivity for determining BLV status in some circumstances.  相似文献   

8.
为研究山东省鸡传染性支气管炎病毒(IBV)的遗传变异规律,本研究2006年~2010年从山东省发病的商品鸡中分离鉴定了17株IBV,并对其S1基因、N基因和M基因分别进行RT-PCR扩增、测序及遗传进化分析.序列分析结果表明:与疫苗株H120相比,17个分离株S1蛋白的变异程度较大,存在广泛的基因突变和氨基酸替代,多数病毒株还存在氨基酸的插入;N蛋白无碱基的缺失和插入,仅存在核苷酸的突变和氨基酸的替代;M蛋白除病毒株CK/CH/SD09/005插入3个碱基外,其它16个分离株仅存在少数的碱基突变和氨基酸替代.S1基因、N基因和M基因的系统进化分析结果表明多数分离株的3个基因在进化上相对平行,与国内分离株LX4同属一个进化分支,同源性较高;分离株SDYT0605的3个基因与疫苗株H120同源性较高,可能是免疫压力下变异的疫苗株;分离株SDTA06111、SDWF0608和CK/CH/SD09/005的S1基因、N基因和M基因分属于不同的进化分支,可能发生了基因重组.本研究结果显示基因突变、插入和不同基因之间的重组是免疫压力下IBV变异的主要方式.  相似文献   

9.
Bovine Leukaemia Virus (BLV) infection in New Zealand cattle was investigated. In a national survey of 5000 sera from 500 herds, BLV antibody was not detected. An additional 1062 sera from 140 herds were tested and 3 sera were positive. In the herd of origin of one of these 3 sera, 22.6% of cattle were serologically positive for BLV. Where cases of bovine lymphosarcoma had been diagnosed, 38 of 39 herds tested were negative for BLV antibody. Within the remaining herd, 36% of cows tested were serologically-positive. BLV was isolated from 2 serologically positive cows in this herd.  相似文献   

10.
The surface glycoprotein G is considered as the major neutralizing and protective antigen of bovine ephemeral fever virus (BEFV). Comparison of the deduced amino acid sequence of G protein of BEFV isolates during the period 1984-2004 outbreaks in Taiwan showed amino acid substitutions in the neutralizing epitopes. All the isolates differ markedly in the neutralizing epitope at the same amino acid positions compared to the currently available killed vaccine strain (Tn73). Tn88128 strain isolated in 1999 showed the maximum variability of 12 amino acids, 5 amino acid in the neutralization epitope and 7 apart from, respectively. Combinations of both Tn88128 (1999) and commercially available vaccine strain (Tn73) were developed and its safety was evaluated in mice, guinea pigs, calves, and pregnant cows. None of the animals showed any adverse effect or clinical signs. Calves were immunized with commercial vaccine (Tn73) and, combined vaccine (Tn73 and Tn88128), respectively, with adjuvants such as Al-gel and water-in-oil-in-water (w/o/w) oil and PBS alone and challenged with Tn88128 strains. Except PBS administered animals, all the vaccinated animals showed protective immune response. However, animals immunized with combined vaccine plus w/o/w adjuvant elicited stronger neutralization antibodies and long lasting immunity compared to other vaccines.  相似文献   

11.
Programmed death-1 (PD-1) is a known immunoinhibitory receptor that contributes to immune evasion of various tumor cells and pathogens causing chronic infection, such as bovine leukemia virus (BLV) infection. First, in this study, to establish a method for the expression and functional analysis of bovine PD-1, hybridomas producing monoclonal antibodies (mAb) specific for bovine PD-1 were established. Treatment with these anti-PD-1 mAb enhanced interferon-gamma (IFN-γ) production of bovine peripheral blood mononuclear cells (PBMC). Next, to examine whether PD-1 blockade by anti-PD-1 mAb could upregulate the immune reaction during chronic infection, the expression and functional analysis of PD-1 in PBMC isolated from BLV-infected cattle with or without lymphoma were performed using anti-PD-1 mAb. The frequencies of both PD-1+ CD4+ T cells in blood and lymph node and PD-1+ CD8+ T cells in lymph node were higher in BLV-infected cattle with lymphoma than those without lymphoma or control uninfected cattle. PD-1 blockade enhanced IFN-γ production and proliferation and reduced BLV-gp51 expression and B-cell activation in PBMC from BLV-infected cattle in response to BLV-gp51 peptide mixture. These data show that anti-bovine PD-1 mAb could provide a new therapy to control BLV infection via upregulation of immune response.  相似文献   

12.
13.
Six cattle persistently infected with bovine virus diarrhoea virus (BVDV) and seronegative, and two control, virus negative seropositive cattle were inoculated with lymphocytes infected with bovine leukosis virus (BLV). The two controls produced a normal immune response to BLV, developing antibodies at four and five weeks after inoculation. Two of the six cattle persistently infected with BVDV developed a strong antibody response by six weeks after inoculation with BLV. Four developed a depressed response to BLV, characterised in three by a 'hooking' reaction in the immunodiffusion test which persisted in successive bleedings but was interspersed occasionally by a weak positive reaction. In one of these animals, a series of 'hooking' reactions was followed by a number of negative results. The fourth animal remained serologically negative until 16 weeks after inoculation when a 'hooking' reaction was observed followed by a series of negative results. BLV was isolated from all the cattle persistently infected with BVDV at 42 or 58 weeks after inoculation regardless of whether the serum samples gave negative, 'hooking', weak positive or positive reactions in the immunodiffusion test. BLV was consistently isolated from the nasal secretions of a steer which was BVDV negative but seropositive. The possibility of decreased immune responsiveness to BLV in animals persistently infected with BVDV should be considered when formulating regulations governing the testing of animals for freedom from BLV.  相似文献   

14.
To acquire epidemiological data on the bovine viral diarrhea virus (BVDV) and identify cattle persistently infected (PI) with this virus, 4,327 samples from Holstein dairy cows were screened over a four-year period in Beijing, China. Eighteen BVD viruses were isolated, 12 from PI cattle. Based on genetic analysis of their 5''-untranslated region (5''-UTR), the 18 isolates were assigned to subgenotype BVDV-1m, 1a, 1d, 1q, and 1b. To investigate the innate immune responses in the peripheral-blood mononuclear cells of PI cattle, the expression of Toll-like receptors (TLRs), RIG-I-like receptors, interferon-α (IFN-α), IFN-β, myxovirus (influenza virus) resistance 1 (MX1), and interferon stimulatory gene 15 (ISG15) was assessed by qPCR. When compared with healthy cattle, the expression of TLR-7, IFN-α, and IFN-β mRNA was downregulated, but the expression of MX1 and ISG-15 mRNA was upregulated in PI cattle. Immunoblotting analysis revealed that the expression of interferon regulatory factor 3 (IRF-3) and IRF-7 was lower in PI cattle than in healthy cattle. Thus, BVDV-1m and 1a are the predominant subgenotypes in the Beijing region, and the strains are highly divergent. Our findings also suggest that the TLR-7/IRF-7 signaling pathway plays a role in evasion of host restriction by BVDV.  相似文献   

15.
With the aim of achieve a better understanding of the epidemiology and distribution of bovine leukaemia virus (BLV) infection in Chile, we assessed the suitability of using DNA isolated from the leukocyte fraction of bulk milk samples to carry out PCR-RFLP and DNA sequence analysis. The env fragment of BLV was successfully amplified from 33 serologically positive bulk milk samples collected from different geographical areas in the south of Chile. Restriction analysis allowed to classify 17 isolates within the Australian subgroup and 16 within the Belgium subgroup. DNA sequence and multiple alignment analysis of eight Chilean isolates showed a significantly higher frequency of single and double nucleotide substitutions. Most of these mutations were non-silent, resulting in changes at the protein level in several important epitopes of gp51. The Chilean sequences and 59 BLV env sequences available at GenBank, were subjected to a phylogenetic analysis, resulting in four different clusters. The groups identified were not related to those previously defined by restriction analysis. Chilean isolates were included in two different clusters and were genetically not related to isolates collected from neighbouring countries. Considering our results we can conclude: (i) bulk milk samples are suitable to identify the presence of BLV allowing epidemiological and genetic studies to be conducted on large geographical areas; (ii) at least four different genetic groups of BLV were identified by phylogenetic analysis, with Chilean isolates included in two different sub clusters.  相似文献   

16.
We report herein on the first evidence for the presence of bovine immunodeficiency virus (BIV) in Zambia. Serological surveillance of BIV and bovine leukemia virus (BLV) was conducted in traditional cattle herds in Zambia. Out of a total of 262 sera analyzed, 11.4% were found positive for anti-BIV p26 antibodies as determined by Western blot analysis, while 5.0% were positive for anti-BLV gp51 antibodies as detected by immunodiffusion test. Peripheral blood mononuclear cells from BIV seropositive cattle were found to have BIV-provirus DNA, as detected by nested polymerase chain reaction. A nucleotide sequence corresponding to a 298 bp fragment of the BIV pol gene was also analyzed. Amino acid sequences of these Zambian pol gene products showed 98.0 to 100% homology to the American strain BIV R29, 97.0 to 99.0% to Japanese BIV isolates, and divergence ranged from 0.0 to 2.0% among Zambian BIV isolates.  相似文献   

17.
The detection of bovine foamy virus (BFV) in Vietnamese cattle was performed using conventional PCR targeting pol and gag genes. Out of 243 tested samples, ten (4.1%) and eight (3.3%) samples were positive for BFV gag and pol DNA, respectively. The prevalence of bovine leukemia virus (BLV) estimated by detection of proviral DNA using nested PCR targeting env gene was 26.7% (65/243). The results of nucleotide sequence alignment and the phylogenetic analysis suggested that Vietnamese BFV strains showed high homology to isolates belonging to either European or non-European clades. There was no significant correlation between BLV and BFV. This study provides information regarding BFV infection and confirms the existence of two BFV clades among Vietnamese cattle for the first time.  相似文献   

18.
ABSTRACT: The immunoinhibitory receptor T cell immunoglobulin domain and mucin domain-3 (Tim-3) and its ligand, galectin-9 (Gal-9), are involved in the immune evasion mechanisms for several pathogens causing chronic infections. However, there is no report concerning the role of Tim-3 in diseases of domestic animals. In this study, cDNA encoding for bovine Tim-3 and Gal-9 were cloned and sequenced, and their expression and role in immune reactivation were analyzed in bovine leukemia virus (BLV)-infected cattle. Predicted amino acid sequences of Tim-3 and Gal-9 shared high homologies with human and mouse homologues. Functional domains, including tyrosine kinase phosphorylation motif in the intracellular domain of Tim-3 were highly conserved among cattle and other species. Quantitative real-time PCR analysis showed that bovine Tim-3 mRNA is mainly expressed in T cells such as CD4+ and CD8+ cells, while Gal-9 mRNA is mainly expressed in monocyte and T cells. Tim-3 mRNA expression in CD4+ and CD8+ cells was upregulated during disease progression of BLV infection. Interestingly, expression levels for Tim-3 and Gal-9 correlated positively with viral load in infected cattle. Furthermore, Tim-3 expression level closely correlated with up-regulation of IL-10 in infected cattle. The expression of IFN-γ and IL-2 mRNA was upregulated when PBMC from BLV-infected cattle were cultured with Cos-7 cells expressing Tim-3 to inhibit the Tim-3/Gal-9 pathway. Moreover, combined blockade of the Tim-3/Gal-9 and PD-1/PD-L1 pathways significantly promoted IFN-γ mRNA expression compared with blockade of the PD-1/PD-L1 pathway alone. These results suggest that Tim-3 is involved in the suppression of T cell function during BLV infection.  相似文献   

19.
Bovine foamy virus (BFV) is distributed through worldwide cattle herds. Although the biological features of BFV are not well understood, appearance of clinical manifestation by superinfection with other microorganisms is inferred. In Japan, reports of genomic characterizations and epidemiology of this virus are limited. In this study, we performed whole genomic sequencing of BFV strains Ibaraki and No.43, which were isolated in this country. Additionally, we investigated BFV in geographically distant four daily farms in Japan, to estimate the distribution of BFV and its correlation to bovine leukemia virus (BLV). BFV was distributed throughout Japan; the average positive rate was 12.7%. The nucleotide sequence identities of the isolates were 99.6% when compared with BFV strain isolated in the USA. The phylogenetic tree using env gene sequence showed strains Ibaraki, No.43 and Kagoshima were sorted in the same cluster including the USA and Chinese strains, while Hokkaido strain was in the other cluster including European strains. Although no clear correlation between BFV and BLV could be found, BFV and BLV infections were likely to increase with ages. Our data on epidemiology and characteristics of BFV will provide important information to reveal biological features of BFV.  相似文献   

20.
Bovine respiratory syncytial virus (BRSV) is an etiologic agent of bovine respiratory disease. The rapid evolutionary rate of BRSV contributes to genetic and antigenic heterogeneity of field strains and causes occasional vaccine failure. We conducted molecular epidemiologic characterization of BRSV circulating in Japan to obtain genetic information for vaccine-based disease control. Phylogenetic analysis of G and F gene sequences revealed that all of the isolated Japanese BRSV strains clustered in the same genetic subgroup, which was distinct from the 9 known groups. We assigned the Japanese group to subgenotype X. The Japanese isolates formed 2 temporal clusters: isolates from 2003 to 2005 clustered in lineage A; isolates from 2017 to 2019 formed lineage B. The alignment of the deduced amino acid sequences of the G gene revealed that the central hydrophobic region responsible for viral antigenicity is conserved in all of the isolates; unique amino acid mutations were found mainly in mucin-like regions. Our results suggest that BRSV has evolved uniquely in Japan to form the new subgenotype X; the antigenic homogeneity of the viruses within this group is inferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号