首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmopara halstedii, cause of downy mildew of sunflower, is a pathogen of worldwide economic importance. Efforts to amplify the ITS-region from this organism revealed an unexpected fragment length of about 2600 bp, in contrast to about 900 bp, reported for other members of the Peronosporaceae. First attempts to obtain the complete sequence of the P. halstedii fragment were unsuccessful, due to repeated elements in ITS, which were uncovered later on. The presence of a single EcoRI-site allowed us to apply a restriction-ligation procedure to amplify parts of the ITS fragment separately. Sequencing of these fragments revealed the presence of four copies of a tandemly arranged repetitive element in the ITS-2 region. The complete sequence was obtained by using a sequencing primer which annealed shortly before the repetitions so covering the gap in the sequence around the restriction site. The ITS sequence in P. halstedii (AY773346) consisted of 2587 bp in total, with ITS-2 accounting for 2212 bp alone. This is the longest ITS-2 sequence reported so far for any examined species.  相似文献   

2.
The relation between diversity of pathogenicity on clubroot-resistant (CR) cultivars of Chinese cabbage (Brassica rapa subsp. pekinensis) bred in Japan and DNA polymorphisms in 17 populations of Plasmodiophora brassicae from cruciferous plants was examined by inoculation tests and random amplified polymorphic DNA (RAPD) analysis using 18 arbitrary primers. Four pathotypes (A–D) were identified after inoculation of six CR cultivars of Chinese cabbage in the 17 populations from cruciferous crops. A relatively high level of genetic diversity was also detected among these populations in the RAPD analysis. Although the four pathotypes could not be clearly differentiated using the RAPD data, most populations of three pathotypes had a consistent location on the dendrogram. All pathotype B (virulent on five cultivars except Utage 70) and D (avirulent on all cultivars) populations, which were common in incompatible interactions with cv. Utage 70, were located in a single subcluster. All five pathotype C populations (virulent only on cv. Utage 70) except for one population grouped in another single subcluster. Because four pathotype A populations (virulent on all six cultivars, races 4 and 9) fell in different subclusters, the populations may be genetically polyphyletic. Populations from cruciferous weed Cardamine flexuosa differed remarkably from those from cruciferous crops in pathogenicity on common cultivars of Chinese cabbage and turnip and C. flexuosa, but they grouped in a single cluster with all race 9 populations from crops. Race 9 populations from crops may thus be closely related to populations from the weed rather than to races 1 and 4 from crops.  相似文献   

3.
为了解华南稻区水稻白叶枯病菌的致病性分化和变异动态,采集华南地区水稻白叶枯病病叶标样分离病原菌,应用中国鉴别寄主IR26、南粳15、爪哇14、特特普、金刚30和国际水稻已知抗病基因的近等基因系IRBB5、IRBB13、IRBB3、IRBB14、IRBB2、IR24两套鉴别寄主,在水稻孕穗期采用剪叶法接种,依据寄主和菌株的互作反应检测病菌的致病性分化。结果显示,参试菌株可划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅸ六个致病型和R1、R2、R3、R4、R5、R8、R10七个致病小种。Ⅴ、Ⅳ致病型和R8、R5小种出现频率分别为27.40%、19.30%和44.67%、15.34%,为华南稻区优势种群。Ⅸ、Ⅴ、Ⅳ致病型和R8、R5小种对500份华南稻区品种资源的致病率依次为96.40%、95.00%、50.40%、62.00%和42.60%;Ⅸ致病型毒性最强且发展很快;强致病菌系Ⅴ型已替代Ⅳ型发展为华南优势致病菌系。  相似文献   

4.
5.
四川省根肿菌的分布和生理小种及品种抗性评估   总被引:2,自引:0,他引:2  
为探究四川省根肿菌Plasmodiophora brassicae分布、生理小种及品种抗性,于2014-2016年向各县(区、市)植保站问卷调研了解四川省根肿病分布,并利用Williams体系对采自四川省不同病田的22个根肿菌样进行生理小种鉴定,利用其中18个对9个普通十字花科作物品种进行室内抗性评估。结果表明,根肿病分布于四川省19市(州)89个县(区、市),占总调查数的50%。按照极高、高、中等、低、极低、无分布6个根肿病分布密度等级依次划分为23、7、11、16、32和0个县(区、市),其中11个县(区、市)根肿病病史较长,大部分根肿病极高和高密度分布以及长病史县(区、市)都在地理位置上相对集中。22个根肿菌样共鉴定出2、4、7和11号4个生理小种,其中4号为优势生理小种,占77%。四川省表现出明显生理小种地域分布差异。抗性评估发现供试品种对绝大多数供试菌都表现感病,且73%的供试组合病情指数在75以上。  相似文献   

6.
Plasmopara halstedii was isolated from diseased sunflowers collected from eight locations in the Czech Republic from 2007 to 2014. Races of the pathogen were determined based on 84 isolates collected during the study. In total, eight races of P. halstedii were detected using a set of nine sunflower differential lines. Races 700, 704, 705, 710, 714 and 715 were proven by soil drench inoculation, and two additional races (730 and 770) proposed by the previously applied leaf disc inoculation method. Race 700 was the most dominant in the Czech P. halstedii populations, with race 710 being the second most frequent. Races 704 and 714 were found over three seasons, while other races were recorded only in one growing season (race 730 in 2010, and the new races 705 and 715 in 2014). A comprehensive study was further conducted for isolates collected in 2013–14 using an extended differential set consisting of 15 sunflower lines. According to the latter methodology which marks races with five‐digit virulence codes, races 70060, 70471, 70571, 71060, 71461 and 71571 were recorded. The growing complexity of P. halstedii pathogenicity exhibited by the ability to infect higher numbers of differential genotypes and resulting in determination of the new pathogen races (virulence profiles) 70571, 71461 and 71571 is alarming. Although the limited number of isolates studied cannot characterize the entire pathogen diversity in the Czech Republic, the trend towards more diverse virulence in P. halstedii populations is clearly demonstrated by the new records of races 704, 705, 714 and 715, all capable of overcoming the resistance gene Pl6.  相似文献   

7.
Wheat brown rust pathotype (pt) 104-2,3,(6),(7), 11 was first detected in Australasia in Victoria during 1984. Although it appeared similar to a pre-existing pathotype, 104-2,3,6,(7), detailed greenhouse test revealed nine pathogenic differences between the two rusts. Six differences involved contrasting virulence/avirulence for the resistance genes/specificitiesLr12, Lr27+Lr31 andLr16, and three uncharacterised genes, present in the wheat cultivars Gaza and Harrier, and in triticale cultivar Lasko. Differences in partial virulence between the pathotypes were found for the genesLr2a, Lr13 andLr26. A comparison of the phenotypes for 13 isozyme systems in the two pathotypes revealed two differences, including aPgm2 allele in pt 104-2,3,(6),(7),11 not found in other contemporary AustralasianPuccinia recondita f. sp.tritici pathotypes. On the basis of these differences, it was concluded that pt 104-2,3,(6),(7),11 was introduced into the Australasian region before or during 1984.Seven variants of pt 104-2,3,(6),(7),11, that differed by single virulences, were detected during 1984–1992. Pt 104-2,3,(6),(7),11 and a derivative pathotype with virulence forLr20 underwent rapid increases in frequency, largely displacing pathotypes which predominated before 1984. Although first detected in eastern Australia, both pathotypes spread to New Zealand, and the derivative pathotype appeared in Western Australia. The rapid spread and increase of these pathotypes could not be explained by host selection. Pt 104-2,3,(6),(7),11 and derivatives may therefore be more aggressive than other contemporary Australasian pathotypes.Abbreviations NSW New South Wales - Prt Puccinia recondita f. sp.tritici - Qld Queensland - SA South Australia - WA Western Australia  相似文献   

8.
Severe Verticillium wilt of cotton in southern Spain is associated with the spread of a highly virulent, defoliating (D) pathotype of Verticillium dahliae. Eleven of the D and 15 of a mildly virulent, nondefoliating (ND) pathotype were analyzed by random amplified polymorphic DNA (RAPD) using the polymerase chain reaction (PCR). Six of 21 primers tested generated pathotype-associated RAPD bands. Another 21 V. dahliae isolates were compared in blind trials both by RAPD-PCR using the six selected primers and pathogenicity tests on cotton cultivars. There was a 100% correlation between pathotype characterization by each method. Unweighted paired group method with arithmetic averages cluster analysis was used to divide the 47 V. dahliae isolates into two clusters that correlated with the D or ND pathotypes. There was more diversity among ND isolates than among D isolates, these latter isolates being almost identical. ND- and D-associated RAPD bands of 2.0 and 1.0kb, respectively, were cloned, sequenced, and used to design specific primers for the D and ND pathotypes. These pathotype-associated RAPD bands were present only in the genome of the pathotype from which they were amplified, as shown by Southern hybridization. The specific primers amplified only one DNA band of the expected size, and in the correct pathotype, when used for PCR with high annealing temperature. These specific primers successfully characterized V. dahliae cotton isolates from China and California as to D or ND pathotypes, thus demonstrating the validity and wide applicability of the results.  相似文献   

9.
Five pathotypes belonging to formae speciales larici-epitea typica (LET), larici-retusae (LR) and larici-daphnoides (LD) of Melampsora larici-epitea were examined using amplified fragment length polymorphism (AFLP). Of 213 AFLP markers scored, several were found to be exclusive to different formae speciales. The dendrogram placed the five pathotypes into distinct groups. Within pathotypes, average Nei & Li's similarity coefficients were calculated as 0.71–0.85. The similarities were 0.66–0.72 among the three pathotypes within LET and 0.34–0.44 between pathotypes belonging to different formae speciales. When assessed using the Shannon index, the diversity within locations was estimated as 0.55–0.59, greater than that found within pathotypes (0.24–0.42). The average per-locus diversity was 0.37 among the pathotypes and 0.11 among the locations. When the data from both LET and LR isolates were examined using AMOVA, the majority of the variation (70.85%) was attributed to among pathotypes within location. When only LET types were included, approximately half of the variation was partitioned to among pathotypes within location and the other half to among the isolates within collection. It appears that the degree of differentiation of LET4 on S. × mollissima between Loughgall and Long Ashton sites has decreased markedly since 1992, when it was first detected.  相似文献   

10.
Molecular diagnostic techniques have been developed to differentiate the Ascochyta pathogens that infect cool season food and feed legumes, as well as to improve the sensitivity of detecting latent infection in plant tissues. A seed sampling technique was developed to detect a 1% level of infection by Ascochyta rabiei in commercial chickpea seed. The Ascochyta pathogens were shown to be genetically diverse in countries where the pathogen and host have coexisted for a long time. However, where the pathogen was recently introduced, such as A. rabiei to Australia, the level of diversity remained relatively low, even as the pathogen spread to all chickpea-growing areas. Pathogenic variability of A. rabiei and Ascochyta pinodes pathogens in chickpea and field pea respectively, appears to be quantitative, where measures of disease severity were based on aggressiveness (quantitative level of infection) rather than on true qualitative virulence. In contrast, qualitative differences in pathogenicity in lentil and faba bean genotypes indicated the existence of pathotypes of Ascochyta lentis and Ascochyta fabae. Therefore, reports of pathotype discrimination based on quantitative differences in pathogenicity in a set of specific genotypes is questionable for several of the ascochyta-legume pathosystems such as A. rabiei and A. pinodes. This is not surprising since host resistance to these pathogens has been reported to be mainly quantitative, making it difficult for the pathogen to overcome specific resistance genes and form pathotypes. For robust pathogenicity assessment, there needs to be consistency in selection of differential host genotypes, screening conditions and disease evaluation techniques for each of the Ascochyta sp. in legume-growing countries throughout the world. Nevertheless, knowledge of pathotype diversity and aggressiveness within populations is important in the selection of resistant genotypes.  相似文献   

11.
为掌握新疆主要植棉区棉花黄萎病的发生现状及其病原菌大丽轮枝菌Verticillium dahliae的落叶型菌系分布以及遗传变异情况,于2015年对26个新疆主要植棉区棉花黄萎病的发生情况进行了随机调查,统计新疆大丽轮枝菌的培养性状,利用大丽轮枝菌落叶型特异引物D1/D2、INTD2F/INTD2R与非落叶型特异性引物ND1/ND2、INTNDF/INTNDR对新疆大丽轮枝菌菌系进行互补鉴定,并对部分菌系的遗传变异进行简单序列重复区间(inter simple sequence repeat,ISSR)分析。结果表明:2015年新疆棉花黄萎病发病田比例为54.0%,其中病情指数在10.0以上的发病田与2013年持平,而病情指数在20.0以上的严重发病田比例为10.8%,比2013年增加3.8个百分点;新疆大丽轮枝菌的培养性状以菌核型为主,比例为70.1%,菌丝型与中间型比例分别为13.4%和16.5%;新疆大丽轮枝菌落叶型菌系比例为53.2%,26株菌株的来源地全部检出落叶型菌系;聚类分析结果显示,当遗传相似系数为0.66时,新疆大丽轮枝菌落叶型与非落叶型菌系聚为2个谱系,菌系地理来源、培养性状与大丽轮枝菌的遗传分化无明显相关性。  相似文献   

12.
Potato wart disease, caused by the chytridiomycete Synchytrium endobioticum, was first introduced into Europe in the late 19th century. It spread quickly, and today is reported in 15 European countries. Initially, only one pathotype was found, and the disease was efficiently controlled using resistant cultivars. In 1941, however, formerly resistant cultivars showed wart formation in the field simultaneously in Germany and South Bohemia (Czech Republic), indicating the occurrence of new pathotypes. New pathotypes have since been reported from Germany, The Netherlands, Czech Republic, Ukraine and Canada. Today the pathogen is present in The Netherlands (only in fields for ware and starch potatoes) but restricted to two demarcated areas and subject to official control. Outside these areas, the pathogen is absent. For pathotyping, different countries have used different sets of differential cultivars, and the usual system of numerical coding of pathotypes has not been consistently followed. In this review we propose a new standardised code to be used for the 43 pathotypes currently known and described in Europe. The code is a combination of a numerical and letter code, combining the two terminologies used by former West and East Germany, respectively. We also plead for harmonisation in the choice of differential cultivars used for pathotype identification. The set of differentials described in the international standard for diagnosis of S. endobioticum issued by the European and Mediterranean Plant Protection Organisation (EPPO), should serve as a basis. Through close collaboration of European countries dealing with new pathotypes of potato wart disease, a final agreed upon set of differentials, combined with a set of reference isolates, should ultimately be established, allowing a clear distinction between the most important pathotypes occurring in Europe.  相似文献   

13.
Pathotype frequencies in barley powdery mildew populations were assessed in artificially inoculated barley plots. The field experiment was organised in eighteen 3 m × 3 m plots with different inoculum compositions, obtained by sequential inoculation with three isolates, gl-1, gl-2 and gl-3, shortly after seedling emergence. In the conidia populations before summer, pathotypes corresponding to the inoculated isolates were detected at frequencies in the range 11–42% for GL1, 0–14% for GL2 and 2–34% for GL3. On the volunteers appearing after harvest these three pathotypes were observed at lower frequencies: 0–37% for GL1, 0–12% for GL2 and 0–23% for GL3. The overall ranking of GL1, GL2 and GL3 frequencies was thus the same before and after summer. The populations on volunteers were influenced by both sexual and asexual populations present in the same field at the end of the previous growing season. However, at the small-scale level no simple correlation was found between the frequencies in the conidia populations on volunteers and those in the airborne population, or the conidia populations on the crop before summer, or the calculated expected frequencies in populations of ascospores. During the summer survival, chance events may also have a large influence on pathotype frequencies leading to a high variation between repeated events of transition from the crop to the volunteers.  相似文献   

14.
Leaves of Xanthium strumarium infected with downy mildew were collected in the vicinity of a sunflower field in southern Hungary in 2003. Based on phenotypic characteristics of sporangiophores, sporangia and oospores as well as host preference the pathogen was classified as Plasmopara angustiterminalis. Additional phenotypic characters were investigated such as the size of sporangia, the number of zoospores per sporangium and the time-course of their release. Infection studies revealed infectivity of the P. angustiterminalis isolate to both X. strumarium and Helianthus annuus. Inoculation of the sunflower inbred line, HA-335 with resistance to all known P. halstedii pathotypes, resulted in profuse sporulation on cotyledons and formation of oospores in the bases of hypocotyls. Infections of sunflower differential lines often led to damping-off. Molecular genetic analysis using simple sequence repeat primers and nuclear rDNA sequences revealed clear differences to Plasmopara halstedii, the downy mildew pathogen of sunflower.  相似文献   

15.
Since 2006, verticillium wilt of olive induced by Verticillium dahliae has caused considerable economic losses in olive orchards in Tunisia. The genetic structure of V. dahliae isolates collected from different olive growing regions was investigated using virulence tests, vegetative compatibility grouping (VCG) and amplified fragment length polymorphism (AFLP) analyses. In total, 42 isolates of V. dahliae from diseased olive trees were tested. Cluster analysis and principal coordinate analysis revealed that geographic origin was the main factor determining the genetic structure of V. dahliae populations and both methods indicated a genetic separation between the central and coastal isolates. Isolates were divided into two major groups: the AFLP‐I group included all isolates from Sidi Bouzid, Kairouan, Kasserine and Sfax (centre of the country) and the AFLP‐II group included isolates from Monastir, Zaghouane, Sousse, Mahdia (coastal region), and two isolates from Sfax. Analysis of the molecular variance (amova ) indicated a significant level of genetic differentiation among (76%) and within (23%) the two populations. Analyses of both the defoliating (D) and non‐defoliating (ND) pathotypes and VCG markers indicated that most of the isolates belong to VCG 2A and 4B/ND pathotype. The disease severity was highly variable among the isolates tested (< 0·05) with no evidence of association between aggressiveness and geographical origin of the isolates. Overall, results of this study revealed a clear association between the genetic diversity of the isolates and their geographic origin, but not between genetic diversity and virulence patterns.  相似文献   

16.
Mating type genes of Verticillium dahliae, a wilt pathogen affecting many plant species, were identified to examine sexual recombination between Japanese pathotypes. We amplified a DNA sequence encoding high mobility group (HMG) box from V. dahliae using PCR. A cloned genomic DNA fragment included a sequence homologous to MAT1-2-1 gene. Despite that sequence's presence in all V. dahliae isolates we used, MAT1-1-1 (an opposite mating type gene) was never amplified. We concluded that V. dahliae is potentially heterothallic. Furthermore, sexual bias practically obviates sexual recombination between Japanese pathotypes. This report describes, for the first time, a mating type gene of phytopathogenic Verticillium.  相似文献   

17.
A short review of differentiation into pathotypes is given. Use of the word ≪ pathotype ≫ is recommended when a very clear difference is established between virulence of nematode populations. Our present knowledge makes it possible to differentiate between 10 pathotypes of Heterodera avenae. It is suggested that the pathotypes are given numbers, and corresponding terms should be used for genes for resistance in plants, e.g. a gene Hal on the barley chromosome gives resistance to nematode pathotypes 11,21,31,41 etc. Some proposals for improvement of pathotype identification are given.  相似文献   

18.
To estimate the genetic diversity in 30 isolates ofVerticillium lecanii from aphids, whiteflies, mite and black pine in Japan, including two commercialized strains (Mycotal and Vertalec), DNA polymorphisms in ribosomal DNA of those isolates were analyzed using polymerase chain reaction (PCR). The internal transcribed spacer (ITS) and intergenic spacer (IGS) regions of the nuclear ribosomal RNA gene of each isolate were analyzed by PCR-RFLP (restriction fragment length polymorphism). The size of the PCR product from the ITS region was ~ 580 bp in 27 of the isolates. A 600 bp ITS product was detected in Mycotal and Vertalec. One Japanese isolate produced both the 580 bp and 600 bp products. Enzymatic digestion of the ITS region with Sau3A I,Msp I,Hae III andRsa I revealed RFLPs that consisted of eight haplotypes. Mycotal and Vertalec were specific haplotypes that differed from other isolates. The Japanese isolates had a complex relationship with the original host, but we identified several specific haplotypes common to an aphid origin. Ten distinct IGS haplotypes were detected in the IGS region, some of which were associated with aphid and whitefly origins. These results suggest that the haplotype of rDNA RFLP analysis can be used for studying genetic diversity inV. lecanii.  相似文献   

19.
The chromosome number and electrophoretic karyotype of Japanese isolates of Verticillium dahliae were investigated. In a genomic Southern blot analysis of seven isolates probed with a telomere consensus sequence (TTAGGG)5, 12 or 14 bands were observed. Furthermore, pulsed-field gel electrophoresis (PFGE) of these isolates revealed five or six chromosomal bands. A band (approx. 3.5 Mbp) common to all isolates apparently contained more than two chromosomes. From these results, we concluded that each isolate’s chromosome number is six (an eggplant pathotype isolate) or seven (all isolates of tomato and sweet pepper pathotypes). Although the chromosome sizes differed among isolates, karyotypes were similar within tomato and sweet pepper pathotypes. A small chromosome (approx. 1.8 Mbp) was observed only in the sweet pepper pathotype. Subsequent PFGE-Southern hybridization analyses revealed that the three DNA fragments specific to tomato pathotype are located on the same chromosome. These results suggest that the tomato-pathotype-specific DNA sequences might coexist on one chromosome.  相似文献   

20.
Worldwide Puccinia striiformis f. sp. tritici (Pst) epidemics have been reported to be driven by few genetic lineages, while a high diversity is evident at the Pst Himalayan centre of diversity. This study investigated the relationship between pathotype diversity and genetic structure in Nepal, the eastern Himalayan region, which has been largely unexplored. Despite the high genetic diversity and recombinant structure detected through microsatellite genotyping, characterization of virulence phenotypes for 62 isolates identified only eight pathotypes, with two pathotypes predominant over all the populations. This is in contrast to the Pakistani and Chinese recombinant populations, where high pathotype diversity is associated with genetic diversity. The most prevalent Nepali pathotype was not a unique clonal lineage, but was represented by seven multilocus genotypes from four distinct genetic subgroups, suggesting strong directional selection on virulence genes, resulting in convergent pathotypes in distinct genetic groups. This convergent selection is discussed in comparison with clonal French and recombinant Pakistani populations. Additionally, the Nepali Pst population carried virulence to 17 out of 24 tested yellow rust resistance genes (Yr), with the absence of virulence to Victo and Early Premium and resistance genes Yr5, Yr10, Yr15, Yr24 and Yr26. Virulence to Yr2, Yr7, Yr27 and YrSu were fixed in all isolates, in line with the deployment of these resistance genes in Nepal. The results reflect the influence of resistance gene deployment on selection of virulence and pathotypes in a recombinant pathogen population, which must be considered in the context of durable resistance gene deployment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号