首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Properties of electroless copper-plated polyester fabric mainly depend on the plating bath constituents/conditions. The nickel serves to catalyze the copper deposition when hypophosphite is used as a reducing agent. In this study, the effects of deposition parameters including additive NiSO4 concentration and pH on microstructure and properties of the electroless copper plating on polyester fabric using hypophosphite as a reducing agent were investigated. The results show that at a higher NiSO4 concentration, the copper content present in the coating decreases whereas the nickel content increases slightly. On the other hand, the copper content present in the coating increases, whereas the nickel content and phosphorus decreases with respect to the rise of pH. The morphology of the copper deposits show that the particle size increase with respect to the rise of NiSO4 concentration and pH. The XRD patterns indicate that the copper-plated polyester fabrics are crystalline. In addition, there is a decrease in the surface resistance and an increase in the electromagnetic interference (EMI) shielding effectiveness (SE) with respect to the rise of Ni2+ concentration and pH of the solution as a result of gaining a greater weight in the deposits. The results suggest that the copper-plated polyester fabrics have a great potential application as an EMI shielding material.  相似文献   

2.
In this study, electroless Ni-Fe3O4 composite plating on polyester fabric modified with 3-aminopropyltrimethoxysilane (APTMS) was investigated under ultrasonic irradiation. Effects of deposit weight on microstructure and properties of Ni-Fe3O4 composite coating were studied. Surface morphology, chemical composition and state, crystal structure of the electroless Ni-Fe3O4 composite plated polyester fabric were characterized by SEM, EDX, XPS and XRD. Magnetic properties, electrical resistivity and electromagnetic interference (EMI) shielding effectiveness (SE) of Ni-Fe3O4 plated polyester fabric were also evaluated. The presence of co-deposition of Fe3O4 in Ni coating on the polyester fabric is demonstrated by an XPS analysis. At a higher deposit weight, there is an increase in particle size and saturation magnetization, and a decrease in electrical resistivity with respect to the rise of deposit weight, respectively. As the Ni-Fe3O4 weight on the treated fabric is 32.90 g/m2, the EMI SE of the Ni-Fe3O4 plated polyester fabric arrives 15–20 dB at frequencies that range from 8 to 18 GHz. The results indicate the Ni-Fe3O4 plated polyester fabrics are used as super-paramagnetic, conductive and EMI shielding materials.  相似文献   

3.
Electromagnetic shielding polyester fabrics were prepared using carboxymethyl chitosan-palladium (CMCS-Pd) complexes as activation solution, followed by electroless nickel plating. CMCS-Pd complexes were prepared by the complexing adsorption between CMCS and Pd2+. The effects of reaction time and pH value on the adsorption of Pd2+ by CMCS were discussed. The maximum adsorption capacity was calculated as 4.27 mmol/g. CMCS-Pd complexes were characterized by ultraviolet (UV) spectrophotometer and Fourier transform-infrared (FTIR) spectroscopy. The induction time of electroless plating decreased gradually with the increase of Pd2+ concentration. The lowest surface resistance 125 mΩ/sq of the treated polyester fabric was obtained when Pd2+ concentration in CMCS-Pd complex was 1.5 g/l. The prepared polyester fabrics had excellent electromagnetic shielding effectiveness (SE) of 40–60 dB. The treated polyester fabrics were also characterized by scanning electron microscopy (SEM). Results showed that CMCS-Pd was effective to form an active catalyzed layer on polyester substrate and the 1.5 g/l Pd2+ was sufficient to initiate electroless nickel plating reaction. The CMCS-Pd complex activation and electroless nickel plating treatment caused small changes in the polyester fabrics’ tensile strength and air permeability.  相似文献   

4.
Co-Ni-P coatings were prepared on ramie fabric by electroless plating with addition of rare earth (RE: Ce, Pr, and Nd). The proposed ultra-low-cost and easy-operated electroless plating method involved successive steps, namely, alkali mercerization, malic acid modification, Co nanoparticles activation, and Co-Ni-P deposition. FT-IR and XPS measurements were utilized to verify the functions of modification and activation procedures. Refined effects of Ce, Pr, and Nd on the structures and morphologies of resulting Co-Ni-P coatings were demonstrated by XRD and FE-SEM measurements. Moreover, by adding tiny dose of RE into the one-pot plating solution, electroless deposition rates were substantially accelerated in all cases. With regard to the resulting fabric-based Co-Ni-P coatings obtained in the presence of RE, not only mechanical durability but also chemical stability were improved. All Co-Ni-P coated fabrics displayed admirable electromagnetic properties and high electromagnetic interference (EMI) shielding effectiveness (SE). Owing to the benefits from RE, EMI SE values of Co-Ni-P shielding fabrics were enhanced with increment of 3-11 dB ranging from 30 to 6000 MHz. Significantly, Co-Ni-P-Nd coated fabric with uniform surface morphology and outstanding corrosion resistance possessed the highest EMI SE of 42.27-66.76 dB.  相似文献   

5.
The electroless nickel-phosphorous (Ni-P) plating on polyester fiber using sodium hypophosphite as a reducing agent in alkaline medium was studied. The effects of plating parameters including concentrations, pH and bath temperature of the plating bath on deposition rate of the electroless Ni-P plating were investigated. The results reveal that the deposition rates increase with the increase in the concentration of nickel sulfate, sodium hypophosphite, pH and bath temperature, respectively. However, it is determined that the deposition rates decrease with the rise of sodium citrate. The kinetics of the deposition reaction was investigated and an empirical rate equation for electroless Ni-P plating on polyester fiber was developed.  相似文献   

6.
In this paper, electroless silver plating process for polyester was reported. The electroless silver plating is basically divided into four stages including pre-cleaning, sensitisation, electroless silver deposition and post-treatment. As the electroless silver plating stage is the key stage in affecting the brilliant appearance and various functional properties such as conductivity and ultra-violet protection, we will study the effect of process variables, i.e. amount of silver nitrate (AgNO3), concentration of ammonium hydroxide (NH4OH), concentration of sodium hydroxide (NaOH) and process temperature, using increased amount of silver in fabric surface as an indicator, for optimising the electroless silver plating process for possible industrial application. Experimental results revealed that amount of silver nitrate (AgNO3)=1.77×10?3 mole; concentration of ammonium hydroxide (NH4OH)=6.25 %; concentration of sodium hydroxide (NaOH)=0.008 g/ml and process temperature=25 °C can give the best electroless silver plating for polyester fabric. The surface characteristics of the electroless silver-plated polyester fabric were evaluated by scanning electron microscope, X-ray photoelectron spectroscopy and X-ray diffraction analysis. Meanwhile, the performance properties of the electroless silver-plated polyester fabric were measured by CIE L*, a* and b* values, conductivity as well as ultraviolet protection. The experimental results would be discussed thoroughly in this paper.  相似文献   

7.
Chemical plating is one of the metallising treatment processes for fibrous materials that can produce unique textile properties. It poses a great potential for textile products in application aspects including functional and decorative effects. This study has investigated the operation condition and resultant performance of using chemical silver plating on polyester fabric. The silver-plated polyester fabric exhibited a specific protective function and novel appearance if optimum chemical plating condition was chosen. Furthermore, the fabric design practice employed by this chemical technique with design approach had achieved the diverse effects.  相似文献   

8.
Electroless metal plated fabrics are favorable to be used as e-textiles due to the excellent conductivity and peculiar properties of textiles such as flexibility. But, the electrical durability is not enough to be used as e-textiles. Therefore, we applied polyurethane(PU)-sealing (single-sealing vs. double-sealing) onto the electroless metal plated polyester fabrics (Ripstop vs. Mesh) to reinforce the electrical durability. We investigated the changes of electrical properties of the PU-sealed metal plated fabrics after laundering by a multi-meter, examined the surface changes using scanning electron microscope, and checked the metal existence using energy dispersive X-ray spectroscopy. And, we finally proved the possibility of the fabric strips as transmission lines by alternating conventional earphone lines. PU double-sealing showed higher performance on Ripstop polyester fabrics even after being laundered 10 times, which was almost the same as Cu-based typical conductive lines did.  相似文献   

9.
Effect of polyester fabric through electroless Ni-P plating   总被引:1,自引:0,他引:1  
Process for electroless nickel-phosphorous (Ni-P) plating has been investigated as a metallizing treatment technology on polyester fabric. The microstructure and mechanical performance of Ni-P-plated polyester fabric are investigated in this study. Surface modifications of Ni-P-plated polyester fiber were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The changes in weight and thickness of the Ni-P-plated polyester fabric were determined through direct measurements. Systematic investigations, including bending rigidity, tearing strength, tensile strength, elongation at break, air permeability, wettability and absorbency, and anti-static property were conducted on untreated and metallized polyester fabrics. A thorough discussion and quantitative report were made on the specific performance of the Ni-P-plated polyester fabric.  相似文献   

10.
Herein, an intelligent cotton fabric was fabricated using a non-ionic surfactant based macro structured carbonaceous coating through the ‘knife-over-roll’ technique. The developed novel fabric was tested as flexible, mechanically robust with prolonged chemical/moisture resistance. Various characterization techniques were thoroughly used to analyze the fabric. The as-prepared fabric shows an outstanding electromagnetic interference (EMI) shielding efficiency (SE) of about 21.5 dB even at the lowest possible coating thickness (0.20 mm) where the highest EMI SE of 30.8 dB is obtained at only 0.30 mm coating thickness over the X-band frequency range (8.2-12.4 GHz), possibly due to the three-dimensionally interconnected network structure of conducting carbon particles. The micro-computed tomography disclosed the porous architecture and “void-filler” arrangement within the fabrics. For the betterment of serviceability and practicability of the coated fabric, the water tolerance and contact angle studies were conducted. The relatively high contact angle than pure cotton fabric, and excellent water resistance after coating ensure improved endurance for external or industrial uses. Therefore, this proof-of-construct manifests commercialization of the developed fabric for multipurpose applications in a facile, less-hazardous and economical way.  相似文献   

11.
Polypropylene fabrics were coated with copper particles using electroless plating, screen printing and wire arc spray coating techniques. Surface morphology of the fabrics was studied using optical and scanning electron microscopes (SEM). Furthermore, tensile strength, electrical conductivity, thermal conductivity, air permeability, water contact angle and fog collection efficiency of the coated fabrics were measured and the obtained results were analyzed. SEM micrographs showed that a very thin and uniform layer of copper deposited on the surface of the electroless plated polypropylene fibers. In the printed or spray coated fabrics the copper particles filled the spaces between yarns and fibers. The polypropylene electroless copper plated fabrics showed higher tensile strength, electrical conductivity, air permeability and thermal conductivity when compared with the fabrics coated with copper screen printed and copper spray coated fabrics. Finally, the obtained results showed that copper electroless plating could increase the fog collection efficiency of polypropylene fabrics considerably. As a conclusion, the surface modified copper electroless polypropylene fabrics are good candidates for fog collection in appropriate regions which need further investigations.  相似文献   

12.
Plasma gases of oxygen and argon were employed for pre-treating silk fabric before conducting electroless silver plating in this study. The effect of plasma pre-treatment with oxygen and argon gases on the electroless silver-plated silk fabric was investigated. Based on the observation of micro-structure using SEM, it was found that there was an increase in the amount of silver particles deposited on the silk fibre surface after plasma pre-treatment. The functional properties of plasmainduced electroless silver-plated silk fabrics were also evaluated. The increase in weight of the silver-plated silk after plasma pre-treatment was determined. When compared, the oxygen plasma treatment could improve the effect of silver plating on the silk fabric. Additionally, anti-static, anti-bacterial, UV protection and water-repellent properties of the silver-plated silk fabric were determined in this study.  相似文献   

13.
In this work, dopamine hydrochloride, an environmental friendly compound, was applied on polyester fabric through conventional simple impregnation method in alkaline solution (pH=8.5) at room temperature. In situ spontaneous oxidative polymerization of dopamine form polydopamine (PDA) along with aminolysis of polyester fabric surface. Also, a range of colored polyester fabric were successfully achieved by formation of polydopamine adhesive coating layer at different concentration of dopamine hydrochloride (0.001-4 g/l). Fourier transform infrared spectroscopy and field emission scanning electron microscopy showed deposition of polydopmaine on the polyester fabric surface. The modified colored polyester fabric showed reasonable durability against washing, rubbing and light. The treated polyester fabric with 2 g/l dopamine hydrochloride as optimum concentration indicated not only lower spreading time for water droplet and electrical resistance with higher tensile strength but also very good bactericidal activity against Staphylococcus aureus and Escherichia coli.  相似文献   

14.
A new application of conventional electroless nickel plating to improve the interfacial properties of PBO fibers was reported. The relationship between surface morphology and interfacial properties of nickel-plated PBO fiber was explored. The continuous nickel coating consisted of nickel and phosphorus elements determined by Energy dispersive spectrometer (EDS) and transmission electron microscope (TEM), exhibiting high adhesive durability. The influence of bath temperature and plating time on the crystal structure, microstructure and mechanical properties of nickel-plated PBO fibers was systematically investigated. X-ray diffractometer (XRD) results revealed that the crystal structure among nickel-plated PBO fibers did not show differences. Scanning electron microscope (SEM) and Atomic force microscope (AFM) images showed that the process parameters had a great influence on surface morphology and roughness of nickel-plated PBO fibers, which could directly affect the interfacial properties of nickel-plated PBO fibers. Single fiber pull-out testing results indicated that the interfacial shear strength (IFSS) of PBO fibers after electroless nickel plating had a significant improvement, which reached maximum at 85 °C for 20 min. Single fiber tensile strength of nickel-plated PBO fibers was slightly lower than that of untreated one. Thermo gravimetric analysis (TGA) indicated that nickel-plated PBO fiber had excellent thermal stability.  相似文献   

15.
Here, a novel method is introduced to create tunable properties on the polyester fabric through diverse chemical modifications. The polyester fabric was primarily modified with NaOH or ethylenediamine to enhance the surface activity. This will produce diverse chemical groups on the polyester fabric surface including carboxylate, hydroxyl and amine groups. The fabric was treated with grahene oxide through exhaustion method. The silver nitrate was then added and simultaneously reduced with grapheme oxide using ascorbic acid and ammonia to produce reduced graphen oxide/silver nanocomposites (rGO/Ag) on the fabric surface. The synthesized nanocomposites were characterized by TEM and Raman spectra. The presence and uniform distribution of the nanocomposites on the fabric surface was also confirmed by SEM images and EDX patterns. The electrical resistivity was varied on the raw and modified polyester fabric due to the diverse formation of the graphene nanosheets network on the fabric surface. More Ag particles were formed on the surface of the alkali hydrolyzed polyester whereas more graphene nanosheets deposited on the aminolyzed polyester fabric. Also the hydrolyzed polyester fabric exhibited higher antibacterial properties with the lowest silver nitrate in the processing solution. The aminolyzed fabric showed a lower electrical resistance than the hydrolyzed and raw fabrics with the same amount of GO in the procedure bath. The aminolyzed polyester fabric indicated higher affinity towards GO produced higher antibacterial properties before reduction and without silver nitrate however lower electrical resistance obtained after reduction comparing with other samples.  相似文献   

16.
This study surveys the basic procedure of data base system of the fabric structural design which can be linked with existing pattern design and garment design CAD systems. For this purpose, the theoretical and empirical equations related to the fabric structural design are analyzed and discussed with various fabric specimens. The fabric structural parameters such as weave density coefficient, cover factor and yarn density coefficient of various kinds of fabrics are calculated using the empirical equations. These calculated fabric structural parameters of many kinds of polyester and nylon fabrics are compared and discussed with weave pattern, and materials such as polyester and nylon. Furthermore the difference between fabric structural parameters calculated by empirical equations are analyzed with polyester and nylon fabrics as a basic study for data base system of the fabric structural design. Finally, the weave density coefficients of polyester and nylon fabrics were analysed and discussed with shrinkages of dyeing and finishing processes, and also surveyed according to the weaving company and weave structural parameters such as weave pattern and denier.  相似文献   

17.
In this paper, polyester fabric was modified through synthesis and fabrication of Cu/Cu2O nanoparticles using a facile and cost-effective method at boil by chemical reduction through exhaustion route. Triethanolamine (TEA) was used for aminolysis of polyester fabric and pH adjusting, copper sulfate (CuSO4) as metal salt, sodium hypophosphite (SHP) as reducing agent and polyvinylpyrrolidone (PVP) as stabilizer. A response surface methodology was also employed to optimize the reaction conditions and study the effects of SHP, PVP and TEA concentrations in the processing. The images of field-emission scanning electron microscopy (FESEM), the patterns of energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD) patterns confirmed successfully synthesis of Cu and Cu2O nanoparticles on the polyester fabric. Further, the thermal behavior of the untreated and treated fabrics was studied by using thermogravimetric analysis (TGA) and differential scanning colorimetry (DSC). The treated fabrics indicated good properties regarding wettability and flame-retardant along with high tensile strength.  相似文献   

18.
Electroless Ni-P alloy coating with an amorphous nickel phase were fabricated on polyvinyl chloride (PVC) plastic substrate using sodium hypophosphite as reducing agent. The present work aims to study influence of bath pH value on the deposition rate, phosphorus content, morphology, microstructure and the corresponding shielding property of the Ni-P alloy coatings on PVC plastic. The morphology, composition and microstructure of the Ni-P alloy coatings were also characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The results show that the deposition rate of the Ni-P alloy coatings increase, accompanying with the decrease of phosphorus content in the deposits with increasing bath pH value. Moreover, the morphology of the Ni-P alloy coatings strongly depend on the bath pH value, and the nodule size of the Ni-P alloy coatings increase with the increase of bath pH value. The measurements of electromagnetic interference shielding effectiveness (EMI SE) for the Ni-P alloy coatings indicate that the EMI SE of the Ni-P alloy coatings also increase with the increase of bath pH value because the low phosphorus content in the coating decrease the sheet electrical resistance of the Ni-P alloy coating.  相似文献   

19.
Kim  Sam Soo  Leem  Su Gyung  Ghim  Han Do  Kim  Joon Ho  Lyoo  Won Seok 《Fibers and Polymers》2003,4(4):204-209
The effect of padding solution on the microwave heat dyeing of polyester fabric was studied extensively. Polyester fabrics were impregnated in aqueous urea solution and aqueous sodium chloride solution for 10 min and then dyed for 7 min by microwave apparatus (2 450 MHz, 700 W) under optimum conditions which provide good exhaustion. Aqueous solutions of urea and sodium chloride showed more effective than water as a padding solution for microwave heat dyeing. The type of solvent added in padding media and its concentration significantly affects the K/S values of dyed polyester fabric. Added solvents such as n-hexane, acetone, and dimethyl formamide were also more effective than 100% water as padding media for the microwave heat dyeing. It is supposed that the effect of used solvents on dyeing property of polyester fabrics depends on the solubility parameter difference between solvent and polyester fabric.  相似文献   

20.
Electrospun web may possibly be widely applied to protective garments or specialty textiles due to its high level of protection as well as comfort. Of particular interest in this study is to develop waterproof-breathable fabric by applying electrospun web of polyurethane directly onto the substrate fabric. The optimal electrospinning condition was examined with regards to the concentration, applied voltage and tip-to-collector distance. Solvent-electospinning of polyurethane was performed at the optimum condition, using N,N-dimethylacetamide as solvent. The thickness of 0.02 mm of electrospun web was applied onto the polyester/nylon blended fabric. For comparison, the polyester/nylon fabrics were coated with 0.02 mm thickness of polyurethane resin membranes adopting four different conditions. The electrospun PU web/fabric was compared to resin coated fabrics in terms of water-proof and breathable properties. The electrospun web applied fabric showed higher air permeability, vapor transmission, and thermal insulation properties than resin coated fabrics, which can be translated as greater comfort sensation of electrospun applied fabrics. However, water resistance value of electrospun web applied fabric did not reach that of resin coated fabrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号