首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Two aqueous fixation methods (modified Davidson's solution and modified Davidson's solution with 2% (w/v) Alcian blue) were compared against two non‐aqueous fixation methods (methacarn solution and methacarn solution with 2% (w/v) Alcian blue) along with the standard buffered formalin fixation method to (a) improve preservation of the mucous coat on Atlantic salmon, Salmo salar L., gills and (b) to examine the interaction between the amoebae and mucus on the gill during an infection with amoebic gill disease. Aqueous fixatives demonstrated excellent cytological preservation but failed to deliver the preservation of the mucus when compared to the non‐aqueous‐based fixatives; qualitative and semi‐quantitative analysis revealed a greater preservation of the gill mucus using the non‐aqueous methacarn solution. A combination of this fixation method and an Alcian blue/Periodic acid–Schiff staining was tested in gills of Atlantic salmon infected with amoebic gill disease; lectin labelling was also used to confirm the mucus preservation in the methacarn‐fixed tissue. Amoebae were observed closely associated with the mucus demonstrating that the techniques employed for preservation of the mucous coat can indeed avoid the loss of potential mucus‐embedded parasites, thus providing a better understanding of the relationship between the mucus and parasite.  相似文献   

2.
Previous work in our laboratory defined a method of inducing laboratory‐based amoebic gill disease (AGD) in Atlantic salmon, Salmo salar L. Gills of AGD‐affected fish were scraped and the debris placed into fish‐holding systems, eliciting AGD in naïve Atlantic salmon. While this method is consistently successful in inducing AGD, variability in the kinetics and severity of infections has been observed. It is believed that the infections are influenced by inherently variable viability of post‐harvest amoeba trophozoites. Here, a new method of experimental induction of AGD is presented that redefines the infection model including the minimum infective dose. Amoebae were partially purified from the gills of AGD‐affected Atlantic salmon. Trophozoites were characterized by light microscopy and immunocytochemistry and designated Neoparamoeba sp., possibly Neoparamoeba pemaquidensis. Cells were placed into experimental infection systems ranging in concentration from 0 to 500 cells L?1. AGD was detected by gross and histological examination in fish held in all systems inoculated with amoebae. The number of gross and histological AGD lesions per gill was proportional to the inoculating concentration of amoebae indicating that the severity of disease is a function of amoeba density in the water column. The implications of these observations are discussed in the context of the existing AGD literature base as well as Atlantic salmon farming in south‐eastern Tasmania.  相似文献   

3.
4.
Amoebic gill disease (AGD) of Atlantic salmon is treated commercially by bathing affected fish in freshwater. Recently, the efficacy of freshwater bathing has been questioned, and the aim of this study was to examine the potential for improving bathing efficacy using additives to the freshwater bath. AGD‐affected Atlantic salmon were bathed in 350 L tanks containing oxygenated freshwater to which chlorine dioxide (0–50 mg L?1), chloramine‐T (0–50 mg L?1) or hydrogen peroxide (0–100 μL L?1) was added. Before and following a 3‐h exposure to the freshwater and chemical additive, the gills were removed from a sub‐sample of fish and the number of live amoebae on the gills were counted and smears made for confirmation of the presence of Neoparamoeba pemaquidensis, the causative agent of AGD. Following a further 3‐h exposure, a sub‐sample of fish was bled from the caudal vein and the gills were removed for histological examination. Chlorine dioxide and chloramine‐T at 25–50 and 10–50 mg L?1, respectively, reduced the number of amoebae on the gills by approximately 50% compared with pre‐exposure numbers. The results from hydrogen peroxide treatment were equivocal and the toxicity of hydrogen peroxide was high. The toxicity of chlorine dioxide varied with freshwater hardness and/or suspended solid load, whereas chloramine‐T toxicity was low, with mortalities attributable only to elevated temperatures at the highest concentration tested. In conclusion, chlorine dioxide and chloramine‐T show promise as potential freshwater additives for the improved removal of N. pemaquidensis and possibly, other amoebae from the gills of commercially farmed Atlantic salmon.  相似文献   

5.
A relationship between increasing water temperature and amoebic gill disease (AGD) prevalence in Atlantic salmon (Salmo salar) has been noted at fish farms in numerous countries. In Scotland (UK), temperatures above 12°C are considered to be an important risk factor for AGD outbreaks. Thus, the purpose of this study was to test for the presence of an association between temperature and variation in the severity of AGD in Atlantic salmon at 10 and 15°C. The results showed an association between temperature and variation in AGD severity in salmon from analysis of histopathology and Paramoeba perurans load, reflecting an earlier and stronger infection post‐amoebae exposure at the higher temperature. While no significant difference between the two temperature treatment groups was found in plasma cortisol levels, both glucose and lactate levels increased when gill pathology was evident at both temperatures. Expression analysis of immune‐ and stress‐related genes showed more modulation in gills than in head kidney, revealing an organ‐specific response and an interplay between temperature and infection. In conclusion, temperature may not only affect the host response, but perhaps also favour higher attachment/growth capacity of the amoebae as seen with the earlier and stronger P. perurans infection at 15°C.  相似文献   

6.
There is inconsistent evidence of resistance of Atlantic salmon, Salmo salar L., to amoebic gill disease (AGD). Here, evidence is presented that demonstrates that Atlantic salmon exposed and subsequently challenged with AGD are more resistant than naïve control fish. Seventy‐three per cent of Atlantic salmon previously exposed to AGD survived to day 35 post‐challenge compared with 26% exposed to Neoparamoeba sp. for the first time, yet the gill pathology of surviving naïve control or previously exposed fish was not significantly different. Development of resistance to AGD is associated with anti‐Neoparamoeba sp. antibodies that were detectable in serum of 50% of surviving Atlantic salmon previously exposed to AGD. However, anti‐Neoparamoeba sp. antibodies were not detectable in cutaneous mucus of resistant fish. Increased resistance of Atlantic salmon after secondary Neoparamoeba sp. infection and detection of specific serum antibodies provides support for the development of a vaccine for AGD.  相似文献   

7.
Amoebic gill disease (AGD) in farmed Atlantic salmon is caused by the amoeba Paramoeba perurans. The recent establishment of in vitro culture techniques for P. perurans has provided a valuable tool for studying the parasite in detail. In this study, flow cytometry was used to generate clonal cultures from single‐sorted amoeba, and these were used to successfully establish AGD in experimental Atlantic salmon. The clonal cultures displayed differences in virulence, based on gill scores. The P. perurans load on gills, determined by qPCR analysis, showed a positive relationship with gill score, and with clonal virulence, indicating that the ability of amoebae to proliferate and/or remain attached on gills may play a role in virulence. Gill scores based on gross signs and histopathological analysis were in agreement. No association between level of gill score and specific gill arch was observed. It was found that for fish with lower gill scores based on histopathological examination, gross examination and qPCR analysis of gills from the same fish were less successful in detecting lesions and amoebae, respectively.  相似文献   

8.
Atlantic salmon with amoebic gill disease (AGD) were treated with chloramine‐T to compare its effectiveness with that of freshwater bathing. In 250‐L tank trials, treatment of seawater with chloramine‐T reduced amoeba density on the gills to levels significantly lower than when treated with seawater alone. There was no further change in amoeba levels in fish bathed for 3 or 6 h compared with 1 h of treatment. Plasma lactate levels in fish bathed in chloramine‐T for 6 h showed no differences across treatments. In 1000‐L tank trials using freshwater alone or seawater with chloramine‐T, significant reductions in amoeba density occurred compared with pre‐bath levels. Histological analysis of gill tissue revealed AGD lesion levels to increase, then to return to pre‐bath levels within 1 week for freshwater‐treated fish, while chloramine‐T‐ and seawater‐treated fish had higher levels of AGD lesions from 2 weeks post bathing. Immunodot‐blot data indicated an initial significant increase in prevalence of lesions in seawater and chloramine‐T‐treated fish, which declined to levels significantly lower than pre‐bath levels by 3 weeks post bathing, compared with the freshwater‐treated fish, which had significantly lower levels than controls by 2 weeks post bathing. At reducing amoeba density, it is apparent that bathing AGD‐affected Atlantic salmon in seawater with chloramine‐T proved at least as effective as freshwater.  相似文献   

9.
Intracellular inclusions containing chlamydia‐like organisms are frequently observed in the gill epithelial cells of Atlantic salmon, Salmo salar L., cultured in fresh water in Ireland. In this study, the causative agent was identified in four separate freshwater sites, using 16s rRNA sequencing, as ‘Candidatus Clavochlamydia salmonicola’. Histopathology and real‐time (RT) PCR were used to further assess infections. The prevalence of infection ranged from 75–100% between sites and infection intensity was highly variable. No significant lesions were associated with these infections. As a diagnostic tool, RT‐PCR proved marginally more sensitive than histopathology. The fate of ‘Candidatus Clavochlamydia salmonicola’ in Atlantic salmon post‐seawater transfer was investigated in a 12‐week marine longitudinal study. Both RT‐PCR and histopathological examination indicate that the organism disappears from the gills 4–6 weeks post‐transfer.  相似文献   

10.
The development and the application of a quantitative duplex real‐time PCR for the detection of Neoparamoeba perurans and the elongation factor α 1 gene (ELF) of Atlantic salmon, Salmo salar L., and rainbow trout, Oncorhynchus mykiss (Walbaum), are described. A set of primers and probe was designed to amplify a 139‐bp fragment specific to the N. perurans 18S rRNA gene. The test was shown to be very sensitive, being able to detect as little as 13.4 DNA copies per μL corresponding to 0.15 fg of template DNA. In addition, the reaction that detected N. perurans was found to have a high degree of repeatability and reproducibility, to have a linear dynamic range (R2 = 0.999) extending over 5 log10 dilutions and to have a high efficiency (104%). The assay was applied to DNA samples extracted from 48 formalin‐fixed, paraffin‐embedded (FFPE) salmon gill tissues showing varying degrees of gill histopathology and amoebic gill disease (AGD)‐type histopathology ranging from absent to severe (each scored 0–3). Neoparamoeba perurans DNA was detected in all the blocks where AGD‐type histopathology was diagnosed microscopically and in 43.6% of the blocks showing signs of gill pathology. The association between parasitic load and gill histopathology and AGD‐type histopathology severity was also investigated. This study also describes the development and the application of a second real‐time PCR for the generic detection of Neoparamoeba spp., Page, 1987. A set of primers and probe conserved among the Neoparamoeba spp. was designed to amplify a 150‐bp fragment within the 18S rRNA gene. Applied to N. perurans‐negative gill tissues, the method was used to exclude the presence of other Neoparamoeba spp. in those blocks where gill pathology was observed microscopically.  相似文献   

11.
Previous studies have indicated that Atlantic salmon, Salmo salar L., affected by amoebic gill disease (AGD) are resistant to re‐infection. These observations were based upon a comparison of gross gill lesion abundance between previously infected and naïve control fish. Anecdotal evidence from Atlantic salmon farms in southern Tasmania suggests that previous infection does not protect against AGD as indicated by a lack of temporal change in freshwater bathing intervals. Experiments were conducted to determine if previous infection of Atlantic salmon with Neoparamoeba sp. would provide protection against challenge and elucidate the immunological basis of any protection. Atlantic salmon were infected with Neoparamoeba sp. for 12 days then treated with a 4‐h freshwater bath. Fish were separated into two groups and maintained in either sea water or fresh water for 6 weeks. Fish were then transferred to one tank with a naïve control group and challenged with Neoparamoeba sp. Fish kept in sea water had lower mortality rates compared with first time exposed and freshwater maintained fish, however, these data are believed to be biased by ongoing mortalities during the seawater maintenance phase. Phagocyte function decreased over exposure time and freshwater maintained fish demonstrated an increased ability to mount a specific immune response. These results suggest that under the challenge conditions herein described, antigen exposure via infection does not induce protection to subsequent AGD.  相似文献   

12.
Amoebic gill disease (AGD) is a significant disease of Atlantic salmon farmed in South East Tasmania. The commercial treatment for the disease is a freshwater bath for up to 4 h. Previous studies have shown that the chemical composition of the freshwater, in particular total water hardness, affects the efficacy of the treatment. The aim of this study was to determine if other water chemistry parameters, such as dissolved organic carbon (DOC), interact with total water hardness to affect treatment success. Firstly, the relative survival of isolated gill amoebae incubated for up to 3 h with hard or soft water (346.0 and 34.6 mg L?1 CaCO3 respectively) with low or high concentrations of humic or tannic acid (5 and 50 mg L?1 respectively) was determined. Secondly, fish with AGD were bathed for 2.5 h in hard or soft water (249.3 and 35.3 mg L?1 CaCO3) containing either 5 or 20 mg L?1 humic acid. The number of viable amoebae surviving on the gills and number of gill lesions were determined. It was found that the concentration of DOC used in this study that represents the levels commonly found around SE Tasmania is unlikely to have any commercial significance in the reduction in amoebae on the gills of Atlantic salmon. However, this study provided further support that freshwater selected for bathing AGD‐affected salmonids should be chosen primarily on its total water hardness.  相似文献   

13.
Amoebic gill disease (AGD) caused by the amoeba Paramoeba perurans is an increasing problem in Atlantic salmon aquaculture. In the present PCR survey, the focus was to identify reservoir species or environmental samples where P. perurans could be present throughout the year, regardless of the infection status in farmed Atlantic salmon. A total of 1200 samples were collected at or in the proximity to farming sites with AGD, or with history of AGD, and analysed for the presence of P. perurans. No results supported biofouling organisms, salmon lice, biofilm or sediment to maintain P. perurans. However, during clinical AGD in Atlantic salmon, the amoeba were detected in several samples, including water, biofilm, plankton, several filter feeders and wild fish. It is likely that some of these samples were positive as a result of the continuous exposure through water. Positive wild fish may contribute to the spread of P. perurans. Cleaner fish tested positive for P. perurans when salmon tested negative, indicating that they may withhold the amoeba longer than salmon. The results demonstrate the high infection pressure produced from an AGD‐afflicted Atlantic salmon population and thus the importance of early intervention to reduce infection pressure and horizontal spread of P. perurans within farms.  相似文献   

14.
The treatment of amoebic gill disease (AGD) in cultured Atlantic salmon, Salmo salar L., using mucolytic agents has been previously reported. The agent L‐cysteine ethyl ester reduces salmonid mucus viscosity and potentially increases the flushing of the gill. In the present study, the effects of the mucolytic agent N‐acetyl cysteine (NAC) were assessed. Cutaneous mucus from rainbow trout, Oncorhynchus mykiss Walbaum, and Atlantic salmon was shown to have reduced viscosity when mixed in vitro with 100 or 200 μg/mL NAC. Saltwater‐acclimated rainbow trout and Atlantic salmon were fed an oil‐incorporated, NAC‐medicated diet (8 g NAC/kg diet) for up to 24 d and challenged with inoculation of 300 cells/L Neoparamoeba spp., the etiological agent of AGD. Control fish were fed normal oil‐coated pellets and received no NAC. NAC medication failed to reduce the severity of gill lesions associated with AGD even though the mucus viscosity from medicated fish was less than that of controls. Oral NAC medication does not appear to be an effective method for controlling AGD in salmonids despite reducing cutaneous mucus viscosity.  相似文献   

15.
Currently, there are two methods of inducing laboratory‐based amoebic gill disease (AGD) in Atlantic salmon, Salmo salar L.: cohabitation with infected fish or exposure to a suspension of amoebae. Amoebic gill disease cannot be induced with cultured amoebae; therefore, the only source of the infective organism is salmon with the disease. For experimental purposes and to maintain pathogen supply, salmon are kept in an infection tank and amoebae are isolated from salmon once the disease establishes. In this way, discrete batches of amoebae are collected periodically. This study investigated the infective ability of different batches of amoebae. Furthermore, the effect of stocking density of salmon on the progression of AGD was also examined. The infective ability of different batches of amoebae isolated periodically from AGD‐affected salmon varied in terms of quantifiable pathology. Salmon stocking density had a significant impact on survival after amoebae challenge, with morbidity beginning 23 days post challenge in tanks stocked at 5.0 kg m?3 and 29 days for those stocked at 1.7 kg m?3. For uniform initiation of AGD in multiple tanks, amoebae batches should be equally divided and added to tanks until the required concentration is reached and to maintain a standard biomass between replicate tanks and treatments.  相似文献   

16.
Previous studies have indicated that when Atlantic salmon, Salmo salar L., are exposed to Neoparamoeba sp. the fish produce anti-Neoparamoeba sp. antibodies. It appears unlikely that these antibodies elicit any specific protection against amoebic gill disease (AGD) as fish with demonstrable activities have been affected by AGD. Experiments were conducted on Atlantic salmon cultured throughout Tasmania to assess the natural production of antibodies towards Neoparamoeba sp. Fish were sampled from areas where AGD was prevalent and from areas where there had been no reported cases. An enzyme-linked immunosorbent assay (ELISA) was used to measure anti-Neoparamoeba sp. antibody activities in serum. All fish from sea water had antibody activities greater than the negative control fish, including fish from areas with no reported cases of AGD. Time trial samples indicated that time after transfer to sea water did not appear to be a significant (P > 0.05) factor in antibody activity, however location was (P < 0.05). There was no agreement (corrected kappa value, 0.16) between the ELISA result and the isolation of Neoparamoeba sp. from the gills of the same fish. The results suggest that Atlantic salmon in seawater culture in Tasmania produce anti-Neoparamoeba sp. antibodies regardless of infection history, suggesting the presence of Neoparamoeba sp. in the environment.  相似文献   

17.
Amoebic gill disease (AGD) is a pathogenic disease in salmonids caused by Neoparamoeba perurans. Treatment of AGD infection has been through freshwater bathing of the fish. However, as the availability of fresh water is often limited, hydrogen peroxide has been introduced as an alternative treatment. This study investigated the effect of hydrogen peroxide as treatment for AGD‐infected salmon (Salmo salar L.,) at different seawater temperatures and hydrogen peroxide dosages. In total, 600 fish were challenged with N. perurans and the severity of the AGD infection was measured using a gill score scale. After challenge and disease development, the fish were distributed into 12 tanks. The treatment was performed at different seawater temperatures (8°C, 12°C, 17°C) using different hydrogen peroxide doses. Each temperature included an untreated control group. Linear models were used to analyse gill score. A significant effect of treatment was found (?0.68 ± 0.05) regardless of dose and temperature, suggesting that hydrogen peroxide was effective in treating AGD. When the model included dose, a negative linear relationship between dose and gill score was found. The study proved that treatment of AGD with hydrogen peroxide was successful, as gills partially recovered following treatment and further disease development was delayed.  相似文献   

18.
Freshwater bathing is one of the main treatment options available against amoebic gill disease (AGD) affecting multiple fish hosts in mariculture systems. Prevailing freshwater treatments are designed to be long enough to kill Neoparamoeba perurans, the ectoparasite causing AGD, which may select for freshwater tolerance. Here, we tested whether using shorter, sublethal freshwater treatment durations are a viable alternative to lethal ones for N. perurans (2–4 hr). Under in vitro conditions, gill‐isolated N. perurans attached to plastic substrate in sea water lifted off after ≥2 min in freshwater, but survival was not impacted until 60 min. In an in vivo experiment, AGD‐affected Atlantic salmon Salmo salar subjected daily to 30 min (sublethal to N. perurans) and 120 min (lethal to N. perurans) freshwater treatments for 6 days consistently reduced N. perurans cell numbers on gills (based on qPCR analysis) compared to daily 3 min freshwater or seawater treatments for 6 days. Our results suggest that targeting cell detachment rather than cell death with repeated freshwater treatments of shorter duration than typical baths could be used in AGD management. However, the consequences of modifying the intensity of freshwater treatment regimes on freshwater tolerance evolution in N. perurans populations require careful consideration.  相似文献   

19.
Infections of gill amoebae that manifest as amoebic gill disease (AGD) occur in Atlantic salmon in Tasmania. The treatment of choice is freshwater bathing; however, the effectiveness of this treatment has declined over time. In this experiment, cage trials of chloramine‐T (Cl‐T) to treat AGD in Atlantic salmon were conducted over 3 months, and involved an initial bath in either freshwater or seawater with Cl‐T, followed by a second bath 6 weeks later. Amoeba densities were reduced to 50–80% of original values for both treatments. Neoparamoeba sp. density was not affected by bathing, and was not significantly different over the course of the experiment. Lesion prevalence was higher for Cl‐T‐treated fish than for freshwater‐treated fish, with overall prevalence levels of 14.30±1.00% and 8.03±0.57% respectively. This was also seen for gross gill scores. In the fortnight after each of the two baths, Cl‐T‐treated fish had significantly higher lesion levels, although this difference was then resolved by 4 weeks post bathing. The use of Cl‐T in seawater is at least as effective as freshwater at reducing amoebae density, and may be a more practical alternative when freshwater is in short supply.  相似文献   

20.
Currently, the only effective and commercially used treatment for amoebic gill disease (AGD) in farmed Tasmanian Atlantic salmon is freshwater bathing. Hydrogen peroxide (H2O2), commonly used throughout the aquaculture industry for a range of topical skin and gill infections, was trialled in vitro and in vivo to ascertain its potential as an alternative treatment against AGD. Under in vitro conditions, trophozoites of Neoparamoeba perurans were exposed to three concentrations of H2O2 in sea water (500, 1000 and 1500 mg L?1) over four durations (10, 20, 30 and 60 min) each at two temperatures (12 and 18 °C). Trophozoite viability was assessed immediately post‐exposure and after 24 h. A concentration/duration combination of 1000 mg L?1 for >10 min demonstrated potent amoebicidal activity. Subsequently, Atlantic salmon mildly affected with experimentally induced AGD were treated with H2O2 at 12 and 18 °C for 15 min at 1250 mg L?1 and their re‐infection rate was compared to freshwater‐treated fish over 21 days. Significant differences in the percentage of filaments affected with hyperplastic lesions (in association with amoebae) and plasma osmolality were noted between treatment groups immediately post‐bath. However, the results were largely equivocal in terms of disease resolution over a 3‐week period following treatment. These data suggest that H2O2 treatment in sea water successfully ameliorated a clinically light case of AGD under laboratory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号