首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The pharmacokinetic properties of ketoprofen were determined in 4‐week‐old calves after intramuscular (i.m.) injection of a racemic mixture at a dose of 3 mg/kg body weight. Due to possible enantioselective disposition kinetics and chiral inversion, the plasma concentrations of the R(?) and S(+) enantiomer were quantified separately, using a stereospecific HPLC‐UV assay. A distinct predominance of the S(+) enantiomer was observed, as well as significantly different pharmacokinetic parameters between R(?) and S(+) ketoprofen. More in specific, a greater value for the mean area under the plasma concentration–time curve (AUC0→∞) (46.92 ± 7.75 and 11.13 ± 2.18 μg·h/mL for the S(+) and R(?) enantiomer, respectively), a lower apparent clearance (Cl/F) (32.8 ± 5.7 and 139.0 ± 25.1 mL/h·kg for the S(+) and R(?) enantiomer, respectively) and a lower apparent volume of distribution (Vd/F) (139 ± 14.7 and 496 ± 139.4 mL/kg for the S(+) and R(?) enantiomer, respectively) were calculated for the S(+) enantiomer, indicating enantioselective pharmacokinetics for ketoprofen in calves following i.m. administration.  相似文献   

2.
The non-steroidal anti-inflammatory drug (NSAID) carprofen (CPF) contains single chiral centre. It was administered orally to Beagle dogs as a racemate (rac-CPF) at a dose of 4 mg per kg body weight and as individual (-)(R) and (+)(S) enantiomers at 2 mg per kg body weight. Each of the enantiomers achieved similar plasma bioavailability following administration as the race-mate as they did following their separate administration. Only the administered enantiomers were detectable when the drug was given in the (-)(R) or (+) (S) form, indicating that chiral inversion did not occur in either direction. Higher plasma concentrations of the (-)(R) (Cmax 18 μg/ml, AUC0–24 118 μg h/ml) than the (+)(S) (Cmax 14 μg/ml, AUC0–24 67 μg h/ml) enantiomer were achieved following administration of the racemate. Both enantiomers distributed into peripheral subcutaneous tissue cage fluids, but Cmax and AUC values were lower for both transudate (non-stimulated tissue cage fluid) and exudate (induced by the intracaveal administration of the irritant carrageenan) than for plasma. Drug concentrations in transudate and exudate were similar, as indicated by Cmax and AUC values, although CPF penetrated more rapidly into exudate than into transudate. Neither rac-CPF nor either enantiomer inhibited thromboxane B2 (T × B2) generation by platelets in clotting blood (serum T × B2, or prostaglandin E2, (PGE,) and 12-hydroxyeicosatetraenoic acid (1 2-HETE) synthesis in inflammatory exudate. Since other studies have shown that rac-CPF at the 4 mg/kg dose rate possesses analgesic and anti-inflammatory effects in the dog, it is concluded that the principal mode of action of the drug must be by mechanisms other than cyclooxygenase or 12-lipoxygenase inhibition.  相似文献   

3.
Whole blood in vitro assays were used to determine the potency and selectivity of carprofen enantiomers for inhibition of the isoforms of cyclooxygenase (COX), COX-1 and COX-2, in the calf. S(+)-carprofen possessed preferential activity for COX-2 inhibition but, because the slopes of inhibition curves differed, the COX-1:COX-2 inhibition ratio decreased from 9.04:1 for inhibitory concentration (IC)10 to 1.84:1 for IC95. R(−) carprofen inhibited COX-2 preferentially only for low inhibition of the COX isoforms (IC10 COX-1:COX-2 = 6.63:1), whereas inhibition was preferential for COX-1 for a high level of inhibition (IC95 COX-1:COX-2 = 0.20:1). S(+) carprofen was the more potent inhibitor of COX isoforms; potency ratios S(+):R(−) carprofen were 11.6:1 for IC10 and 218:1 for IC90. Based on serum concentrations of carprofen enantiomers obtained after administration of a therapeutic dose of 1.4 mg/kg to calves subcutaneously, S(+)-carprofen concentrations exceeded the in vitro IC80 COX-2 value for 32 h and the IC20 for COX-1 for 33 h. The findings are discussed in relation to efficacy and safety of carprofen in calves.  相似文献   

4.
Carprofen is a nonsteroidal anti-inflammatory drug of the 2-arylpropionate subclass. It contains a single chiral centre and exists in two enantiomeric forms. In this study rac-carprofen, at two dosages, 0.7 and 4.0 mg/kg, and placebo were administered i.v. to six New Forest horses in a three period cross-over study. The concentration-time profiles were established for R(-) and S(+)-carprofen for plasma and both inflamed (exudate) and noninflamed (transudate) tissue cage fluids. R(-)-carprofen was the predominant enantiomer in all three fluids, as indicated by plasma area under the curve (AUC) values for R(-) and S(+)-carprofen of 117.4 and 22.6 microg h/mL (low dose carprofen) and 557.5 and 138.1 microg h/mL (high dose carprofen) respectively. Penetration of both enantiomers into exudate was slow and limited and passage into transudate was even lower. The pharmacodynamics of rac-carprofen was investigated at both the molecular level and in terms of the ability to suppress components of the tissue cage inflammatory response. Low dose carprofen produced only moderate and transient inhibition of serum thromboxane (Tx)B2 but failed to affect exudate prostaglandin (PG)E2 concentrations, whilst suppression of exudate leukotriene (LT)B4 and beta-glucuronidase was not significant. High dose carprofen produced greater and more persistent inhibition of serum TxB2 and virtually abolished exudate PGE2 synthesis. Some inhibition of LTB4 and beta-glucuronidase in exudate was also obtained. At both dosages rac-carprofen reduced the swelling produced by intradermal bradykinin injection but only high dose carprofen was anti-inflammatory as indicated by suppression of temperature rise over exudate tissue cages and neither dose affected leucocyte numbers in exudate. When considered in conjunction with previous data on carprofen, the present findings indicate that carprofen is not a selective inhibitor of cyclooxygenase (COX) isoenzymes, COX-1 and COX-2 in the horse, although it may show some preference for COX-2 inhibition. Because low dose carprofen, which is the clinically recommended dosage, produces minimal inhibition of COX, it is likely to achieve its therapeutic effects at least partially through other pathways, possibly including weak to moderate inhibition of 5-lipoxygenase and of enzyme release. The good safety margin of carprofen in clinical use might also be explained by weak COX inhibition and by other actions at the molecular level.  相似文献   

5.
Whole blood in vitro assays were used to determine the potency and selectivity of carprofen enantiomers for inhibition of the isoforms of cyclooxygenase (COX), COX-1 and COX-2, in the calf. S(+)-carprofen possessed preferential activity for COX-2 inhibition but, because the slopes of inhibition curves differed, the COX-1:COX-2 inhibition ratio decreased from 9.04:1 for inhibitory concentration (IC)(10) to 1.84:1 for IC(95). R(-) carprofen inhibited COX-2 preferentially only for low inhibition of the COX isoforms (IC(10) COX-1:COX-2=6.63:1), whereas inhibition was preferential for COX-1 for a high level of inhibition (IC(95) COX-1:COX-2=0.20:1). S(+) carprofen was the more potent inhibitor of COX isoforms; potency ratios S(+):R(-) carprofen were 11.6:1 for IC(10) and 218:1 for IC(90). Based on serum concentrations of carprofen enantiomers obtained after administration of a therapeutic dose of 1.4mg/kg to calves subcutaneously, S(+)-carprofen concentrations exceeded the in vitro IC(80) COX-2 value for 32h and the IC(20) for COX-1 for 33h. The findings are discussed in relation to efficacy and safety of carprofen in calves.  相似文献   

6.
Carprofen is a Non Steroidal Anti-Inflammatory Drug (NSAID) which is widely used for the treatment of musculoskeletal disorders in horses. The commercial preparation is a racemic mixture of two enantiomers (R and S carprofen). We used HPLC to measure plasma and synovial fluid R and S carprofen concentrations following a single intravenous (i.v.) dose, and computer modelling to determine the pharmacokinetic parameters of the enantiomers in these two body fluids. A comparison was made with results from an identical experiment using ketoprofen. The plasma elimination half lives of R and S carprofen were 20 and 16 times longer than those of R and S ketoprofen, and clearance was considerably slower for carprofen than ketoprofen. Plasma R carprofen concentrations were higher than S carprofen concentrations throughout the 48-h period. Ketoprofen was no longer detectable in synovial fluid after 5 h (S enantiomer) or 12 h (R enantiomer), whereas synovial fluid carprofen concentrations did not peak until 12 h and were still detectable at 48 h. Synovial fluid concentrations of both carprofen enantiomers were significantly lower than plasma concentrations, probably due to high plasma protein binding which could limit transfer through the synovial membrane. Our results indicate significant differences between carprofen and ketoprofen and between the two carprofen enantiomers.  相似文献   

7.
OBJECTIVE: To assess anti-inflammatory effects of carprofen (CPF), CPF enantiomers, and N(G)-nitro-L-arginine methyl ester (LNAME) in sheep. ANIMALS: 8 sheep. PROCEDURE: Sheep with SC tissue cages were used. After intracaveal injection of 1% carrageenan, sheep were given single doses of racemic (Rac; 50:50 mixture of S[+] and R[-] enantiomers)-CPF (4.0 mg/kg), R(-)CPF (2.0 mg/kg), S(+)CPF (2.0 mg/kg), LNAME (25 mg/kg), and placebo (PLB) IV in a crossover design. RESULTS: Rac-CPF and S(+)CPF inhibited serum thromboxane2 (TXB2) and exudate prostaglandin (PG)E2 generation significantly for 32 hours. Maximal inhibitory effect for serum TXB2 was 79+/-3% for Rac-CPF and 68+/-6% for S(+)CPF. The Rac-CPF and S(+)CPF induced 50 to 98% reversible inhibitory effect for exudate PGE2 generation during a 4- to 32-hour period. The R(-)CPF and LNAME attenuated serum TXB2 generation significantly. The R(-)CPF did not affect exudate PGE2 production, whereas L-NAME potentiated exudate, PGE2 generation by 30% during 4 to 32 hours. The S(+)CPF and LNAME increased leukotriene B4 generation and WBC recruitment in exudate although significance was achieved only at a few time points. Increase in skin temperature over inflammatory cages was effectively inhibited by Rac-CPF and S(+)CPF but not by R(-)CPF CONCLUSIONS AND CLINICAL RELEVANCE: Carprofen is a potent cyclooxygenase inhibitor in vivo in sheep, and its anti-inflammatory effects are attributable only to S(+)CPF in Rac-CPF. Nitric oxide may enhance eicosanoid production and accelerate the acute inflammatory process.  相似文献   

8.
The purpose of this study was to determine whether oral carprofen (Rimadyl®) treatment in dogs could prevent or decrease the breakdown of the blood–aqueous barrier. The topical pilocarpine irritative model was used to induce breakdown and cause flare. Pilocarpine was instilled in both eyes of seven dogs at time zero and again 5 h later. At 7 h, laser flare photometry was used to measure the flare concentration in each eye using the Kowa FC-1000 laser flare cell meter. All treatments were then discontinued. Two days later, carprofen was administered to the same dogs for a total of three doses. After the last dose of carprofen, pilocarpine treatments and flare measurements were repeated. Carprofen pretreatment resulted in a 68% inhibition of flare, which was highly significant ( P < 0.01). The pilocarpine group had a mean of 16.1 photon counts per millisecond (PC ms−1) ± 2.2 SE, and the carprofen group had a mean of 7.0 PC/ms ± 1.2 SE. These results compare favorably with previous studies measuring increased protein or fluorescein concentrations in the aqueous humor after blood–aqueous barrier breakdown in the dog. These results suggest that carprofen may be effectively used as a systemically administered ocular anti-inflammatory drug. Carprofen has the added benefit of fewer reported side effects.  相似文献   

9.
Flunixin meglumine (FM, 1.1 mg/kg) and phenylbutazone (PBZ, 4.4 mg/kg) were administered intravenously (i.v.) as a single dose to eight sheep prepared with subcutaneous (s.c.) tissue-cages in which an acute inflammatory reaction was stimulated with carrageenan. Pharmacokinetics of FM, PBZ and its active metabolite oxyphenbutazone (OPBZ) in plasma, exudate and transudate were investigated. Plasma kinetics showed that FM had an elimination half-life (t½β) of 2.48 ± 0.12 h and an area under the concentration – time curve (AUC) of 30.61 ± 3.41 μg/mL.h. Elimination of PBZ from plasma was slow (t½β = 17.92 ± 1.74 h, AUC = 968.04 ± μg/mL.h.). Both FM and PBZ distributed well into exudate and transudate although penetration was slow, indicated by maximal drug concentration (Cmax) for FM of 1.82 ± 0.22 μg/mL at 5.50 ± 0.73 h (exudate) and 1.58 ± 0.30 μg/mL at 8.00 h (transudate), and Cmax for PBZ of 22.32 ± 1.29 μg/mL at 9.50 ± 0.73 h (exudate) and 22.07 ± 1.57 μg/mL at 11.50 ± 1.92 h (transudate), and a high mean tissue-cage fluids:plasma AUClast ratio obtained in the FM and PBZ groups (80–98%). These values are higher than previous reports in horses and calves using the same or higher dose rates. Elimination of FM and PBZ from exudate and transudate was slower than from plasma. Consequently the drug concentrations in plasma were initially higher and subsequently lower than in exudate and transudate.  相似文献   

10.
The pharmacokinetics (PK) and pharmacodynamics (PD) of ketoprofen (KTP) were studied in calves following intravenous administration of the drug racemate at a dose rate of 3 mg/kg. To evaluate the anti-inflammatory properties of KTP, a model of acute inflammation, consisting of surgically implanted subcutaneous tissue cages stimulated by intracaveal injection of carrageenan, was used. No differences were observed between disposition curves of KTP enantiomers in plasma, exudate or transudate. This indicates that in calves KTP pharmacokinetics is not enantioselective. S(+)- and R(-)- KTP each had a short elimination half-life (t1/2β of 0.42 ± 0.08 h and 0.42 ± 0.09 h, respectively. The volume of distribution (Vd) was low, values of 0.20 ± 0.06 L/kg and 0.22 ± 0.06 L/kg being obtained for R(-) and S(+)KTP, respectively. Body clearance (CI8) was high, correlating with the short elimination half-life, 0.3 3 ± 0.03 L/kg/h [R(-)KTP] and 0.32 ± 0.04 L/kg/h [S(+)-KTP]. KTP pharmacodynamics was evaluated by determining the effects on serum thromboxane (TxB2), exudate prostaglandin (PGE2), leukotriene (LTB4) and β-glucuronidase (β-glu) and bradykinin (BK)-induced oedematous swelling. Effect-concentration inter-relationships were analysed by PK/PD modelling. KTP did not affect exudate LTB4, but inhibition of the other variables was statistically significant. The mean EC50 values for inhibition of serum TxB2, exudate PGE2 and β-glu and BK-induced swelling were 0.118, 0.086, 0.06 and 0.00029 μg/mL, respectively. These data indicate that KTP exerted an inhibitory action, not only as expected, on eicosanoid (TxB2 and PGE2) synthesis but also on exudate β-glu and BK-induced oedema. The EC50 values for these actions indicate that they are likely to contribute to the overall anti-inflammatory effects of KTP in calves. However, claims that KTP inhibits 5-lipoxygenase and thereby blocks the production of inflammatory mediators such as LTB4 were not substantiated. PK/PD modelling has proved to be a useful tool for analysing the in vivo pharmacodynamics of KTP and for providing new approaches to elucidating its mechanism(s) of action.  相似文献   

11.
The activity of the anti‐inflammatory agents Flunixin‐meglumine (FLU), RS (±) Carprofen (CPF) and S (+) CPF on bovine cyclooxygenases (COXs) has been characterized in feedlot calves using an in vitro whole blood model. The drugs showed equivalent efficacy in their inhibitory activity on COXs, and the rank order of potency for both COX‐1 and COX‐2 inhibition was FLU > S (+) CPF > RS (±) CPF. Our results indicated that FLU is a nonselective inhibitor of bovine COXs, whereas RS (±) CPF and S (+) CPF exhibited different degrees of preferential inhibition of COX‐2 isoenzyme. The rank order of IC50 COX‐1: IC50 COX‐2 potency ratios was in fact S (+) CPF (51.882) > RS (±) CPF (13.964) > FLU (0.606), and the calculated percentage inhibition of COX‐1 corresponding to COX‐2 inhibition values comprised between 80% and 95% was comprised between 57.697 and 79.865 for FLU, 33.373 and 51.319 for RS (±) CPF, and 0.230 and 4.622 for S (+) CPF, respectively. These findings are discussed in relation to the prediction of the clinical relevance of COX inhibition by the test drugs in cattle.  相似文献   

12.
Florfenicol was administered subcutaneously to 10 calves at a dose of 40 mg/kg. Pharmacokinetic–pharmacodynamic (PK‐PD) integration and modelling of the data were undertaken using a tissue cage model, which allowed comparison of microbial growth inhibition profiles in three fluids, serum, exudate and transudate. Terminal half‐lives were relatively long, so that florfenicol concentrations were well maintained in all three fluids. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration were determined in vitro for six strains each of the calf pneumonia pathogens, Mannhemia haemolytica and Pasteurella multocida. An PK‐PD integration for three serum indices provided mean values for P. multocida and M. haemolytica, respectively, of 12.6 and 10.4 for Cmax/MIC, 183 and 152 h for AUC0–24 h/MIC and 78 and 76 h for T>MIC. Average florfenicol concentrations in serum exceeded 4 × MIC and 1.5 × MIC for the periods 0–24 and 48–72 h, respectively. Ex vivo growth inhibition curves for M. haemolytica and P. multocida demonstrated a rapid (with 8 h of exposure) and marked (6 log10 reduction in bacterial count or greater) killing response, suggesting a concentration‐dependent killing action. During 24‐h incubation periods, inhibition of growth to a bacteriostatic level or greater was maintained in serum samples collected up to 96 h and in transudate and exudate samples harvested up to 120 h. Based on the sigmoidal Emax relationship, PK‐PD modelling of the ex vivo time–kill data provided AUC0–24 h/MIC serum values for three levels of growth inhibition, bacteriostatic, bactericidal and 4 log10 decrease in bacterial count; mean values were, respectively, 8.2, 26.6 and 39.0 h for M. haemolytica and 7.6, 18.1 and 25.0 h for P. multocida. Similar values were obtained for transudate and exudate. Based on pharmacokinetic and PK‐PD modelled data obtained in this study and scientific literature values for MIC distributions, Monte Carlo simulations over 100 000 trials were undertaken to predict once daily dosages of florfenicol required to provide 50% and 90% target attainment rates for three levels of growth inhibition, namely, bacteriostasis, bactericidal action and 4 log10 reduction in bacterial count.  相似文献   

13.
The pharmacodynamics (PD) of oxytetracycline was investigated against a strain of Mannheimia haemolytica. In vitro measurements, comprising minimum inhibitory concentration (MIC), minimum bactericidal concentration and time-kill curves, were conducted in five matrices; Mueller Hinton Broth (MHB), cation-adjusted MHB (CAMHB) and calf serum, exudate and transudate. MICs were much higher in the biological fluids than in MHB and CAMHB. Ratios of MIC were, serum: CAMHB 19 : 1; exudate:CAMHB 16.1; transudate:CAMHB 14 : 1. Ex vivo data, generated in the tissue cage model of inflammation, demonstrated that oxytetracycline, administered to calves intramuscularly at a dose rate of 20 mg/kg, did not inhibit the growth of M haemolytica in serum, exudate and transudate, even at peak concentration. However, using in vitro susceptibility in CAMHB and in vivo-determined pharmacokinetic (PK) variables, average and minimum oxytetracycline concentrations relative to MIC (C(av)/MIC and C(min)/MIC) predicted achievement of efficacy for approximately 48 hours after dosing. Similar C(av)/MIC and C(min)/MIC data were obtained when oxytetracycline was administered in the presence of carprofen. PK-PD integration of data for oxytetracycline, based on MICs determined in the three biological fluids, suggests that it possesses, at most, limited direct killing activity against M haemolytica. These data raise questions concerning the mechanism(s) of action of oxytetracycline, when administered at clinically recommended dose rates.  相似文献   

14.
A calf tissue cage model was used to study the pharmacokinetics (PK) and pharmacodynamics (PD) of oxytetracycline in serum, inflamed (exudate) and noninflamed (transudate) tissue cage fluids. After intramuscular administration, the PK was characterized by a long mean residence time of 28.3 hr. Based on minimum inhibitory concentrations (MICs) for six isolates each of Mannheimia haemolytica and Pasteurella multocida, measured in serum, integration of in vivo PK and in vitro PD data established area under serum concentration–time curve (AUC0–∞)/MIC ratios of 30.0 and 24.3 hr for M. haemolytica and P. multocida, respectively. Corresponding AUC0–∞/MIC ratios based on MICs in broth were 656 and 745 hr, respectively. PK‐PD modelling of in vitro bacterial time–kill curves for oxytetracycline in serum established mean AUC0–24 hr/MIC ratios for 3log10 decrease in bacterial count of 27.5 hr (M. haemolytica) and 60.9 hr (P. multocida). Monte Carlo simulations predicted target attainment rate (TAR) dosages. Based on the potency of oxytetracycline in serum, the predicted 50% TAR single doses required to achieve a bacteriostatic action covering 48‐hr periods were 197 mg/kg (M. haemolytica) and 314 mg/kg (P. multocida), respectively, against susceptible populations. Dosages based on the potency of oxytetracycline in broth were 25‐ and 27‐fold lower (7.8 and 11.5 mg/kg) for M. haemolytica and P. multocida, respectively.  相似文献   

15.
The alleviation of pain and prevention of suffering are key aspects of animal welfare. Unfortunately, analgesic drugs are not available for all species. White rhinoceros (Ceratotherium simum ), representing one of such species, which survive poaching attempts inflicted with severe facial injuries and gunshot wounds, nonetheless require analgesic support. To improve treatment conditions, this study explored the use of carprofen for the treatment of pain and inflammation in white rhinoceros. The pharmacokinetics of 1 mg/kg intramuscular carprofen was evaluated in six healthy white rhinoceros. The half‐life of λz and mean residence time was 105.71 ± 15.67 and 155.01 ± 22.46 hr, respectively. The area under the curve and the maximum carprofen concentration were 904.61 ± 110.78 μg ml?1 hr?1 and 5.77 ± 0.63 μg/ml, respectively. Plasma TXB 2 inhibition demonstrated anti‐inflammatory properties and indicated that carprofen may be effective for a minimum of 48 hr in most animals. With its long half‐life further indicating that a single dose could be effective for several days, we suggest that carprofen may be a useful drug for the treatment of white rhinoceros.  相似文献   

16.
The pharmacokinetic (PK) profile of tulathromycin, administered to calves subcutaneously at the dosage of 2.5 mg/kg, was established in serum, inflamed (exudate), and noninflamed (transudate) fluids in a tissue cage model. The PK profile of tulathromycin was also established in pneumonic calves. For Mannheimia haemolytica and Pasteurella multocida, tulathromycin minimum inhibitory concentrations (MIC) were approximately 50 times lower in calf serum than in Mueller–Hinton broth. The breakpoint value of the PK/pharmacodynamic (PD) index (AUC(0–24 h)/MIC) to achieve a bactericidal effect was estimated from in vitro time‐kill studies to be approximately 24 h for M. haemolytica and P. multocida. A population model was developed from healthy and pneumonic calves and, using Monte Carlo simulations, PK/PD cutoffs required for the development of antimicrobial susceptibility testing (AST) were determined. The population distributions of tulathromycin doses were established by Monte Carlo computation (MCC). The computation predicted a target attainment rate (TAR) for a tulathromycin dosage of 2.5 mg/kg of 66% for M. haemolytica and 87% for P. multocida. The findings indicate that free tulathromycin concentrations in serum suffice to explain the efficacy of single‐dose tulathromycin in clinical use, and that a dosage regimen can be computed for tulathromycin using classical PK/PD concepts.  相似文献   

17.
The aim of this study was to determine the effect of oral administration of carprofen on intraocular pressure in normal dogs. Twelve young adult beagle dogs were randomly assigned to treatment (n = 6) or control (n = 6) groups. After an 11‐day acclimation period, the treatment group received approximately 2.2 mg/kg carprofen per os every 12 h for 7 days, and the control group received a placebo gel capsule containing no drug per os every 12 h for 7 days. Intraocular pressure (IOP) was measured by a rebound tonometer at three time points per day (8 am, 2 pm, and 8 pm) during the acclimation (days 1–11) and treatment (days 12–18) phases and for 48 h (days 19–20) after the completion of treatment. There was no statistically significant change in IOP for either eye in the dogs receiving oral carprofen during the treatment phase (days 12–18). After day 4, no significant daily IOP changes were seen in control group dogs. Carprofen administered orally every 12 h for 7 days had no effect on IOP in normal beagle dogs. An acclimation period to frequent IOP measurements of at least 5 days is necessary to establish baseline IOP values and minimize possible anxiety‐related effects on IOP measurements.  相似文献   

18.
In an open, controlled, multi-centre clinical field trial, seven ‘naturally occurring’ outbreaks of acutefebrile (rectal temperature ≥ 39·5°C) respiratory disease in housed calves were treated with a single antimicrobial agent, and either the non-steroidal anti-inflammatory drug (NSAID) carprofen (n=95) or flunixin meghunine (n=92) on an alternate basis. Carprofen was administered as a single subcutaneous injection at a mean dosage of 1·4 mg kg−1 (range 1·2 to 1·9 mg kg−1) body weight on the first day and flunixin meglumine by intravenous injection at a mean dosage of 2·0 mg kg−1 (range 1·2 to 2·6 mg kg−1) body weight on the first 3 consecutive days. All calves were examined clinically immediately prior to initial treatment and on three occasions up to 1 week after the end of treatment. There were no statistically significant differences between NSAID groups in reduction of clinical parameters between examinations, or in overall efficacy. This trial demonstrated that a single dose of carprofen was equally effective as three daily closes of flunixin meglumine as adjunctive therapy to antimicrobial treatment in acute respiratory disease in calves.  相似文献   

19.
Robenacoxib and ketoprofen are acidic nonsteroidal anti‐inflammatory drugs (NSAIDs). Both are licensed for once daily administration in the cat, despite having short blood half‐lives. This study reports the pharmacokinetic/pharmacodynamic (PK/PD) modelling of each drug in a feline model of inflammation. Eight cats were enrolled in a randomized, controlled, three‐period cross‐over study. In each period, sterile inflammation was induced by the injection of carrageenan into a subcutaneously implanted tissue cage, immediately before the subcutaneous injection of robenacoxib (2 mg/kg), ketoprofen (2 mg/kg) or placebo. Blood samples were taken for the determination of drug and serum thromboxane (Tx)B2 concentrations (measuring COX‐1 activity). Tissue cage exudate samples were obtained for drug and prostaglandin (PG)E2 concentrations (measuring COX‐2 activity). Individual animal pharmacokinetic and pharmacodynamic parameters for COX‐1 and COX‐2 inhibition were generated by PK/PD modelling. S(+) ketoprofen clearance scaled by bioavailability (CL/F) was 0.114 L/kg/h (elimination half‐life = 1.62 h). For robenacoxib, blood CL/F was 0.684 L/kg/h (elimination half‐life = 1.13 h). Exudate elimination half‐lives were 25.9 and 41.5 h for S(+) ketoprofen and robenacoxib, respectively. Both drugs reduced exudate PGE2 concentration significantly between 6 and 36 h. Ketoprofen significantly suppressed (>97%) serum TxB2 between 4 min and 24 h, whereas suppression was mild and transient with robenacoxib. In vivoIC50COX‐1/IC50COX‐2 ratios were 66.9:1 for robenacoxib and 1:107 for S(+) ketoprofen. The carboxylic acid nature of both drugs may contribute to the prolonged COX‐2 inhibition in exudate, despite short half‐lives in blood.  相似文献   

20.
The aim of this study was to determine the pharmacokinetics/pharmacodynamics of enrofloxacin (ENR) and danofloxacin (DNX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. The study was performed on twenty‐four calves that were determined to be premature by anamnesis and general clinical examination. Premature calves were randomly divided into four groups (six premature calves/group) according to a parallel pharmacokinetic (PK) design as follows: ENR‐IV (10 mg/kg, IV), ENR‐IM (10 mg/kg, IM), DNX‐IV (8 mg/kg, IV), and DNX‐IM (8 mg/kg, IM). Plasma samples were collected for the determination of tested drugs by high‐pressure liquid chromatography with UV detector and analyzed by noncompartmental methods. Mean PK parameters of ENR and DNX following IV administration were as follows: elimination half‐life (t1/2λz) 11.16 and 17.47 hr, area under the plasma concentration–time curve (AUC0‐48) 139.75 and 38.90 hr*µg/ml, and volume of distribution at steady‐state 1.06 and 4.45 L/kg, respectively. Total body clearance of ENR and DNX was 0.07 and 0.18 L hr?1 kg?1, respectively. The PK parameters of ENR and DNX following IM injection were t1/2λz 21.10 and 28.41 hr, AUC0‐48 164.34 and 48.32 hr*µg/ml, respectively. The bioavailability (F) of ENR and DNX was determined to be 118% and 124%, respectively. The mean AUC0‐48CPR/AUC0‐48ENR ratio was 0.20 and 0.16 after IV and IM administration, respectively, in premature calves. The results showed that ENR (10 mg/kg) and DNX (8 mg/kg) following IV and IM administration produced sufficient plasma concentration for AUC0‐24/minimum inhibitory concentration (MIC) and maximum concentration (Cmax)/MIC ratios for susceptible bacteria, with the MIC90 of 0.5 and 0.03 μg/ml, respectively. These findings may be helpful in planning the dosage regimen for ENR and DNX, but there is a need for further study in naturally infected premature calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号