首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Soil organic matter (SOM) is considered an important indicator of soil quality, which can be impacted by crop production practices such as tillage. In this study, two long‐term tillage regimes (conventional tillage [CT] and no tillage [NT], conducted for 36 years) were compared in continuous sorghum production in a sub‐tropical environment in southeast Texas. The positive effects of long‐term NT practice were more conspicuous at the soil surface compared with the deeper soil profiles. The SOC was greater (1.5 t C ha?1 greater) in the NT system compared with the CT system. Results from an incubation study indicate that the rate of C‐min at 0–5 cm soil depth was significantly greater (164 μg of CO2–C g?1 of soil greater) in NT than that of CT, but this trend was reversed at 10–20 cm depth wherein the C‐min rates were 106 μg of CO2–C g?1 of soil greater in CT compared with NT, which is likely because of soil disturbance during the study. Soil cumulative CO2‐C emissions were greater in the CT system (7.28 g m?2) than in the NT system (5.19 g m?2), which is primarily attributed to high soil temperature conditions in the CT system. Sorghum grain yield however was not influenced by the differences in SOC content in this long‐term experiment. Overall, the present study found that long‐term conservation tillage improved SOC stock and reduced carbon loss, thus had a positive impact on soil health and sustainability.  相似文献   

2.
The present study was conducted to determine the spatial heterogeneity of bulk density, soil moisture, inorganic N, microbial biomass C, and microbial biomass N in the ridge tillage system of Turiel compared to conventional mouldboard ploughing on three sampling dates in May, July, and August. The soil sampling was carried out under vegetation representing the ridge in a high spatial resolution down the soil profile. Bulk density increased with depth and ranged from 1.3 g cm−3 at 10 cm depth to 1.6 g cm−3 at 35 cm in ploughed plots and from 1.0 g m−3 at 5 cm to 1.4 g m−3 at 35 cm in the ridges. In the ploughed plots, the contents of microbial biomass C and microbial biomass N remained roughly constant at 215 and 33 μg g−1 soil, respectively, throughout the experimental period. The microbial biomass C/N ratio varied in a small range around 6.4. In the ridged plots, the contents of microbial biomass C and microbial biomass N were 5% and 6% higher compared to the ploughed plots. Highest microbial biomass C contents of roughly 300 μg g−1 soil were always measured in the crowns in July. The lowest contents of microbial biomass C of 85–137 μg g−1 soil were measured in the furrows. The ridges showed strong spatial heterogeneity in bulk density, soil water content, inorganic nitrogen and microbial biomass.  相似文献   

3.
The invasive species Imperata cylindrica is a dominant grass covering a large part of degraded lands of India. Imperata is managed through traditional annual burning, a practice that is prevalent throughout tropical grasslands. A field experiment was conducted to quantify the effects of burning on aboveground and belowground biomass production and soil organic carbon (SOC), total nitrogen (TN), available phosphorus (Ave P), potassium (K+), calcium (Ca+), and magnesium (Mg+) concentrations in 0‐ to 15‐cm soil depth under Imperata grassland. The burnt site had 44% and 14% higher aboveground and belowground biomass over the un‐burnt control plots after 300 days of the fire event. The concentrations of SOC, TN, and Ave P increased soon after the fire but decreased regressively with time after the fire in both micro and macro soil aggregate size fractions. In contrast, concentrations of K+, Ca+, and Mg+ increased up to 30 days after the fire in both soil aggregate fractions. Burning did not significantly alter the stoichiometric ratios (C : N, C : P, and N : P) in macro aggregates. However, burning significantly reduced the C : N, C : P, and N : P ratios in micro aggregates during the first 0–30 days. Fire increased nutrient stocks (kg ha−1) by 20–35% in the burnt site in comparison to an un‐burnt control site. It is concluded that the conventional practice of annual burning increases soil nutrients in surface soils and supports higher biomass production in Imperata‐covered degraded lands. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Soil organic‐carbon (SOC) stocks are expected to increase after conversion of cropland into grassland. Two adjacent cropland and grassland sites—one with a Vertisol with 23 y after conversion and one with an Arenosol 29 y after conversion—were sampled down to 60 cm depth. Concentrations of SOC and total nitrogen (Ntot) were measured before and after density fractionation in two light fractions and a mineral‐associated fraction with C adsorbed on mineral surfaces. For the soil profiles, SOC stocks and radiocarbon (14C) concentrations of mineral associated C were determined. Carbon stocks and mineral‐associated SOC concentrations were increased in the upper 10 cm of the grassland soil compared to the cropland. This corresponded to the root‐biomass distribution, with 59% and 86% of the total root biomass at 0–5 cm soil depth of the grasslands. However, at the Arenosol site, at 10–20 cm depth, C in the mineral‐associated fraction was lost 29 y after the conversion into grassland. Over all, SOC stocks were not significantly different between grassland and cropland at both sites when the whole profile was taken into account. At the Arenosol site, the impact of land‐use conversion on SOC accumulation was limited by low total clay surface area available for C stabilization. Subsoil C (30–50 cm) at cropland of the Vertisol site comprised 32% of the total SOC stocks with high 14C concentrations below the plowing horizon. We concluded that fresh C was effectively translocated into the subsoil. Thus, subsoil C has to be taken into account when land‐use change effects on SOC are assessed.  相似文献   

5.
Soils are an effective sink for carbon storage and immobilization through biomass productivity and enhancement of soil organic carbon (SOC) pool. The SOC sink capacity depends on land use and management. Degraded lands lose large amounts of C through SOC decomposition, erosion, and leaching. Thus, restoration of disturbed and degraded mine lands can lead to increase in biomass productivity, improved soil quality and SOC enhancement and sequestration. Reclamation of mined lands is an aggrading process and offers significant potential to sequester C. A chronosequence study consisting of 0‐, 5‐, 10‐, 15‐, 20‐ and 25‐year‐old reclaimed mine soils in Ohio was initiated to assess the rate of C sequestration by pasture and forest establishment. Undisturbed pasture and forest were used as controls. The SOC pool of reclaimed pasture sites increased from 15·3 Mg ha−1 to 44·4 Mg ha−1 for 0–15 cm depth and from 10·8 Mg ha−1 to 18·3 Mg ha−1 for 15–30 cm depth over the period of 25 years. The SOC pool of reclaimed forest sites increased from 12·7 Mg ha−1 to 45·3 Mg ha−1 for 0–15 cm depth and from 9·1 Mg ha−1 to 13·6 Mg ha−1 for 15–30 cm depth over the same time period. The SOC pool of the pasture site stabilized earlier than that of the forest site which had not yet attained equilibrium. The SOC sequestered in 0–30 cm depth over 25 years was 36·7 Mg ha−1 for pasture and 37·1 Mg ha−1 for forest. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

The impact of conservation tillage, crop rotation, and cover cropping on soil‐quality indicators was evaluated in a long‐term experiment for cotton. Compared to conventional‐tillage cotton, other treatments had 3.4 to 7.7 Mg ha?1 more carbon (C) over all soil depths. The particulate organic matter C (POMc) accounts for 29 to 48 and 16 to 22% of soil organic C (SOC) for the 0‐ to 3‐and 3‐ to 6‐cm depths, respectively. Tillage had a strongth influence on POMc within the 0‐ to 3‐cm depth, but cropping intensity and cover crop did not affect POMc. A large stratification for microbial biomass was observed varing from 221 to 434 and 63 to 110 mg kg?1 within depth of 0–3 and 12–24 cm respectively. The microbial biomass is a more sensitive indicator (compared to SOC) of management impacts, showing clear effect of tillage, rotation, and cropping intensity. The no‐tillage cotton double‐cropped wheat/soybean system that combined high cropping intensity and crop rotation provided the best soil quality.  相似文献   

7.
Residue retention and reduced tillage are both conservation agricultural practices that may enhance soil organic carbon (SOC) stabilization in soil. We evaluated the long‐term effects of no‐till (NT) and stover retention from maize on SOC dynamics in a Rayne silt loam Typic Hapludults in Ohio. The six treatments consisted of retaining 0, 25, 50, 75, 100 and 200% of maize residues on each 3 × 3 m plot from the crop of previous year. Soil samples were obtained after 9 yrs of establishing the experiment. The whole soil (0–10 and 10–20 cm of soil depths) samples under different treatments were analysed for total C, total N, recalcitrant C (NaOCl treated sample) and 13C isotopic abundance (0–10 cm soil depth). Complete removal of stover for a period of 9 yrs significantly (P < 0.01) decreased soil C content (15.5 g/kg), whereas 200% of stover retention had the maximum soil C concentration (23.1 g/kg). Relative distribution of C for all the treatments in different fractions comprised of 55–58% as labile and 42–45% as recalcitrant. Retention of residue did not significantly affect total C and N concentration in 10–20 cm depth. 13C isotopic signature data indicated that C4‐C (maize‐derived C) was the dominant fraction of C in the top 0–10 cm of soil layer under NT with maize‐derived C accounting for as high as 80% of the total SOC concentration. Contribution of C4‐C or maize‐derived C was 71–84% in recalcitrant fraction in different residue retained plots. Residue management is imperative to increase SOC concentrations and long‐term agro‐ecosystem necessitates residue retention for stabilizing C in light‐textured soils.  相似文献   

8.
Soil tillage practices affect the soil microbial community in various ways, with possible consequences for nitrogen (N) losses, plant growth and soil organic carbon (C) sequestration. As microbes affect soil organic matter (SOM) dynamics largely through their activity, their impact may not be deduced from biomass measurements alone. Moreover, residual microbial tissue is thought to facilitate SOM stabilization, and to provide a long term integrated measure of effects on the microorganisms. In this study, we therefore compared the effect of reduced (RT) and conventional tillage (CT) on the biomass, growth rate and residues of the major microbial decomposer groups fungi and bacteria. Soil samples were collected at two depths (0-5 cm and 5-20 cm) from plots in an Irish winter wheat field that were exposed to either conventional or shallow non-inversion tillage for 7 growing seasons. Total soil fungal and bacterial biomasses were estimated using epifluorescence microscopy. To separate between biomass of saprophytic fungi and arbuscular mycorrhizae, samples were analyzed for ergosterol and phospholipid fatty acid (PLFA) biomarkers. Growth rates of saprophytic fungi were determined by [14C]acetate-in-ergosterol incorporation, whereas bacterial growth rates were determined by the incorporation of 3H-leucine in bacterial proteins. Finally, soil contents of fungal and bacterial residues were estimated by quantifying microbial derived amino sugars. Reduced tillage increased the total biomass of both bacteria and fungi in the 0-5 cm soil layer to a similar extent. Both ergosterol and PLFA analyses indicated that RT increased biomass of saprophytic fungi in the 0-5 cm soil layer. In contrast, RT increased the biomass of arbuscular mycorrhizae as well as its contribution to the total fungal biomass across the whole plough layer. Growth rates of both saprotrophic fungi and bacteria on the other hand were not affected by soil tillage, possibly indicating a decreased turnover rate of soil microbial biomass under RT. Moreover, RT did not affect the proportion of microbial residues that were derived from fungi. In summary, our results suggest that RT can promote soil C storage without increasing the role of saprophytic fungi in SOM dynamics relative to that of bacteria.  相似文献   

9.
The continuous use of plowing for grain production has been the principal cause of soil degradation. This project was formulated on the hypothesis that the intensification of cropping systems by increasing biomass‐C input and its biodiversity under no‐till (NT) drives soil restoration of degraded agro‐ecosystem. The present study conducted at subtropical [Ponta Grossa (PG) site] and tropical regions [Lucas do Rio Verde, MT (LRV) site] in Brazil aimed to (i) assess the impact of the continuous plow‐based conventional tillage (CT) on soil organic carbon (SOC) stock vis‐à‐vis native vegetation (NV) as baseline; (ii) compare SOC balance among CT, NT cropping systems, and NV; and (iii) evaluate the redistribution of SOC stock in soil profile in relation to soil resilience. The continuous CT decreased the SOC stock by 0·58 and 0·67 Mg C ha−1 y−1 in the 0‐ to 20‐cm depth at the PG and LRV sites, respectively, and the rate of SOC sequestration was 0·59 for the PG site and ranged from 0·48 to 1·30 Mg C ha−1 y−1 for the LRV site. The fraction of C input by crop residues converted into SOC stock was ~14·2% at the PG site and ~20·5% at the LRV site. The SOC resilience index ranged from 0·29 to 0·79, and it increased with the increase in the C input among the NT systems and the SOC sequestration rates at the LRV site. These data support the hypothesis that NT cropping systems with high C input have a large potential to reverse the process of soil degradation and SOC decline. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Attention is being paid to the use of different tillage regimes as a means of retaining soil organic carbon (SOC) and sequestering more SOC. Alongside earlier measurements of total SOC stocks under different tillage regimes, we have examined the distribution of nitrogen (N), microbial activity and the structure of the soil bacterial community from differently tilled plots under continuous barley. The plots were established 5 yr before sampling and have been maintained annually under conventional tillage (CT; moldboard ploughing to 20 cm and disking), deep ploughing (DP; ploughing to 40 cm and disking), minimum tillage (MT; disking to 7 cm) or zero tillage (ZT). Our earlier work showed there was no difference in SOC contents down to 60‐cm depth between the treatments, but now we report that there were significant differences in the total N and active microbial biomass (substrate‐induced respiration) contents of the same soils. The N contents of the CT, DP and MT treatments were not significantly different, but the ZT contained significantly more N, indicating either greater N retention under the ZT treatment or preferential loss from the more intensively tilled treatments, or a combination of both. The microbial biomass content was greater for the CT and DP treatments than for the MT and ZT treatments, indicating greater sensitivity to treatment effects of the microbial biomass pool than the total C pool, consistent with its more dynamic nature. Terminal restriction fragment length polymorphism (T‐RFLP) analyses of the soil bacteria DNA (a method of assessing the bacterial community structure) enabled the samples to be distinguished both according to SOC content, which is to be expected, and to tillage regime with the greatest differences in community structure occurring in the ZT treatment and the least in DP and CT treatments, reflecting the degree of homogenization or disturbance resulting from tillage.  相似文献   

11.
Early seeding of winter wheat (Triticum aestivum L.) has been proposed as a means to reduce N leaching as an alternative to growing cover crops like fodder radish (Raphanus sativus L.). The objective of this study was to quantify the effect of winter wheat, seeded early and normally, and of fodder radish on N dynamics and root growth. Field experiments were carried out on a humid temperate sandy loam soil. Aboveground biomass and soil inorganic N were determined in late autumn; N uptake and grain yield of winter wheat were measured at harvest. Nitrate leaching was estimated from soil water samples taken at 1 m depth. Root growth was measured late autumn using the core break and root washing methods. Winter wheat root growth dynamics were followed during the growing season using the minirhizotron method. The 2013–2014 results showed that early seeding of wheat improved autumn growth and N uptake and reduced N leaching during the winter compared with the normal seeding time. Early‐seeded wheat (WWearly) was, however, not as efficient as fodder radish at reducing N leaching. Proper establishment of WWearly was a prerequisite for benefiting from early seeding, as indicated by the 2012–2013 results. Early seeding improved root growth throughout the 2013–2014 growing season compared with normal seeding time, but had no significant effect on crop grain yield. Our results indicate the potential of using early seeding as a tool to limit drought susceptibility and increase nutrient uptake from the subsoil.  相似文献   

12.
Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RT) and direct drilling (DD), all with (+CC) or without (−CC) fodder radish as a winter cover crop. Cover crop growth, soil mineral N dynamics, and other soil characteristics were recorded. Furthermore, soil concentrations of N2O were determined eight times during the monitoring period using permanently installed needles. There was little evidence for effects of the cover crop on soil mineral N. Following spring tillage and slurry application soil mineral N was dominated by the input from slurry. Nitrous oxide emissions during autumn, winter and early spring remained low, although higher emissions from +CC treatments were indicated after freezing events. Following spring tillage and slurry application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250-400 μg N m−2 h−1 except in the CT + CC treatment, where emissions peaked at 900 μg N m−2 h−1. Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha−1. A strong positive interaction between cover crop and tillage was observed. Soil concentration profiles of N2O showed a significant accumulation of N2O in CT relative to RT and DD treatments after spring tillage and slurry application, and a positive interaction between slurry and cover crop residues. A comparison in early May of N2O emissions with flux estimates based on soil concentration profiles indicated that much of the N2O emitted was produced near the soil surface.  相似文献   

13.
Abstract

Distribution of dissolved (DOC) and soil organic carbon (SOC) with depth may indicate soil and crop‐management effects on subsurface soil C sequestration. The objectives of this study were to investigate impacts of conventional tillage (CT), no tillage (NT), and cropping sequence on the depth distribution of DOC, SOC, and total nitrogen (N) for a silty clay loam soil after 20 years of continuous sorghum cropping. Conventional tillage consisted of disking, chiseling, ridging, and residue incorporation into soil, while residues remained on the soil surface for NT. Soil was sampled from six depth intervals ranging from 0 to 105 cm. Tillage effects on DOC and total N were primarily observed at 0–5 cm, whereas cropping sequence effects were observed to 55 cm. Soil organic carbon (C) was higher under NT than CT at 0–5 cm but higher under CT for subsurface soils. Dissolved organic C, SOC, and total N were 37, 36, and 66%, respectively, greater under NT than CT at 0–5 cm, and 171, 659, and 837% greater at 0–5 than 80–105 cm. The DOC decreased with each depth increment and averaged 18% higher under a sorghum–wheat–soybean rotation than a continuous sorghum monoculture. Both SOC and total N were higher for sorghum–wheat–soybean than continuous sorghum from 0–55 cm. Conventional tillage increased SOC and DOC in subsurface soils for intensive crop rotations, indicating that assessment of C in subsurface soils may be important for determining effects of tillage practices and crop rotations on soil C sequestration.  相似文献   

14.
This study relates to the pattern of activity and biomass of soil microorganisms due to varying residue particle sizes during incubation. Wheat straw (8 t ha–1) of different sizes (powdered, 0.9 cm, 1.8 cm, 2.9 cm and 4.4 cm) was incubated for 90 days at 50% water holding capacity in a loamy sand soil of Typic Camborthid. Dehydrogenase activity, an indicator of the total microbial activity, and microbial biomass were influenced by straw sizes during incubation. The peak dehydrogenase activity was recorded 21 days after incorporation of residue and it was highest in the powdered straw and decreased with increase in the straw length. The maximum biomass C build up was observed between 15 (< 1 cm) and 45 (> 1 cm) days after incorporation. The C:N ratio in the soil after 90 days of residue incorporation varied, with increase in straw size, between 12.1:1 and 20.8:1. The results reveal that for faster decomposition the length of the wheat straw should not exceed 1 cm.  相似文献   

15.
The effect of conversion of short‐rotation coppices (SRCs) to agricultural land on soil organic carbon (SOC), soil microbial properties and crop yield is largely unknown. The objective of this study was to assess the effects of subsequent land use and tillage depth after conversion of SRCs on (i) total SOC (ii) soil C fractions with differentiation of total harvest residues and woody harvest residues from SRC and maize by 13C analysis and (iii) dry matter and N yield of grassland and maize. For this purpose, field trials were established after conversion of SRCs at three sites in Germany and cultivated with maize and grassland with shallow (5 cm), medium (15 cm) and deep tillage depth (30 cm). Crops were sampled for 5 yrs, and soil samples were collected at a depth of 0–5, 5–15 and 15–30 cm. Amount of total carbon and soil carbon fractions immediately and 4 yrs after conversion of SRC were compared. Tillage depth had no effect on dry matter yield of maize and grassland. The amount of woody harvest residues decreased over time following conversion at all sites irrespective of land use or tillage depth, but SOC decreased only at one site. Microbial biomass was particularly sensitive to land use, but microorganisms reacted differently to tillage depth depending on the soil conditions. Our results reveal that decomposition of woody harvest residues is rapid and that effects of tillage and land use on different soil C‐pools are site specific.  相似文献   

16.
Grazing of cover crops in grain cropping systems can increase economic return and diversify agricultural production systems, but the environmental consequences of this intensified management have not been well documented, especially under different tillage systems. We conducted a multiple-year investigation of how cover crop management (grazed and ungrazed) and tillage system [conventional (CT; initial moldboard plowing and thereafter disk tillage) and no tillage (NT)] affected soil physical properties (bulk density, aggregation, infiltration, and penetration resistance) on a Typic Kanhapludult in Georgia. Responses were determined in two cropping systems: summer grain/winter cover crop and winter grain/summer cover crop. Soil bulk density was reduced (P = 0.02) with CT compared with NT to a depth of 30 cm at the end of 0.5 year, but only to a depth of 12 cm at the end of 2, 2.5, and 4.5 years. Grazing of cover crops had little effect on soil bulk density, except eventually with 4.5 years of management. Water-stable macroaggregation was reduced (P ≤ 0.01) with CT compared with NT to a depth of 12 cm at all sampling times during the first 2.5 years of evaluation. Stability of macroaggregates in water was unaffected by grazing of cover crops in both tillage systems. Across 7 sampling events during the first 4 years, there was a tendency (P = 0.07) for water infiltration rate to be lower with grazing of cover crops (5.6 mm min−1) than when ungrazed (6.9 mm min−1), irrespective of tillage system. Across 10 sampling events, soil penetration resistance was greater under NT than under CT at a depth of 0–10 cm (P = 0.001) and the difference was greater in ungrazed than in grazed systems (P = 0.06). Biannual CT operations may have alleviated any surface degradation with animal traffic, but the initially high level of soil organic matter following long-term pasture and conversion to cropland with NT may have buffered the soil from any detrimental effects of animal traffic. Overall, the introduction of cattle to consume the high-quality cover crop forage did not cause substantial damage to the soil.  相似文献   

17.
No‐till (NT) farming can restore the soil organic carbon (SOC) pool of agricultural soils, but the SOC pool size and retention rate can vary with soil type and duration of NT. Therefore, the objectives of this study were to determine the effects of NT and soil drainage characteristics on SOC accumulation across a series of NT fields on Alfisols in Ohio, USA. Sites under NT for 9 (NT9), 13 (NT13), 36 (NT36), 48 (NT48) and 49 (NT49) years were selected for the study. Soil was somewhat poorly drained at the NT48 site but moderately well drained at the other sites. The NT48 and NT49 on‐station sites were under continuous corn (Zea mays), while the other sites were farmers' fields in a corn–soybean (Glycine max) rotation. At each location, the SOC pool (0–30 cm) in the NT field was compared to that of an adjacent plough‐till (PT) and woodlot (WL). At the NT36, NT48 and NT49 sites, the retention rate of corn‐derived C was determined using stable C isotope (13C) techniques. In the 0‐ to 10‐cm soil layer, SOC concentration was significantly larger under NT than PT, but a tillage effect was rarely detected below that depth. Across sites, the SOC pool in that layer averaged 36.4, 20 and 40.8 Mg C/ha at the NT, PT and WL sites, respectively. For the 0‐ to 30‐cm layer, the SOC pool for NT (83.4 Mg C/ha) was still 57% greater than under PT. However, there was no consistent trend in the SOC pool with NT duration probably due to the legacy of past management practices and SOC content differences that may have existed among the study sites prior to their conversion to NT. The retention rate of corn‐derived C was 524, 263 and 203 kg C/ha/yr at the NT36, NT48 and NT49 sites. In contrast, the retention rate of corn‐C under PT averaged 25 and 153 kg C/ha/yr at the NT49 (moderately well‐drained) and NT48 (somewhat poorly drained) sites, respectively. The conversion from PT to NT resulted in greater retention of corn‐derived C. Thus, adoption of NT would be beneficial to SOC sequestration in agricultural soils of the region.  相似文献   

18.
Land use change, tillage practices and straw incorporation are known to affect soil organic carbon (SOC) as well as soil inorganic carbon (SIC) turnover in agricultural soils. SOC and SIC, particularly pedogenic carbonates (PC), were assessed in a semi‐humid region of China to a depth of 160 cm. δ13C values were used to calculate the percentage of PC and lithogenic carbonates (LC) in the total SIC. Over the 39‐y period of intensive agriculture including 14 y of tillage × straw experiment, three treatments, i.e ., tillage with wheat and maize straw return (TWM), tillage with wheat straw return (TW), and wheat and maize straw return with no‐tillage (WM) showed an increase of PC compared to a native plantation plot (NP). The significantly higher SOC stock via no‐tillage was limited to top 1 m soil and there was no significant difference between tillage and no‐tillage treatments at 0–160 cm depth. The changes of SOC caused by the tillage and maize straw addition were negligible compared to the gain in PC. Tillage, crop residues incorporation and irrigation played an important role in the turnover of PC and LC. SIC accumulation resulted from combination of neoformation of PC and conservation of LC. Neoformation of silicatic PC sequestered at least 0.49, 0.47, and 0.29 Mg C ha−1 y−1 in TWM, TW, and WM treatments, respectively, with reference to NP plot. We concluded that to evaluate the long term impacts of land use and farming practices on soil C storage, change of pedogenic and lithogenic carbonates and soil organic carbon in deeper soil profiles should be integrated on regional and global scales.  相似文献   

19.
Global demand for bioenergy increases interest in biomass‐derived fuels, as ethanol from sugarcane straw. However, straw is the main carbon source to soil and its removal reduces C input, affecting active fractions (dissolved organic carbon, DOC) and C storage. To quantify the effects of straw removal on DOC and C stocks, we built lysimeter system using soil (Rhodic Kandiudox) from sugarcane field. We evaluated four soil depths (1, 20, 50 and 100 cm) and four straw removal rates: no removal NR, medium MR, high HR and total TR, leaving 12, 6, 3 and 0 Mg/ha on the soil surface, respectively. After rainfall, drainage water was collected and analysed for DOC content. Soil C stocks were determined after the 17‐month. Total DOC released at 1‐cm depth amounted to 606, 500, 441 and 157 kg/ha in NR, MR, HR and TR, respectively. Net‐DOC suggests straw as the main source of DOC. Most of DOC in NR (50%) was retained within the 1–20 cm layer, resulting in higher C stock (10 Mg/ha) in the topsoil. In HR and MR, DOC retention was higher within 20–50 cm, suggesting differences in DOC composition. DOC in TR was 40% higher at 20 cm than at 1 cm, indicating C losses from topsoil. Low concentrations of DOC were found at 100‐cm depth, but representing 30% in TR. Straw removal for bioenergy production is sustainable, but we should leave at least 3 Mg/ha of straw to ensure DOC production and soil C storage, taking account the DOC contribution to key soil functions.  相似文献   

20.
Germinability and virulence of sclerotia of Sclerotium rolfsii were assessed after 50 days of exposure of 14C-labeled sclerotia to soil at 0, −5 and −15 kPa and pH 6.9, or to soil at 15, 25 or 30 °C, pH 5 or 8 and −1 kPa. Evolution of 14CO2 accounted for the greatest share of endogenous carbon loss from sclerotia under all soil conditions, except in water-saturated soil (0 kPa), in which sclerotial exudates contributed the major share of carbon loss. Total evolution of 14CO2 from sclerotia in soil at −15 kPa (42.4% of total 14C) and at −5 kPa (38%) was significantly higher than at 0 kPa (23.8%). Evolution of 14CO2 in soil at 25 or 30 °C was more rapid than at 15 °C with regardless of pH. Loss of endogenous carbon by sclerotia was the greater after 50 days of exposure to soil at 0 kPa, or at 25 or 30 °C and pH 8, than at other soil conditions. Sclerotia exposed to water-saturated soil (0 kPa) showed a more rapid decline in nutrient independent germinability, viability and virulence, than to those exposed to −5 or −15 kPa. Sclerotia became dependent on nutrient for germination and lost viability and virulence within 30–40 days in soil at 25 or 30 °C, pH 8. However, more than 60% of sclerotia retained viability in soil at 15 °C regardless of pH, even after 50 days. Radish shoot growth was increased significantly by the sclerotia that had been exposed to soil at 0 kPa, or to soil at 25 or 30 °C and pH 8 for 50 days. In conclusion, carbon loss by sclerotia during incubation on soil at different pH levels, temperatures and water potentials was inversely correlated with sclerotial ability to infect radish seedlings. The relationship between carbon loss by sclerotia and radish shoot length was positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号