首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 136 毫秒
1.
不同耕作方式对土壤有机碳、微生物量及酶活性的影响   总被引:12,自引:2,他引:10  
【目的】依托8年长期(2005~2012)固定道定位试验,研究不同耕作方式对土壤有机碳、土壤微生物量、土壤酶活性在0—90 cm土层的分布特征,为优化中国西北干旱区的耕作方式提供理论依据。【方法】试验包括固定道垄作(PRB)、固定道平作(PFT)与传统耕作(CT)三种耕作模式下的土壤有机碳土壤总有机碳(TOC)、颗粒有机碳(POC)、土壤微生物量碳(MBC)、土壤微生物量氮(MBN)、土壤微生物量磷(MBP)、蔗糖酶、过氧化氢酶、脲酶及小麦产量进行了测定和分析。【结果】在0—90 cm土层,不同耕作方式下的TOC、POC、MBC、MBN、MBP、蔗糖酶活性、脲酶活性均随着土层的增加呈下降趋势,过氧化氢酶活性呈先下降后增大的分布特征;在0—60 cm,固定道保护性耕作能够显著增加心土层作物生长带土壤有机碳储量,有机碳储量大小为PRBPFTCT;PRB、PFT较CT可以显著增加0—10 cm作物生长带TOC、POC、MBC、MBN、MBP含量、蔗糖酶、脲酶活性,其大小为PRBPFTCT;耕作方式对过氧化氢酶活性影响不显著;TOC、POC、MBC、MBN、MBP、蔗糖酶活性、脲酶活性、过氧化氢酶活性之间均达到了显著或极显著相关。【结论】PRB较PFT、CT能够提高耕作层(0—10 cm)土壤有机碳含量、土壤微生物量、土壤酶活性, 增加作物产量, 增大0—60 cm土层有机碳储量,耕作方式(PRB、PFT及CT)对10 cm以下土层土壤环境改善作用不明显。  相似文献   

2.
Crop rotation and tillage impact microbial C dynamics, which are important for sequestering C to offset global climate change and to promote sustainable crop production. Little information is available for these processes in tropical/subtropical agroecosystems, which cover vast areas of terrestrial ecosystems. Consequently, a study of crop rotation in combination with no tillage (NT) and conventional tillage (CT) systems was conducted on an Oxisol (Typic Haplorthox) in an experiment established in 1976 at Londrina, Brazil. Soil samples were taken at 0–50, 50–100 and 100–200 mm depths in August 1997 and 1998 and evaluated for microbial biomass carbon (MBC) and mineralizable C and N. There were few differences due to crop rotation, however there were significant differences due to tillage. No tillage systems increased total C by 45%, microbial biomass by 83% and MBC:total C ratio by 23% at 0–50 mm depth over CT. C and N mineralization increased 74% with NT compared to CT systems for the 0–200 mm depth. Under NT, the metabolic quotient (CO2 evolved per unit of MBC) decreased by 32% averaged across soil depths, which suggests CT produced a microbial pool that was more metabolically active than under NT systems. These soil microbial properties were shown to be sensitive indicators of long-term tillage management under tropical conditions.  相似文献   

3.
Understanding of tillage effects on soil chemical properties and cations in soil solution dynamics is essential for making appropriate land-management decisions. Measurements were made after more than 25 years of different tillage treatments: conventional tillage (CT) and conservation tillage, which includes no-till (NT) and minimum tillage (MT). pH and bulk density did not show important changes but exchangeable cations and cations in soil solution were affected by depth and different tillage. The highest concentration of exchangeable Ca2+ and Mg2+ was found in NT, decreased in MT and the lowest concentration was found in CT (mean values were 26.0, 24.4 and 23.3 cmolc kg?1 for exchangeable Ca2+ and 4.2, 3.7 and 3.3 cmolc kg?1 for exchangeable Mg2+ in NT, MT and CT, respectively). In addition, the highest concentration of exchangeable Na+ was found in NT, decreased in CT and the lowest concentration was found in MT. However, the highest concentration of exchangeable K+ was found in MT. A significant depth effect was observed for cations in soil solution: Na+ increased with depth whereas K+ and Ca2+ decreased with depth. This study aims to demonstrate the effect of tillage on the distribution and concentration of certain chemical soil properties.  相似文献   

4.
To assess changes in organic carbon pools, an incubation experiment was conducted under different temperatures and field moisture capacity (FMC) on a brown loam soil from three tillage practices used for 12 years: no‐till (NT), subsoiling (ST) and conventional tillage (CT). Total microbial respiration was measured for incubated soil with and without the input of straw. Results indicated that soil organic carbon (SOC) and microbial biomass carbon (MBC) under ST, NT and CT was higher in soil with straw input than that without, while the microbial quotient (MQ or MBC: SOC) and metabolic quotient (qCO2) content under CT followed the opposite trend. Lower temperature, lower moisture and with straw input contributed to the increases in SOC concentration, especially under NT and ST systems. The SOC concentrations under ST, with temperatures of 30 and 35°C after incubation at 55% FMC, were greater than those under CT by 28.4% and 30.6%, respectively. The increase in MBC was highest at 35°C for 55%, 65% and 75% FMC; in soil under ST, MBC was greater than that under CT by 199.3%, 50.7% and 23.8%, respectively. At 30°C, the lower qCO2 was obtained in soil incubated under NT and ST. The highest MQ among three tillage practices was measured under ST at 55% FMC, NT at 65% FMC and CT at 75% FMC with straw input. These data indicate the benefits of enhancing the MQ; the low FMC was beneficial to ST treatment. Under higher temperature and drought stress conditions, the adaptive capacity of ST and NT is better than that of CT.  相似文献   

5.
为了探讨黑河流域保护性耕作对土壤生产力的影响,设计20cm留茬(NS20),20cm留茬压倒(NPS20),40cm留茬(NS40),40cm留茬压倒(NPS40)和传统耕作(CT)5个处理,研究了黑河流域保护性耕作对农田土壤有机质、土壤微生物量C、土壤微生物量N以及作物产量和水分利用效率的影响。结果表明,保护性耕作农田0—20cm土层土壤有机质、土壤微生物量C和N的含量均高于传统耕作,且其在剖面中的变化趋势基本一致,即随土层深度增加下降;土壤微生物量N有明显的"表聚现象";相关分析表明土壤有机质和土壤微生物量C之间显著正相关(r=0.85,p0.05),与土壤微生物量N之间无明显的相关关系(r=0.47,p0.05);保护性耕作提高了春小麦的产量,NPS20和NPS40增产效果最好,较CT分别增产53.08%和46.59%,与CT之间差异达到极显著水平;保护性耕作提高了春小麦的水分利用效率(WUE),NPS20,NS40,NPS40,NS20分别较CT的WUE提高了58.02%,43.40%,47.27%,23.78%。  相似文献   

6.
We studied the effects of long term conservation tillage (CT) versus traditional tillage (TT) on soil biological status of a semi-arid sandy clay loam soil (Xerofluvent). The study was conducted in a wheat (Triticum aestivum, L.)–sunflower (Helianthus annuus, L.) crop rotation established in 1991 under rainfed conditions in SW Spain. A fodder pea (Pisum arvense, L.) crop was introduced in the rotation in 2005. Soil biological status was evaluated by measuring the microbial biomass carbon (MBC) and some enzyme activities (dehydrogenase, alkaline phosphatase, β-glucosidase and protease) in autumn of 2004 and in summer of 2005, before and after the fodder pea crop, respectively. Soil analyses were performed in samples collected at three depths (0–5, 5–10 and 10–25 cm). In general and in both samplings, increases in the organic matter content, MBC and enzymatic activities were found in the more superficial layers of soil under CT than under TT. Values of MBC were lower in summer, whereas values of enzyme activities were similar in both samplings. Biological properties showed a pronounced decrease with increasing soil depth. Statistical differences in biochemical properties between soils under the different tillage were not found in the deeper layer (10–25 cm). Enzymatic activities, MBC and organic matter (water-soluble carbon (WSC) and soil organic carbon (SOC) contents) were strongly correlated (p < 0.01). Conservation tillage improved the quality of soil in the superficial layer by enhancing its organic matter content and, especially, its biological status, as reflected in the values of stratification ratios for MBC and enzymatic activities.  相似文献   

7.
Short- and long-term field experiments are necessary to provide important information about how soil carbon sequestration is affected by soil tillage system; such systems can also be useful for developing sustainable crop production systems. In this study, we evaluated the short- and long-term effects of conservation tillage (CT) on soil organic carbon fractions and biological properties in a sandy clay loam soil. Both trials consisted of rainfed crop rotation systems (cereal–sunflower–legumes) located in semi-arid SW Spain. In both trials, results were compared to those obtained using traditional tillage (TT). Soil samples were taken in flowering and after harvesting of a pea crop and collected at three depths (0–5, 5–10 and 10–20 cm). The soil organic carbon fractions were measured by the determination of total organic carbon (TOC), active carbon (AC) and water soluble carbon (WSC). Biological status was evaluated by the measurement of soil microbial biomass carbon (MBC) and enzymatic activities [dehydrogenase activity (DHA), o-diphenol oxidase activity (DphOx), and β-glucosidase activity (β-glu)].The contents of AC and MBC in the long-term trial and contents of AC in the short-term trial were higher for CT than TT at 0–5 cm depth for both sampling periods. Furthermore, DHA and β-glucosidase values in the July sampling were higher in the topsoil under conservation management in both trials (short- and long-term). The parameters studied tended to decrease as depth increased for both tillage system (TT and CT) and in both trials with the exception of the DphOx values, which tended to be higher at deeper layers.Values of DHA and β-glu presented high correlation coefficients (r from 0.338 to 0.751, p ≤ 0.01) with AC, WSC and TOC values in the long-term trial. However, there was no correlation between either TOC or MBC and the other parameters in the short-term trial. In general, only stratification ratios of AC were higher in CT than in TT in both trials. The results of this study showed that AC content was the most sensitive and reliable indicator for assessing the impact of different soil management on soil quality in the two experiments (short- and long-term).Conservation management in dryland farming systems improved the quality of soil under our conditions, especially at the surface layers, by enhancing its storage of organic matter and its biological properties, mainly to long-term.  相似文献   

8.
《Soil biology & biochemistry》2001,33(7-8):1067-1075
Placement of plant residues in conventional tillage (CT) and no-tillage (NT) soils affects organic matter accumulation and the organization of the associated soil food webs. Root-derived C inputs can be considerable and may also influence soil organic matter dynamics and soil food web organization. In order to differentiate and quantify C contributions from either roots or litter in CT and NT soils, a 14C tracer method was used.To follow root-derived C, maize plants growing in the field were 14C pulse-labeled, while the plant litter in those plots remained unlabeled. The 14C was measured in NT and CT soils for the different C pools (shoots, roots, soil, soil respiration, microbial biomass). Litter-derived C was followed by applying 14C labeled maize litter to plots which had previously grown unlabeled maize plants. The 14C pools measured for the litter-derived CT and NT plots included organic matter, microbial biomass, soil respiration, and soil organic C.Of the applied label in the root-derived C plots, 35–55, 6–8, 3, 1.6, and 0.4–2.4% was recovered in the shoots, roots, soil, cumulative soil respiration, and microbial biomass, respectively. The 14C recovered in these pools did not differ between CT and NT treatments, supporting the hypothesis that the rhizosphere microbial biomass in NT and CT may be similar in utilization of root-derived C. Root exudates were estimated to be 8–13% of the applied label. In litter-derived C plots, the percentage of applied label recovered in the particulate organic matter (3.2–82%), microbial biomass (4–6%), or cumulative soil respiration (12.5–14.7%) was the same for CT and NT soils. But the percentage of 14C recovered in CT soil organic C (18–69%) was higher than that in NT (12–43%), suggesting that particulate organic matter (POM) leaching and decomposition occurred at a higher rate in CT than in NT. Results indicate faster turnover of litter-derived C in the CT plots.  相似文献   

9.
Intensive tillage for annual crop production may be affecting soil health and quality. However, tillage intensity effects on biological activities of volcanic-derived soils have not been systematically investigated. We evaluated the effects of three different tillage practices on some biological activities of an Ultisol from southern Chile during the third year of a wheat–lupin–wheat crop sequence. Treatments were: no tillage with stubble burning (NTB), no tillage without stubble burning (NT) and conventional tillage with disk-harrowing and stubble burning (CT). Biological activities were evaluated in winter and summer at 0–200 mm and at three soil depths (0–50, 50–100 and 100–200 mm) in winter. Total organic C and N were significantly higher under no-tillage systems than CT. In general, NT increased C and N of microbial biomass in comparison with CT, especially in winter. Microbial biomass C was closely associated with microbial biomass N (r = 0.986, P < 0.05); acid phosphomonoesterase (r = 0.999, P < 0.05); β-glucosidase (r = 0.978, P < 0.05), and others. Changes in biological activities occurred mainly in the upper soil layer (0–50 mm depth) in spite of the short duration of the experiment. Biological activities could be used as practical biological indicators to apply the more appropriate management systems for increasing soil sustainability or productivity.  相似文献   

10.
Soil total organic carbon (TOC) is a composite indicator of soil quality with implications for crop production and the regulation of soil ecosystem services. Research reports on the dynamics of TOC as a consequence of soil management practices in subtropical climatic conditions, where microbial carbon (C) loss is high, are very limited. The objective of our study was to evaluate the impact of seven years of continuous tillage and residue management on soil TOC dynamics (quantitative and qualitative) with respect to lability and stratification under an annual wheat-mung bean-rice cropping sequence. Composite soil samples were collected at 0-15 and 15-30 cm depths from a three-replicate split-plot experiment with tillage treatment as the main plots and crop residue levels as the sub-plots. The tillage treatments included conventional tillage (CT) and strip tillage (ST). Residue levels were high residue level (HR), 30% of the plant height, and low residue level (LR), 15%. In addition to TOC, soil samples were analyzed for particulate organic C (POC), permanganate oxidizable C (POXC), basal respiration (BR), specific maintenance respiration rate (qCO2), microbial biomass C (MBC), potentially mineralizable C (PMC), and TOC lability and management indices. The ST treatment significantly increased the TOC and labile C pools at both depths compared with the CT treatment, with the effect being more pronounced in the surface layer. The HR treatment increased TOC and labile C pools compared with the LR treatment. The ST + HR treatment showed significant increases in MBC, metabolic quotient (qR), C pool index (CPI), C lability index (CLI), and C management index (CMI), indicating improved and efficient soil biological activities in such systems compared with the CT treatment. Similarly, the stratification values, a measure of soil quality improvement, for POC and MBC were > 2, indicating improved soil quality in the ST + HR treatment compared with the CT treatment. The ST + HR treatment not only significantly increased the contents of TOC pools, but also their stocks. The CMI was correlated with qCO2, BR, and MBC, suggesting that these are sensitive indicators of early changes in TOC. The qCO2 was significantly higher in the CT + LR treatment and negatively correlated with MBC and CMI, indicating a biologically stressed soil condition in this treatment. Our findings highlight that medium-term reduced tillage with HR management has profound consequences on soil TOC quality and dynamics as mediated by alterations in labile C pools.  相似文献   

11.
A field study was carried out to analyze the short-term (2 years) effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. The experimental design was a split-plot arrangement of treatments, consisting of two tillage treatments—ridge tillage (RT) and no-tillage (NT)—in combination with two crop rotation treatments—corn (Zea mays L.) monoculture and a 2-year corn-soybean (Glycine max L.) rotation. Phospholipid fatty acid (PLFA) profiles were used to assess soil microbial community structure. No-tillage resulted in significantly higher total PLFAs compared to the RT treatment, which was accompanied by higher activities of protease, β-glucosaminidase, and β-glucosidase. This suggests a close link between soil microbial communities and enzyme activities in response to tillage. The increase of total microbial lipid biomass in the NT soils was due to the increase in both fungal and bacterial PLFAs. Crop rotation had little effect on soil bacterial communities and enzyme activities, but it significantly influenced soil fungal communities, particularly arbuscular mycorrhizal fungi. Soils under monoculture corn had higher fungal biomass than soils under corn-soybean rotation regardless of tillage treatment.  相似文献   

12.
Soil physical, chemical, and biological properties in a rice field located at the Surin Rice Research Center, Thailand, were evaluated as indicators for predicting organic rice (Kao Dok Mali 105 variety) production and yield. Four treatments under different management practices were studied. They included (1) conventional farming (CF) receiving chemical fertilizer application; (2) organic plot receiving green manure (GM) addition; (3) organic plot receiving rice straw (RS) addition; and (4) control plot (CT) without any external plant nutrient source. Soil quality in the four treatments was assessed based upon selected physical, chemical, and biological parameters. Key findings are as follows: cation exchange capacity (CEC), electrical conductivity (EC), pH, soil organic matter (SOM), and essential macronutrients [nitrogen (N), phosphorus (P), and potassium (K)] were low in all plots. Soil biological properties including potential N mineralization (PMN), soil basal respiration (BR), microbial biomass carbon (MBC) and microbial biomass N (MBN) in all treatments were also low. Principal component analysis (PCA), using 15 soil properties, showed significant differences among farm management practices. Soil chemical and biological properties best related to soil quality included P, N, and SOM (for chemical properties) and MBC, MBN, and BR (for biological properties). Based on significant relationships between yield (r > 0.75) and the soil properties (r > 0.55), selected soil biological (MBC, MBN, and BR) and chemical (TOP [total organic phosphorus], TK [total potassium], TN [total nitrogen], SOC [soil organic carbon], and SOM) properties were determined to be suitable soil-quality indicators, respectively. A soil-quality indicator for predicting rice yield was computed using multiple regression analyses. The regression model (Y = ?1.685 + 0.333 (MBN) + 0.640 (TK) ? 0.282 (SOC), r2 adjusted = 0.962) was used for predicting yield. Grain yield of rice (RMSE = 0.046 t ha?1, D index = 0.45) was obtained using this regression model.  相似文献   

13.
Many questions have surfaced regarding long-term impacts of land-use and cultivation system on soil carbon (C) sequestration. The experiment was conducted at Ohio Agricultural Research and Development Center. Only minor variations of soil organic carbon (SOC) and nitrogen (N) fractions with depth under plow tillage (PT). The SOC, total nitrogen (TN), microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) concentrations were higher under grassland and forestland in the top 0–15 cm depth than arable soils. No-tillage (NT) also increased SOC and N fractions concentrations in the surface soils than PT. Compared to arable, grass and forest could significantly improve proportions of MBC and MBN, and reduce proportions of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). NT and forest also increased the ratio of SOC/TN, MBC/MBN, and DOC/DON. Overall, grass and forest provided more labile C and improved C sequestration than arable. So did NT under arable land-use.  相似文献   

14.
A field study was conducted to assess the long-term effects of no-tillage (NT) and conventional tillage (CT), and the short-term effects following tillage conversion from CT to NT (NTn) and from NT to CT (CTn) on soil quality (SQ) indicators in a semi-humid climate. First, plots of a long-term tillage experiment on a Luvic Phaeozem initiated in 1986 were split into two subplots in 2012, yielding four treatments: NT, CT, NTn and CTn. In 2015, composite soil samples were collected from each treatment and from a natural site (Ref) at depths 0–5, 5–10, 10–20 and 0–20 cm. Several indicators were determined: soil organic carbon (SOC) and nitrogen (SON); particulate organic C (POM-C) and N (POM-N); potential N mineralization (PMN) and soil respiration (Rs). Moreover, bulk density was determined in long-term tillage systems. Different ratios between indicators were calculated, with emphasis on its function in the agroecosystem, that is functional indicators. Significant differences in SOC, SON and PMN were found between CT and NT at most depths. In contrast, 3 years after tillage conversion, only a part of the SQ indicators studied were modified mainly at the 0–10 cm depth. The functional indicators showed differences between tillage systems in the long-term and after short-term tillage conversion depending on the depth; however, the PMN/SON ratio demonstrated differences at all depths. Under these conditions, this ratio-related to easily mineralizable N fraction proved to be a promising indicator for assessing SQ under contrasting tillage systems regardless of the sampling depth.  相似文献   

15.
Seasonal changes in the levels of soil microbial biomass C (MBC) and N (MBN), N-mineralization rate and available-N concentration were studied in rice–barley supporting tropical dryland (rainfed) agroecosystem under six combinations of tillage (conventional, minimum and zero tillage) and crop residue manipulation (retained or removed) conditions. Highest levels of soil MBC and MBN (368–503 and 38.2–59.7 μg g−1, respectively) were obtained in minimum tillage residue retained (MT+R) treatment and lowest levels (214–264 and 20.3–27.1 μg g−1, respectively) in conventional tillage residue removed (CT−R, control) treatment. Along with residue retention tillage reduction from conventional to zero increased the levels of MBC and MBN (36–82 and 29–104% over control, respectively). The proportion of MBC and MBN in soil organic C and total N contents increased significantly in all treatments compared to control. This increase (28% in case of C and 33% N) was maximum in MT+R and minimum (10% for C and N both) in minimum tillage residue removed (MT−R) treatment. In all treatments concentrations of N in microbial biomass were greater at seedling stage, thereafter these concentrations decreased drastically (21–38%) at grain-forming stage of both crops. In residue removed treatments, N-mineralization rates were maximum during the seedling stage of crops and then decreased through the crop maturity. In residue retained treatments, however, N-mineralization rates were lower than in residue removed treatments at seedling stage of both crops. At grain-forming stage in all instances the N-mineralization rates in residue retained treatments considerably exceeded the rates in corresponding residue removed treatments. Tillage reduction and residue retention both increased the proportion of organic C and total N present in soil organic matter as microbial biomass. Microbial immobilization of available-N during the early phase of crops and its pulsed release later during the period of greater N demand of crops enhanced the degree of synchronization between crop demand and N supply. The maximum enhancement effects were recorded in the minimum tillage along with residue retained treatment. In the dryland agroecosystem studied, two management practices in combination proved more advantageous than either practice alone in maintaining soil fertility levels. For soil fertility amelioration in dryland agroecosystems with least dependence upon chemical fertilizer input, post-harvest retention of about 20 cm shoot biomass (accounting for 25–40% aboveground biomass) of previous crop and its incorporation in soil through minimum tillage in the succeeding crop is suggested, especially in the case of cereal.  相似文献   

16.
  【目的】  探究生物炭配施化肥对不同粒级团聚体中微生物量碳、氮 (MBC、MBN) 含量和胞外酶活性的影响,分析影响团聚体胞外酶活性变化的主控因素,为提升土壤质量提供科学依据。  【方法】  田间微区试验在河南现代农业研究基地进行,供试土壤为石灰性潮土。设置4个处理:不施肥 (CK)、单施化肥 (NPK)、单施生物炭 (BC) 和生物炭配施化肥 (BC+NPK),生物炭是以花生壳为原料高温裂解制备而成,仅在试验开始前施用一次,化肥每季均施用。试验开始于2017年小麦季,于2019年9月玉米收获后采集耕层土壤样品,测定土壤养分含量,分析各粒径团聚体MBC、MBN含量和酶活性。  【结果】  与CK相比,NPK处理可显著提高耕层土壤有效磷、速效钾和硝态氮含量,BC处理可显著提高有机碳和全氮含量,BC+NPK处理则显著提高了以上各指标含量。与CK相比,BC处理显著降低了粒径2~0.25 mm团聚体MBN含量,并明显增加了该粒径的MBC/MBN值;BC+NPK处理显著增加了粒径 > 2 mm和0.25~0.053 mm团聚体中MBC含量 (增幅分别为59.57%和34.68%),也增加了耕层土壤、粒径 > 2 mm和2~0.25 mm团聚体中MBN含量 (增幅分别为17.33%、42.24%和19.28%)。与CK相比,NPK、BC和BC+NPK处理均显著增加粒径 > 2 mm团聚体微生物熵,而BC和BC+NPK处理则显著降低了耕层土壤、粒径2~0.25 mm和0.25~0.053 mm团聚体微生物熵。与CK相比,NPK和BC+NPK处理均显著提高了粒径2~0.25 mm和0.25~0.053 mm团聚体中β-葡糖苷酶、β-纤维二糖苷酶、α-葡糖苷酶和β-木糖苷酶活性;在粒径 > 2 mm团聚体中,仅BC+NPK处理明显提高了该四种酶的活性。与CK相比,NPK和BC+NPK处理均明显提高了粒径 > 2 mm团聚体中脲酶活性及粒径0.25~0.053 mm团聚体中乙酰氨基葡糖苷酶活性,仅BC+NPK处理可显著提高粒径 > 2 mm和0.25~0.053 mm团聚体中亮氨酸氨基肽酶活性。团聚体酶活性变化与MBC、MBN含量以及MBC/MBN值显著相关。粒径 > 2 mm团聚体中酶活性变化与微生物熵、全氮和MBC含量均显著相关,粒径2~0.25 mm团聚体中酶活性变化与MBC/MBN值显著相关,而粒径0.25~0.053 mm团聚体中酶活性变化与MBC含量显著相关。  【结论】  生物炭与化肥配施有利于土壤碳的固存,改善土壤微环境,提升土壤质量,且生物炭添加到土壤中有较长的后效。  相似文献   

17.
Corn straw is an important source of carbon (C),and when applied to soil,it alters the accumulation and distribution of organic C.However,the mechanistic pathways by which newly added C is stored and stabilized in soil remain a subject of interest and debate among scholars.In this study,we investigated the chemistry of organic matter in different density fractions of Haplic Cambisol (sandy clay loam) in a field experiment with corn straw at8 900 kg ha-1year-1under no tillag...  相似文献   

18.
轮耕对渭北旱塬春玉米田土壤理化性状和产量的影响   总被引:6,自引:0,他引:6  
为了揭示不同轮耕处理对渭北旱塬春玉米田土壤理化性状及春玉米产量的影响,于2008—2010年在陕西合阳设置了免耕深松免耕(NT/ST/NT)、深松翻耕深松(ST/CT/ST)、翻耕免耕翻耕(CT/NT/CT)、免耕免耕免耕(NT/NT/NT)、深松深松深松(ST/ST/ST)和翻耕翻耕翻耕(CT/CT/CT)6种轮耕模式,测定和分析了各轮耕处理下土壤容重、土壤养分与玉米产量差异。结果表明:(1)各轮耕处理降低了土壤容重,提高了土壤孔隙度,增加了田间持水量,且以NT/ST/NT处理效果最佳;与对照CT/CT/CT相比,NT/ST/NT处理0~20cm和20~40 cm土层土壤容重分别降低11.43%和9.79%,土壤孔隙度分别增加11.05%和9.87%。(2)NT/ST/NT处理对耕层0~20 cm土层土壤有机质和全氮含量影响显著(P<0.05),0~60 cm土层土壤有机质平均含量最高(10.36 g.kg 1),土壤全氮含量平均值比试验开始前和对照CT/CT/CT分别提高10.65%和4.31%;各耕作处理对0~20 cm土层土壤全氮和碱解氮含量影响较大,而对20~40 cm土层土壤有效磷和速效钾含量影响较大,保护性轮耕处理对土壤培肥效应显著(P<0.05)高于传统翻耕处理。(3)NT/ST/NT、ST/CT/ST、CT/NT/CT、NT/NT/NT和ST/ST/ST处理产量比对照CT/CT/CT处理分别增产22.42%、16.33%、3.77%、9.91%和14.18%(P<0.05),以NT/ST/NT处理春玉米增产率最高。  相似文献   

19.
A multidisciplinary study was carried out over four years in Northern Italy on a silt loam under continuous maize. The experimental design was a split-plot with four replicates; the main factor was the soil management system, conventional tillage (CT) or no-tillage (NT), while the secondary factor was N fertilisation. At the end of the trial, soil samples were taken from all plots at four depths (from 0 to 20 cm). In these samples the following were determined: pH, soil organic carbon (SOC), total N, available P, exchangeable K, cation exchange capacity (CEC), electrical conductivity (EC) and water aggregate stability (WAS). Soil compaction was measured during the last three years, after maize harvesting. To study the microarthropod community, soil samples (0–10 cm depth) were taken six times over the four years. Our results show that NT significantly increased SOC (+15.8%), total N (+9.6%), C/N (+5.3%), exchangeable K (+37.1%) and WAS (+64.8%). The stratification ratio for exchangeable K reached 2.15 for NT plots. N fertilisation, on the other hand, had no significant effect on most of the physico-chemical indicators, except for pH, CEC and EC. Soil compaction was significantly higher for NT compared with CT up to a depth of 25–30 cm. During the last year, interesting reductions in soil penetration resistance for NT were measured, up to 300–430 kPa in the 2.5–12.5 cm layer. As for the microarthropods, Acari were more sensitive to tillage compared with Collembola, and the Wardle V index proved to be a good indicator of the response to tillage. N fertilisation with 300 kg N ha−1 had a negative effect on the total microarthropod abundance. The Shannon diversity index gave fluctuating and significantly different results: over the years results were split alternately between the two tillage systems. The QBS-ar index, calculated for all the four years of the study, ranged between 48 and 72, values typical of intensively cultivated soils. The results obtained suggested that it was not influenced by the tillage system. Therefore, this index seems to be unsuitable for detecting the influence of tillage management and N fertilisation on the microarthropod community.  相似文献   

20.
以渭北黄土高原苹果园土壤为研究对象,设置传统苹果(Malus domestica Borkh.)园清耕及间作白三叶(Trifolium repens L.)两个处理,测定和分析了不同土层(0—5 cm,5—10 cm,10—20 cm及20—40 cm)的土壤微生物量碳(SMBC)、氮(SMBN)、4种土壤酶活性、有机碳(SOC)和全氮(TN)等指标,从土壤微生物碳、氮及酶活性的角度探讨间作白三叶对苹果/白三叶复合系统土壤的影响。结果表明:间作白三叶能够显著提高土壤微生物量碳、氮的含量和土壤酶活性,提高土壤微生物对有机碳和全氮的利用效率,其作用随着土层深度的增加而降低,在表层土壤效果更为显著。土壤微生物量碳、氮及土壤酶活性与土壤有机碳、全氮呈极显著相关或显著性相关。苹果园土壤微生物量碳、氮及土壤酶活性能敏感响应生草间作,可以作为评价果园生草对果园土壤影响的良好指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号