首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To obtain new information about the mechanical and physical properties of dry wood in unstable states, the influence of heating history on viscoelastic properties and dimensional changes of dry wood in the radial, tangential, and longitudinal directions was studied between 100° and 200°C. Unstable states of dry wood still existed after heating at 105°C for 30 min and were modified by activated molecular motion in the first heating process to temperatures above 105°C. This phenomenon is thought to be caused by the unstable states reappearing after wetting and drying again. Dry wood components did not completely approach the stable state in the temperature range tested, because they did not entirely surpass the glass transition temperatures in most of the temperature range. In constant temperature processes at 135° and 165°C, E′ increased and E″ decreased with time regardless of the direction. This indicated that the unstable states of dry wood components were gradually modified with time at constant temperatures. On the other hand, anisotropy of dimensional change existed and dimension increased in the longitudinal direction, was unchanged in the radial direction, and decreased in the tangential direction with time at constant temperatures. Part of this report was presented at the 13th Annual Meeting of the Chubu Branch of the Japan Wood Research Society, Shizuoka, August 2003  相似文献   

2.
Wood samples of nine tropical hardwoods from Peru and sugar maple wood from Quebec were selected to perform moisture sorption tests associated with parallel-to-grain and tangential compression tests using a multiple step procedure at 25°C. Cold-water and hot-water extractives, sequential cyclohexane (CYC), acetone (ACE) and methanol (MET) extracts, ash content (ASH), wood density and interlocked grain (IG) were evaluated on matched samples too. Wood density corrected for the accessory substances was by far the major factor positively affecting the compressive properties of tropical hardwoods. The total amount of accessory substances is required in order to establish better relationships between physico–mechanical properties and density of tropical hardwoods. For a given wood density, the ultimate stress in parallel-to-grain compression was higher in tropical hardwoods than in temperate hardwoods. However, the compliance coefficients for both types of woods were quite similar. Sequential extraction with organic solvents was the most suitable method for evaluating the effect of extractives on compressive properties of tropical hardwoods. The CYC and ACE fractions did not contribute to variation in these mechanical properties. The substances dissolved in MET affected positively the compliance coefficient s 11 in parallel-to-grain compression and negatively the compliance coefficient s 33 in tangential compression. The IG decreased the compliance coefficient s 11 but also decreased the ultimate stress in parallel-to-grain compression. Finally, variations in compressive properties that were due to changes in equilibrium moisture content (EMC) were clearly influenced by wood density; denser woods were more sensitive to changes in EMC than lighter woods.  相似文献   

3.
Growth stress patterns in tree stems   总被引:4,自引:0,他引:4  
Growth stresses originate in maturation strains, induced in cambial layers during the differentiation and the maturation of new cells, impeded by the mass of the whole trunk. To predict stresses in a stem, one must add successive incremental stresses at successively created points of the growing trunk. Usual measurements of released strains at the surface of a stem do not give the evolution of maturation strains with growth. As the assumption that states that maturation strains are constant since the beginning of secondary growth leads to singularities near the pith, an empiric pattern of variation of maturation strains along the radius is proposed, using observations about relationships between released longitudinal strain and microfibril angle. Furthermore, assuming an elastic, orthotropic behavior law and a cylindrical, sufficiently long stem, residual stresses are computed and discussed.For hardwoods, far enough from the pith, patterns of computed longitudinal and tangential stresses agree with distributions already stated by other authors although these stress components are limited near the pith. Computed radial stresses have lower levels than commonly admitted. On the other hand, stress-distributions in young softwoods are found very different, especially near the pith where the longitudinal component appears tensile and the tangential one compressive.  相似文献   

4.
A significant factor influencing the contribution of wood products to carbon (C) storage is the proportion of above-ground tree biomass (AGB) recovered in commercial logs at harvest. This study examined the proportion of AGB in logs and residues at the harvest of radiata pine, cypress pine, blackbutt, spotted gum and messmate. Messmate and spotted gum had the highest variation in stem diameter and height. The average AGB ranged from 2000 to 3000 kg for the hardwoods and 220–1000 kg for the softwoods. Blackbutt had the overall lowest proportion of AGB recovered in commercial logs (45.5%) and radiata pine the highest (65%). The proportion of AGB in the bark of the hardwoods was significantly lower than in the softwoods. The proportion of the AGB in forest residues following harvest ranged from 30 to 55% depending on the species.The proportion of AGB recovered in high quality commercial logs ranged from 15% for spotted gum to 63% for radiata pine. The differences were due to the natural characteristics of the selected species and variations in regional market availability. The highest retention rates of AGB in high quality hardwood commercial logs were obtained for trees with DBH between 500 and 600 mm (messmate and blackbutt) and greater than 600 mm for spotted gum.The mean moisture content of the wood of the different species ranged from 35 to 50%. Messmate and radiata pine logs had the highest moisture content (48 and 50%, respectively).The C concentration of blackbutt, radiata pine and cypress pine was slightly higher than 50%. The softwoods had significantly higher C concentration than the hardwoods. The C concentration between positions (cross-section, sapwood and heartwood) also varied for the different species.The highest proportion of the above-ground C was in the debarked log for all species with the exception of blackbutt.The cellulose concentration of the wood ranged from 56 to 64% for hardwoods and 40–52% for the two softwoods. The lignin concentration of the wood ranged from 16 to 19% for the hardwoods and 25–35% for the two softwoods. The hardwood species could not be distinguished from one another based on the cellulose, hemicellulose and lignin concentration, but within the softwood species, cypress pine and radiata pine formed separate clusters.  相似文献   

5.
Mode I fracture and acoustic emission of softwood and hardwood   总被引:7,自引:0,他引:7  
 The Mode I fracture behaviour of two softwoods (spruce and pine) and three hardwoods (alder, oak and ash) was studied in the RL crack propagation system using the splitting test in combination with monitoring acoustic emission (AE) activity. Test parameters measured included notch tensile strength, specific fracture energy, characteristic length and AE cumulative counts, AE amplitudes as well as parameters characterizing the frequency spectra of the emitted acoustic emission events. The notch tensile strength was found to correlate with density. The specific fracture energy and characteristic length showed the different crack propagation process between the softwoods and hardwoods. The softwoods fractured in a more ductile way and the hardwoods showed a more linear elastic behaviour. This finding was supported by the AE measurements showing much less cumulative counts for the hardwoods indicating that less microcracks were formed and that processes like fiber bridging were not so effective. Differences in the frequency domain of the AE signals between softwoods and hardwoods could not be detected. Received 13 January 1999  相似文献   

6.
针叶树材径向和弦向气体渗透的三维流阻网络   总被引:4,自引:0,他引:4  
将针叶树材气体渗透的三维流阻网络理论进行了扩充 ,提出了气体径向和弦向渗透次级流阻网络的二维等效流阻网络及二维等效流阻网络流阻基元的确定和等效流阻的求解方法 ,将三维流阻网络从关于针叶树材气体纵向渗透性研究 ,扩展到针叶树材气体径向和弦向渗透性研究。提出了针叶树材径向和弦向气体渗透三维流阻网络理论 ,计算了马尾松试件径向和弦向渗透系数 ,并与测量值进行比较 ,结果表明两值相符合。将本文的针叶树材径向和弦向气体渗透三维流阻网络理论与此前关于针叶树材纵向气体渗透的三维流阻网络工作相结合 ,可以使用三维流阻网络计算针叶树材纵向、径向、弦向的气体渗透系数 ,其在木材干燥、改性、防腐有应用价值  相似文献   

7.
Black locust, poplar and spruce samples were steamed at 80°C and 120°C for 48 hours. IR difference spectra and the CIE Lab colour coordinates were measured for determining the chemical changes caused by the steaming. Steaming at 80°C caused only small changes in both IR spectra and colour. But steaming at 120°C produced intensive colour change and well-visible changes in IR spectra. The guaiacyl lignin in hardwoods underwent slight degradation but in spruce suffered substantial degradation during steaming at 120°C. The syringyl lignin absorbing around 1600 cm?1 did not show any changes, indicating that it is more stable to steaming than guaiacyl lignin. The absorption decrease at 1175 cm?1 indicated the cleavage of ether linkage in cellulose and hemicelluloses at both steaming temperatures.  相似文献   

8.
When measuring the shear modulus of wood by static bending tests, the basic theory is dependent on Timoshenko's bending theory. The shear modulus obtained by static bending is a much smaller value than that derived by other methods. We examined the applicability of Timoshenko's theory and propose an empirical equation that can derive the shear modulus properly. Three softwoods and three hardwoods were used for the tests. First, the Young's modulus and shear modulus were measured by free-free flexural vibration tests. Then the three-point static bending tests were undertaken, varying the depth/span ratios. Additionally, the bending tests were simulated by the finite element method (FEM). The shear moduli obtained by these methods were then compared. The deflection behaviors in static bending were not expressed by the original Timoshenko bending theory because of the stress distortion near the loading point. Based on the experimental results and numerical calculations, we modified the original Timoshenko bending equation. When using our modified equation the stress concentration must be carefully taken into account.  相似文献   

9.
Summary The instantaneous profile method was used to establish the boundary desorption curve of the effective water conductivity function of red pine (Pinus resinosa Ait.) sapwood in the radial and tangential directions from nearly saturated to dry conditions at 18, 56 and 85 °C. The results obtained demonstrate that the effective water conductivity is a function of moisture content, temperature, and direction of flow. The effective water conductivity increases by several orders of magnitude (104–105) as moisture content increases from dry to nearly saturated conditions at a given temperature. The effective water conductivity also increases by a factor varying between 10 and 50 as temperature rises from 18 to 85 °C in the moisture content range considered. The variation of the moisture content–water potential relationship with temperature can explain part of the temperature effect. The effective water conductivity was generally higher in the radial direction than in the tangential direction in a ratio varying from about 1/1 to 3/1 depending on moisture content and temperature. Finally, the flux–gradient relationships obtained at given moisture contents were found to be linear, confirming the validity of using a moisture flux equation considering the water potential gradient as the driving force for the experimental conditions considered in the present work. The knowledge of the effective water conductivity function and of the moisture content–water potential relationship allows the utilization of a two-dimensional model of moisture movement in wood during drying using the gradient in water potential as the driving force for drying at temperatures up to 85 °C. Received 27 February 1998  相似文献   

10.
Summary Samples of nine tropical hardwoods from Peru and sugar maple wood from Quebec were selected to perform moisture sorption tests associated with swelling tests at 25 °C. The results demonstrate that, for a given equilibrium moisture content, tangential and radial dimensions, and hence the volume of wood, are greater after desorption than after adsorption. The importance of these differences, so-called second-order effects of moisture sorption, varied with the species and with the direction of swelling. These effects are proportionally greater in the tangential direction of wood than in its radial axis. Finally, two types of samples showed similar swellings for three equilibrium moisture contents.The author wishes to thank Professor M. Goulet for his support and help. This research was supported by the Canadian International Development Agency and the Natural Sciences and Engineering Research Council of Canada  相似文献   

11.
This study was aimed at evaluating the effect of thermal modification temperature on the mechanical properties, dimensional stability, and biological durability of Picea mariana. The boards were thermally modified at different temperatures 190, 200 and 210 °C. The results indicated that the thermal modification of wood caused a significant decrease in the modulus of rupture (MOR) after 190 °C, while the modulus of elasticity (MOE) seemed less affected with a slight increase up to 200 °C and slight decrease with further increase in temperature. The hardness of the thermally modified wood increased in the axial direction. This increase was also observed in tangential and axial directions but at a lesser extent. The final value was slightly higher in axial direction and lower in radial and tangential directions compared to those of the untreated wood. Dimensional stability improved with thermal modification in the three directions compared to the dimensional stability of unmodified wood. The fungal degradation results showed that the decay resistance of thermally modified wood against the wood-rotting fungi Trametes versicolor and Gloephyllum trabeum improved compared to that of the untreated wood. By contrast, the thermal modification of P. mariana had a limited effect on the degradation caused by the fungus Poria placenta.  相似文献   

12.
The changes in activities of superoxide dismutase (SOD), peroxidase (POD) and ATPase in the leaves of Euonymus radicans were studied when seedlings were cold-acclimated (at 4℃) for 1 week, 2 weeks, 3 weeks and then treated for 1d under low temperature stress (at-5℃).The semi-lethal temperatures of acclimated and unacclimated seedlings were also investigated.The results indicated that the activities of the three enzymes in the leaves of the seedlings treated at 4℃ for 1, 2 and 3 weeks were all higher than those of unacclimated seedings (treated at 22℃ as controls). The activities of SOD and POD increased continuously with the prolongation of the time of cold acclimation, but stepped up to summits then down to the levels of the controls. The activities of SOD culminated at the first week, and the activities of POD at the second week. When acclimated and unacclimated seedlings were both treated at -5℃ for 1d, the activities of the three enzymes in the leaves of acclimated seedlings were a little lower than those before stress, but higher than those of the controls. Moreover, the decrease rate of enzyme activities was greatly lower than that of the controls. The results showed that cold acclimation could enhance the stability of the three enzymes in the leaves of seedlings under low temperature stress; the semi-lethal temperature was -19.1℃ when the seedlings were treated at 4℃ for 3 weeks, but it was -5.4℃ when the seedlings were treated at 22℃. The decline of the semi-lethal temperature caused by the adaptive changes of enzyme activities was one of the foundations of enhancing the cold tolerance.  相似文献   

13.
The mechanical properties of 613 small clear specimens of 35 species (11 ring-porous hardwoods, 19 diffuse-porous hardwoods, and 5 softwoods) were evaluated. The aim of the study was to examine indexes of wood quality that are easy to measure and that exhibit a high correlation with bending performance and hardness that are essential properties of hardwood products. The modulus of rigidity, dynamic modulus of elasticity, bending properties (modulus of elasticity, modulus of rupture, stress at the proportional limit, absorbed energy, Tetmajer’s modulus), dynamic energy absorption by an impact bending test, compressive strength parallel to the grain, shear strength, partial bearing strength, and Brinell’s hardness were measured. A high correlation was found between dynamic modulus of elasticity and static modulus of elasticity. Bending stress at the proportional limit was found to be approximately equivalent to the compressive strength parallel to the grain. Static energy absorption correlated with dynamic energy absorption. Tetmajer’s modulus was found to be closely related to the ratio of the initial stiffness within the elastic range to the secant modulus at the maximum load. A high correlation was observed between Brinell’s hardness and partial bearing strength. The difference in the regression coefficients obtained for these correlations between the species groups was small. Part of this study was presented at the All Division 5 Conference of IUFRO, Taipei, October 2007  相似文献   

14.
In order to understand the reason why glycerin pre-treatment can accelerate the deformation fixation of compressed wood, the interaction between glycerin and wood at various temperatures was investigated in this study from stress relaxation approach. The compression stress relaxation curves of poplar (Populus cathayana Rehd.) samples impregnated with glycerin were measured at temperatures ranging from 25 to 180°C, together with the curves of oven-dry wood at temperatures between 100 and 180°C for comparison. The activation energy was calculated according to the Eyring’s absolute rate reaction theory. The results showed that temperature had very obvious effect on stress relaxation for both glycerin-treated wood (GTW) and oven-dry wood. The stress released very fast at higher temperatures. Glycerin showed an accelerating effect on stress relaxation. At temperatures exceeding 120°C, a complete relaxation of the stress could be expected. While for untreated wood, it cannot be reached until 160°C. By calculating the apparent activation energy (ΔE) of GTW at different temperatures, it is clear that two mechanisms are responsible for different temperature ranges. From 40 to 100°C, ΔE is only 8.24 kJ/mol, which corresponds to the hydrogen bonds formed between wood and glycerin molecules; from 120 to 180°C, ΔE reached 81.38 kJ/mol, which corresponds to the degradation of hemicelluloses or lignin, and during this process, new cross-linking would happen.  相似文献   

15.
It is well known that in the radial–tangential plane of softwoods, the elastic modulus in the principal directions is clearly higher than the off-axis elastic moduli, which decrease to a minimum at a growth ring angle α of about 45°. However, this angular dependency was experimentally proven by only a few early publications. The aims of this study were (1) to analyze this relationship with up-to-date equipment in compression tests on miniature softwood specimens with varying growth ring angles and (2) to compare the experimental results with those calculated by a tensor transformation to assess whether it is admissible to treat the investigated wood species as orthotropic materials. Two softwoods with distinctly different anatomic structures (Norway spruce and common yew) were chosen, and further properties such as Poisson’s ratios were determined. The results confirm the above-mentioned angle-dependent tendency for spruce elasticity, but also show that it is not valid for softwoods in general since the behavior of yew was completely different. The tissue textures of both species, particularly density and density distribution, were discussed as possible reason for these observed differences. The determined Poisson’s ratios for principal and off-axis load directions may be useful for modeling of material behavior.  相似文献   

16.
The structural changes of the cell wall and crystalline cellulose of Quercus variabilis wood in a pyrolysis system at several temperatures ranging from 250 to 500°C were investigated to examine the wood carbonization characteristics. The volume of the wood sample was decreased and the weight loss was increased by increasing the carbonization temperature. Vessels collapsed severely in tangential direction during the charring process above 350°C. SEM observation indicated that the layering structure of the walls in wood fibers and parenchyma cells were retained below 300°C. However, the cell walls above 350°C changed to an amorphous-like structure without cell wall layering. X-ray diffraction confirmed that the cellulose crystalline substance was still remained at the carbonization temperature of 300°C but was not detected above 350°C. It can be concluded that the transition from Q. variabilis wood to charcoal might occur at approximately 350°C.  相似文献   

17.
Swelling of wood   总被引:1,自引:0,他引:1  
Summary The rate and maximum swelling of several North American wood species in water have been obtained with a computer interfaced linear variable displacement transformer. Since wood swells extremely fast in water even at room temperature, this apparatus made it possible for the first time, to obtain accurate rate data on the swelling of wood in water. The strict linear dependence of swelling on the temperature suggests a chemical mechanism. The activation energies obtained from Arrhenius plots ranged from 32.2 KJ/mole for sitka spruce to 47.6 KJ/mole for sugar maple. Although the two hardwoods exhibited greater maximum tangential swelling compared with the two softwoods, the maximum swelling appears to be correlated with the wood density. Generally both the rate and maximum swelling of the woods were increased by removal of extractives and the activation energies were reduced.  相似文献   

18.
A preliminary germination study was carried out on seed of eleven provenances of Chinese mahogany [Toona sinensis (A. Juss.) Roem.]. The species is native to China and characterized by high density and dark colored wood, which is used mainly in furniture making. Seeds of the eleven provenances were tested on a thermoplate gradient germinator at temperatures of 15°C, 18°C, 22°C, 25°C, and 28°C. The three upper temperatures (22°C, 25°C, and 28°C) provided the fastest and highest germination among the eleven provenances, and on the average 25°C was considered as optimum temperature for the species.Based on mean time to germination, germination values, root length and hypocotyl length, it was possible to delineate the eleven provenances into three geographic groups.Additional studies using more evenly distributed samples from the whole range of the species are expected to further define seed collection zones for this important species in China.  相似文献   

19.
ABSTRACT

The usage of hardwoods for engineered wood products, such as glulam, requires defined mechanical properties reflecting the actual tensile strength of the material. Currently, the European strength class system EN 338 only covers profiles for hardwoods tested in bending. In this study, the material properties of medium-density hardwoods are analysed with the focus on a total of 3663 European ash (Fraxinus excelsior) and European beech (Fagus sylvatica) specimens tested in different loading modes (tension, compression, bending, and shear). The relationships between the material propertiestensile strength, stiffness, and density—are analysed on grouped data of both graded and ungraded specimens. As a result, a tailored ratio of tensile strength to tensile MOE and density is given, which allows to utilize a higher tensile strength of hardwoods (ft,0,k over 30?N/mm²) compared to softwoods. Furthermore, the relationship of the test values and the derived values is checked. The equations for deriving the compression and bending strength from tensile strength are verified based on available data. For tensile and compression strength perpendicular to the grain and for shear strength of both beech and ash, higher strength values than the ones listed in EN 338 are possible. The relationship between the mechanical properties are combined to tensile strength profiles for hardwoods.  相似文献   

20.
Effects of different thermal treatments (maximum treatment temperatures of 200, 210 and 220°C for 2.5 hours) on solid spruce (Picea abies L. Karst.) and ash (Fraxinus excelsior L.) were investigated in this study. The fracture behaviour in radial/longitudinal as well as in tangential/longitudinal and the change of the wood colour (CIEL*a*b* colour space) on all principal anatomical surfaces (cross sectional, radial and tangential) were analysed. The specific fracture energy and the maximum breaking load decreased almost significantly after all thermally treated samples in comparison to the untreated (standard dried) sample. The wood colour changed also significantly, in particular the lightness decreased with increasing intensity of thermal treatment on all investigated surfaces. A comparison of the percentage loss of the different fracture and colour values has shown a strong correlation between the maximum breaking load and the lightness after several thermal treatments, in both investigated crack propagation systems, on all measured surfaces and for both analysed species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号