首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
In Brazil, most Eucalyptus stands have been planted on Cerrado (shrubby savanna) or on Cerrado converted into pasture. Case studies are needed to assess the effect of such land use changes on soil fertility and C sequestration. In this study, the influence of Cerrado land development (pasture and Eucalyptus plantations) on soil organic carbon (SOC) and nitrogen (SON) stocks were quantified in southern Brazil. Two contrasted silvicultural practices were also compared: 60 years of short‐rotation silviculture (EUCSR) versus 60 years of continuous growth (EUCHF). C and N soil concentrations and bulk densities were measured and modelled for each vegetation type, and SOC and SON stocks were calculated down to a depth of 1 m by a continuous function. Changes in SOC and SON stocks mainly occurred in the forest floor (no litter in pasture and up to 0.87 kg C m?2 and 0.01 kg N m?2 in EUCSR) and upper soil horizons. C and N stocks and their confidence intervals were greatly influenced by the methodology used to compute these layers. C/N ratio and 13C analysis showed that down to a depth of 30 cm, the Cerrado organic matter was replaced by organic matter from newly introduced vegetation by as much as 75–100% for pasture and about 50% for EUCHF, poorer in N for Eucalyptus stands (C/N larger than 18 for Eucalyptus stands). Under pasture, 0–30 cm SON stocks (0.25 kg N m?2) were between 10 and 20% greater than those of the Cerrado (0.21 kg N m?2), partly due to soil compaction (limit bulk density at soil surface from 1.23 for the Cerrado to 1.34 for pasture). Land development on the Cerrado increased SOC stocks in the 0–30 cm layer by between 15 and 25% (from 2.99 (Cerrado) to 3.86 (EUCSR) kg C m?2). When including litter layers, total 0–30 cm carbon stocks increased by 35% for EUCHF (4.50 kg C m?2) and 53% for EUCSR (5.08 kg C m?2), compared with the Cerrado (3.28 kg C m?2), independently of soil compaction.  相似文献   

2.
This study evaluated the effect of biochar and phosphorus fertilizer application on selected soil physical and chemical properties in two contrasting soil types: Rhodic Ferralsols (clay) in Thohoyandou and Leptic Cambisols (loamy sand) in Nelspruit, South Africa. Field experiments were conducted in summer and winter. Treatments consisted of a factorial combination of four biochar levels (0, 5, 10 and 20 t ha?1) and two phosphorus fertilizer levels (0 and 90 kg ha?1) arranged in a randomized complete block design with three replicates. Chickpea was the test crop. Soil bulk density, aggregate stability, porosity, total C, total N, C:N ratio, K and Mg were determined. Biochar (10 t ha?1) and phosphorus increased bulk density and decreased porosity at 0–5 and 15–20 cm soil depth on a loamy sand soil in both seasons. The interaction between biochar and phosphorus increased total C and total N on a clay soil in the summer sowing. However, in the loamy sand soil, biochar (10 t ha?1) increased total C, C:N ratio, K and Mg in the summer sowing. The effect of biochar was more evident in the loamy sand soil than the clay soil suggesting that the influence of biochar may be soil-specific.  相似文献   

3.
Earthworms play an important role in protecting carbon in the soil, but the exact influence of their activity on the distribution and protection of C is still poorly understood. We investigated the effect of earthworms on the formation of stable microaggregates inside newly formed macroaggregates and the distribution of C in them. We crushed (< 250 µm) soil, and subjected it to three treatments: (i) soil + 13C‐labelled residue + earthworms (these added after 8 days' incubation), (ii) soil + 13C‐labelled residue, and (iii) control (no additions), and then incubated it for 20 days. At the end, we measured the aggregate size distribution, total C and 13C, and we isolated microaggregates (53–250 µm) from macroaggregates (> 250 µm) formed. The 13C in fine particulate organic matter between and within the microaggregates was determined. Earthworms helped to form large macroaggregates (> 2000 µm). These large macroaggregates contained four times more stable microaggregates than those from samples without earthworms. There was more particulate organic matter within and between microaggregates in macroaggregates in the presence of earthworms. The larger amounts of organic matter inside stable microaggregates in casts than in bulk soil after 12 days of incubation (140 mg 13C kg?1 soil compared with 20 mg 13C kg?1 soil) indicates that these microaggregates are formed rapidly around freshly incorporated residues within casts. In conclusion, earthworms have a direct impact on the formation of stable microaggregates and the incorporation of organic matter inside these microaggregates, and it seems likely that their activity is of great significance for the long‐term stabilization of organic matter in soils.  相似文献   

4.
There is a lack of quantitative assessments available on the effect of agricultural intensification on soil aggregate distribution and microbial properties. Here, we investigated how short-term nitrogen(N) intensification induced changes in aggregate size distribution and microbial properties in a soil of a hot moist semi-arid region(Bangalore, India). We hypothesised that N intensification would increase the accumulation of macroaggregates 2 mm and soil microbial biomass and activity, and that the specific crop plant sowed would influence the level of this increase. In November 2016, surface(0–10 cm) and subsurface(10–20 cm) soil samples were taken from three N fertilisation treatments, low N(50 kg N ha~(-1)), medium N(75 and 100 kg N ha~(-1) for finger millet and maize, respectively),and high N(100 and 150 kg N ha~(-1) for finger millet and maize, respectively). Distribution of water-stable aggregate concentrations,carbon(C) and N dynamics within aggregate size class, and soil microbial biomass and activity were evaluated. The high-N treatment significantly increased the concentration of large macroaggregates in the subsurface soil of the maize crop treatment, presumably due to an increased C input from root growth. Different N fertilisation levels did not significantly affect C and N concentrations in different aggregate size classes or the bulk soil. High-N applications significantly increased dehydrogenase activity in both the surface soil and the subsurface soil and urease activity in the surface soil, likely because of increased accumulation of enzymes stabilised by soil colloids in dry soils. Dehydrogenase activity was significantly affected by the type of crop, but urease activity not. Overall, our results showed that high N application rates alter large macroaggregates and enzyme activities in surface and subsurface soils through an increased aboveground and corresponding belowground biomass input in the maize crop.  相似文献   

5.
Physical-based fractions of SOM were examined. Soil carbon (C) and nitrogen (N) across ecotopes were 17.22 g kg?1 and 3.73 g kg?1, respectively. Soil C and N were higher in conventional tillage (CT) than no-till (NT) by 2.94% and 0.94%, respectively. Soil C ranged from 11.09 g kg?1 in silt to 18.02 g kg?1 in coarse sand; from 12.89 g kg?1 in fine sand to 18.88 g kg?1 in clay under NT and CT, respectively. Soil N ranged from 4.54 g kg?1 in silt to 5.55 g kg?1 in clay; from 5.06 g kg?1 in coarse sand to 5.56 g kg?1 in silt under NT and CT, respectively. Soil N in bulk soil changed by ?3.24% while soil C in bulk soil changed by ?11.87%. The silt + clay was saturated; hence, studies on soil C and N dynamics in these ecotopes are advocated.  相似文献   

6.
Abstract

Two Ferralsols (350 and 600 g kg?1 clay) from the Brazilian Cerrado Region were evaluated for long‐term effects (5 and 8 years) of no tillage on carbon (C) stocks in particulate (>53 µm) and mineral‐associated (<53 µm) soil organic matter (SOM) fractions. Carbon stocks in particulate SOM increased under no tillage compared with conventional tillage, and the rate was higher in the clayey soil (0.62 Mg C ha?1 yr?1) than in the sandy clay loam soil (0.31 Mg C ha?1 yr?1). In contrast, the mineral‐associated SOM in the top soil layer (0–20 cm) was not affected by tillage system. Sequestration of atmospheric C in tropical no‐tillage soils seems to be due to accumulation of C in labile SOM fractions, with highest rates in clayey soils probably due to physical protection.  相似文献   

7.
In Brazil, no tillage (NT) is a soil conservation practice now widely adopted by farmers, including smallholders. The effect of NT and conventional tillage (disc ploughing followed by two light disc harrowings, CT) was investigated on the aggregation properties of a clayey Rhodic Ferralsol from southern Brazil under different crop rotations. The same soil type under secondary forest was used as reference. Macro- and microaggregate classes were separated by wet sieving using a series of eight sieves (8, 4, 2, 1, 0.5, 0.25, 0.125, 0.053 mm) at four sampling layers (0–5, 5–10, 10–20, 20–30 cm). The soil in general had high structural stability. At 0–5 cm, meanweight diameter (MWD, 11.1 mm) and total organic C in macroaggregates (TOC, 39 g kg−1 soil) were highest for the forest soil. Soil under NT had a more similar distribution of aggregate size classes and TOC to the forest soil than CT. The most pronounced difference between tillage systems was observed in the surface soil layer (0–5 cm). In this layer, NT had higher aggregate stability (ASNT: 96%; ASCT: 89%), had higher values of aggregate size distribution (MWDNT: 7.9 mm, MWDCT: 4.3 mm), and had on average 28% greater TOC in all aggregate size classes than CT. Soil under NT had greater TOC in macroaggregates (NT: 22 g kg−1; CT: 13 g kg−1). Crop rotation did not have a significant effect on soil aggregate distribution and TOC. By increasing macroaggregation NT increased organic carbon accumulation in soil.  相似文献   

8.
《Applied soil ecology》2001,16(3):229-241
Changes in the proportions of water-stable soil aggregates, organic C, total N and soil microbial biomass C and N, due to tillage reduction (conventional, minimum and zero tillage) and crop residue manipulation (retained or removed) conditions were studied in a tropical rice–barley dryland agroecosystem. The values of soil organic C and total N were the highest (11.1 and 1.33 g kg−1 soil, respectively) in the minimum tillage and residue retained (MT+R) treatment and the lowest (7.8 and 0.87 g kg−1, respectively) in conventional tillage and residue removed (CT−R) treatment. Tillage reduction from conventional to minimum and zero conditions along with residue retention (MT+R,ZT+R) increased the proportion of macroaggregates in soil (21–42% over control). The greatest increase was recorded in MT+R treatment and the smallest increase in conventional tillage and residue retained (CT+R) treatment. The lowest values of organic C and total N (7.0–8.9 and 0.82–0.88 g kg−1 soil, respectively) in macro- and microaggregates were recorded in CT−R treatment. However, the highest values of organic C and total N (8.6–12.6 and 1.22–1.36 g kg−1, respectively) were recorded in MT+R treatment. The per cent increase in the amount of organic C in macroaggregates was greater than in microaggregates. In all treatments, macroaggregates showed wider C/N ratio than in microaggregates. Soil microbial biomass C and N ranged from 235 to 427 and 23.9 to 49.7 mg kg−1 in CT−R and MT+R treatments, respectively. Soil organic C, total N, and microbial biomass C and N were strongly correlated with soil macroaggregates. Residue retention in combination with tillage reduction (MT+R) resulted in the greatest increase in microbial biomass C and N (82–104% over control). These variables showed better correlations with macroaggregates than other soil parameters. Thus, it is suggested that the organic matter addition due to residue retention along with tillage reduction accelerates the formation of macroaggregates through an increase in the microbial biomass content in soil.  相似文献   

9.
DCD 在不同质地土壤上的硝化抑制效果和剂量效应研究   总被引:5,自引:0,他引:5  
通过硝化抑制剂抑制土壤硝化作用是实现作物铵硝混合营养和提高氮肥利用率的重要途径之一。本试验采用室内模拟的方法, 在人工气候室(25 ℃)黑暗培养条件下, 应用新疆石灰性土壤研究了不同剂量的双氰胺(dicyandiamide, DCD)在砂土、壤土、黏土3 种不同质地土壤中对土壤硝态氮、铵态氮转化的影响及DCD 的剂量效应和硝化抑制效果。处理30 d 内, 各剂量DCD 处理对砂土的硝化抑制率为96.5%~99.4%(平均值为98.3%), 在黏土上为66.9%~85.6%(平均值为77.6%), 在壤土上为49.3%~79.4%(平均值为67.7%), 总体硝化抑制率表现为砂土>黏土>壤土。在砂土上DCD 的剂量效应不明显, DCD 用量从纯氮的1.0%增加到7.0%时, 土壤中硝态氮含量仅增加1.9~10.7 mg·kg-1(培养30 d 时); 而在壤土和黏土中, 土壤硝态氮含量随DCD 浓度的增加而显著下降, 存在明显剂量效应。这说明施用DCD 可显著抑制新疆石灰性土壤的硝化作用过程, 在砂土、壤土、黏土中DCD 的最佳浓度分别为纯氮用量的6.0%、7.0%和7.0%, 并在培养30 d 内发挥显著作用。  相似文献   

10.
A set of fertilizer experiments were conducted during three growing seasons with the aim of establishing sufficiency ranges and crop nutrient removals for Melissa officinalis L. Critical nutrient concentrations were determined by the Cate–Nelson method or by removing 10% of extreme high and low values, respectively if a positive response to a given nutrient was recorded or not. Sufficiency ranges for macro, micronutrients, and SPAD-readings were set as: 27.0–40.0 g N kg?1; 0.8–2.7 g P kg?1 (May–August); 1.5–3.8 g P kg?1 (September–November); 10.0–25.0 g K kg?1 (May–August); 18.0–32.0 g K kg?1 (September–November); 5.0–25.0 g Ca kg?1; 3.5–8.5 g Mg kg?1; 18–125 mg B kg?1; 5–25 mg Cu kg?1; 75–500 mg Fe kg?1; 20–300 mg Zn kg?1; 30–250 g Mn kg?1; 30–45 SPAD-units. These results will allow laboratories to use plant analysis as an important tool in improving the fertilizer recommendations for this species.  相似文献   

11.
Farmyard manure (FYM) and fertilizer applications are important management practices used to improve nutrient status and organic matter in soils and thus to increase crop productivity and carbon (C) sequestration. However, the long-term effects of fertilization on C, nitrogen (N) and sulfur (S) associated with aggregates, especially on S are not fully understood. We investigated the effects of more than 80 years of FYM (medium level of 40 Mg ka−1 and high level of 60 Mg ka−1) and mineral fertilizer (NPKS and NK) on the concentrations and pools of C, N, and S and on their ratios in bulk soil, dry aggregates and water stable aggregates on an Aquic Eutrocryepts soil in South-eastern Norway. A high level of FYM and NPKS application increased the proportion of small dry aggregates (<0.6 mm) by 8%, compared with the control (without fertilizer). However, both medium and high level of FYM application increased the proportion of large water stable aggregates (>2 mm) compared with mineral fertilizer (NPKS and NK). The total C and N pools in bulk soils were also increased in FYM treatments but no such increase was seen with mineral fertilizer treatments. The increased total S pool was only found under high level of FYM application. Water stable macroaggregates (>2 and 1–2 mm) and microaggregates (<0.106 mm) contained higher concentrations of C, N and S than the other aggregate sizes, but due to their abundance, medium size water stable aggregates (0.5–1 mm) contained higher total pools of all three elements. High level of FYM application increased the C concentration in water stable aggregates >2, 0.5–1 and <0.106 mm, and increased the S concentration in most aggregates as compared with unfertilized soils. Higher C/N, C/S and N/S ratios were found both in large dry aggregates (>20 and 6–20 mm) and in the smallest aggregates (<0.6 mm) than in other aggregate sizes. In water stable aggregates, the C/N ratio generally increased with decreasing aggregate size. However, macroaggregates (>2 mm) showed higher N/S ratios than microaggregates (<0.106 mm). We can thus conclude, that long-term application of high amounts of FYM resulted in C, N and S accumulation in bulk soil, and C and S accumulation in most aggregates, but that the accumulation pattern was dependent on aggregate size and the element (C, N and S) considered.  相似文献   

12.
ABSTRACT

Management of grassland may affect the dynamics of soil organic carbon (SOC). Objectives were to analyze the effect of different harvesting frequencies and nitrogen fertilization regimes on SOC and total N stocks in a field trial on a sandy loam to loamy sand soil of a grassland site near Kiel (Germany). Additionally, effects on microbial biomass C (Cmic) and ergosterol (as proxy for fungi) contents, water-stable aggregate size-classes and density fractions were studied. In the surface soil (0–10 cm), SOC and total N stocks, amounts of large water-stable macroaggregates (> 2000 µm) and contents of Cmic and ergosterol were significantly higher under a five cut regime. Cmic (rSpearman = 0.61) and ergosterol contents (rSpearman = 0.67) were correlated with amounts of large water-stable macroaggregates suggesting that fungi and microbial biomass play an important role in binding of small macroaggregates into large macroaggregates. The free light fraction of SOM showed significantly higher C concentrations under three cut compared to five cut at 30–60 cm, presumably related to the C/N ratio and the decomposability of root litter. This study indicates the importance of cutting frequency on SOC and total N stocks, amounts of large macroaggregates and contents of Cmic and ergosterol.  相似文献   

13.
Two field experiments in which straw has been removed or incorporated for 17 yr (loamy sand) and 10 yr (sandy clay loam) were sampled to examine the effect of straw on the C and N contents in whole soil samples, macro-aggregate fractions and primary particle-size separates. The particle size composition of the aggregate fractions was determined. Aggregates were isolated by dry sieving. Straw incorporation increased the number of 1–20 mm aggregates in the loamy sand but no effect was noted in the sandy clay loam. Straw had no effect on the particle size composition of the various aggregate fractions. After correction for loose sand that accumulated in the aggregate fractions during dry sieving, macro-aggregates appeared to be enriched in clay and silt compared with whole soil samples. Because of the possible detachment of sand particles from the exterior surface of aggregates during sieving operations, it was inferred that the particle size composition of macro-aggregates is similar to that of the bulk soil. The organic matter contents of the aggregate fractions were closely correlated with their clay + silt contents. Differences in the organic matter content of clay isolated from whole soil samples and aggregate fractions were generally small. This was also true for the silt-size separates. In both soils, straw incorporation increased the organic matter content of nearly all clay and silt separates; for silt this was generally twice that observed for clay. The amounts of soil C, derived from straw, left in the loamy sand and sandy clay loam at the time of sampling were 4.4 and 4.5 t ha?1, corresponding to 12 and 21% of the straw C added. The C/N ratios of the straw-derived soil organic matter were 11 and 12 for the loamy sand and sandy clay loam, respectively.  相似文献   

14.
The effects of temperature and water potential on nitrification were investigated in two Iowa soils treated with Stay‐N 2000. The soils were incubated at 10, 20, and 30 °C after soil water potentials of ?1, ?10, or ?60 kPa were applied to each soil. A first‐order equation was used to calculate the maximum nitrification rate (K max), duration of lag period (t′), period of maximum nitrification (Δt), and termination period of nitrification (t s). The highest K max were 18 and 24 mg kg?1 d?1 nitrate (NO3 ?)–nitrogen (N), respectively, at 30 °C and ?10 kPa in both the Nicollet (fine‐loamy, mixed, superactive, mesic Aquic Hapludoll) and Canisteo (fine‐loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) soils and reduced to 4 and 16 mg kg?1 d?1 NO3 ?‐N when Stay‐N 2000 was added. The extension of t′ due to the addition of Stay‐N 2000 was as high as 7 d in the Nicollet soil at 10 °C and ?1 kPa and as little as 2 d in the Canisteo soil at 20 °C and ?10 kPa.  相似文献   

15.
The mineralization of nitrogen from soil organic matter is important when one tries to optimize nitrogen fertilization and assess risks of N losses to the environment, but its measurement is laborious and expensive. We have explored the possibilities for monitoring N mineralization directly using time domain reflectometry (TDR). Net N and S mineralization were monitored over a 101‐day period in two layers (0–30 and 30–60 cm) of a loamy sand soil during aerobic incubation in a laboratory experiment. At the same time electrical conductivity of the bulk soil, σa, was measured by TDR. A series of calibration measurements with different amounts of KNO3 at different soil moisture contents was made with the topsoil to calculate the electrical conductivity, σw, of the soil solution from σa and θ. The actual σw was determined from the conductivity of 1:2 soil:water extracts (σ1:2) with a mass balance approach using measured NO3 concentrations, after correction for ions present prior to the addition of KNO3. The average N mineralization rate in the topsoil was small (0.12 mg N kg?1 day?1), and, as expected, very small in the subsoil (0.023 mg N kg?1 day?1). In the top layer NO3 concentrations calculated from σa determined by TDR slightly underestimated measured concentrations in the first 4 weeks, and in the second half of the incubation there was a significant overestimation of measured NO3. Using the sum of both measured NO3 and SO42– reduced the overestimation. In the subsoil calculated NO3 concentrations strongly and consistently overestimated measured concentrations, although both followed the same trend. As S mineralization in the subsoil was very small, and initial SO42– concentrations were largely taken into account in the calibration relations, SO42– concentrations could not explain the overestimation. The very small NO3 and SO42– concentrations in the B layer, at the lower limit of the concentrations used in the calibrations, are a possible explanation for the discrepancies. A separate calibration for the subsoil could also be required to improve estimates of NO3 concentrations.  相似文献   

16.
A greenhouse study was conducted to assess the effects of soil-applied beryllium (Be) on the growth and Be content of soybeans [Glycine max (L.) Merr.], grown on acid southeastern soils under limed and unlimed conditions. This study was conducted using a factorial design, with two soil types varying in clay content (Blanton sand, a loamy, siliceous, thermic Grossarenic Paleudult; and Orangeburg loamy sand, a loamy, siliceous, thermic Typic Paleudult), two soil treatments (limed and unlimed) and five Be concentrations (0, 25, 50, 100, and 150 mg Be kg?1 t soil). Addition of Be to unlimed Blanton soil had the most toxic effects of all treatment combinations; at the 150 mg Be kg?1 treatment plant biomass was reduced as much as 90% and plant Be concentration was as high as 226 mg Be kg?1. Beryllium concentrations were greater in plants grown in a soil low in clay (Blanton soil). Liming of soils treated with Be resulted in lowered tissue Be concentrations in plants grown on either soil type.  相似文献   

17.
Mineral and organic fertilizers are the important factors for maintenance and improvement of soil fertility and aggregation. Despite aggregation and aggregate stability are proxy of soil fertility, the connection between fertilization and aggregation is not direct, as short and long-term processes may affect the aggregate formation in different directions. In this study, the long-term effects of a 20-year application of mineral and organic fertilizers were studied in an intensive horticultural crop rotation with the following treatments: i) without fertilization (control soil), ii) nitrogen applied by mineral fertilizer, and iii) farmyard manure application with low (30 t ha?1 y?1) or iv) high (60 t ha?1 y?1) rates. In case of short-term aggregation process, K-polyacrylate was added to the soil to change aggregate composition and then the aggregated soils were incubated for 2 weeks. Long-term fertilization increased the soil organic C (SOC) content by 42–73% and the portion of small macroaggregates (1–0.25 mm) compared to control soil. In contrast, soil aggregation induced by K-polyacrylate showed an increase of the large macroaggregate (2–1 mm) portion independent of fertilization. Polyacrylate had no effect on soil microbial biomass C. According to the increased SOC content, the fertilization increased CO2 efflux from soil (4.2–5.2% of SOC after 80 days of incubation). Short-term aggregation by K-polyacrylate decreased the SOC mineralization rate mainly of the labile C-pools. In conclusion the data of this study suggest that long-term fertilization mainly contributes to the formation of small macroaggregates. In contrast, the formation of large macroaggregates is mediated mainly by short-term processes and contributes to the decrease of SOC mineralization.  相似文献   

18.
The objectives of this work were to study nitrogen (N) release from a biosolid and a compost of banana wastes. The overwinter N decomposition was evaluated as the uptake by a cereal cover crop and the in situ losses from buried bags in a loamy sand (site 1) and in a calcareous silty clay loam (site 2). Organic materials were applied in two rates as sludge (1, 3.75 Mg ha?1; 2, 7.5 Mg ha?1) and compost (1, 3.29 Mg ha?1; 2, 6.58 Mg ha?1). Immediately after their incorporation in October, barley was planted as a cover crop. Its growth was negatively affected by the slow drainage of the silty clay loam, leading to greater N concentration in site 1 (21.18 g kg?1 of barley versus 14.35 g kg?1 of barley in site 2). Yet only 10% of the added N was intercepted by the cover crop in the fast-draining site 1. The ash-rich compost (N: 21.1 g kg?1; ash: 467 g kg?1) was comparable to the control. Within site 2, the biosolid treatments had a residual effect on a second barley crop, as N uptake was 1.99–2.13 times that of the control. The approach of in situ loss from bags incorporated in bare soil was repeated in two successive seasons. Nitrogen losses (% input) during the fall and winter months were comparable between sites 31.9 % (site 1) and 28.6 % (site 2). When the N fate was studied during the winter months only, the loss decreased slightly, suggesting the presence of a fraction liable to decomposition overwinter in Mediterranean conditions. Soil nitrate was determined 1 month after the incorporation of the cover crop in late spring. In the first season, only the sludge 2 treatment generated more nitrate than the control, whereas 19 months after the application of the organic products both sludge treatments had a positive effect. The soil properties influenced the amounts of N mineralized with site 1, yielding twice that of site 2. In the fast-draining soils, the presence of an active cover crop overwinter is necessary, while the N level of sludge 1 (164 kg N ha?1) was more acceptable.  相似文献   

19.
Spatiotemporal heterogeneity of soil available nitrogen (AN) (sum of NO3–N and NH4+–N) is the essential basis for soil management and highly correlates to crop yield. Both geostatistical and traditional analyses were used to describe the spatiotemporal distribution of AN in the 0–20‐cm soil depth on typical Mollisol slopes (S1 and S2) in Northeast China. The concentration of NO3–N dynamics at slope positions was typically opposite to NH4+–N. The peak values of AN typically moved from the summit of the slope to the bottom from spring to autumn and were mainly influenced by the content of NO3–N (S1, 7·9–18·9 mg kg−1; S2, 1·2–103·6 mg kg−1), both of NO3–N (S1, 3·9–8·3 mg kg−1; S2, 2·2–28·0 mg kg−1) and NH4+–N (S1, 21·4–30·5 mg kg−1; S2, 2·1–23·3 mg kg−1), and NH4+–N (S1, 10·5–28·9 mg kg−1; S2, 5·0–39·0 mg kg−1) in the seedling stage, vegetative growth stage, and reproductive growth stage, respectively. The spatial autocorrelation of AN was strong and was mainly influenced by structural factors during crop growth stages. This was mainly determined by soil erosion–deposition (SED) and soil temperature–moisture (STM) in the seedling stage; this was also mainly influenced by SED, STM, crop type, and crop growth in the vegetative growth stage and by early STM and early SED in the reproductive growth stage. Generally, the content of AN, NO3–N, and NH4+–N on the whole slope was mainly determined by the early SED and local fertilizer application, while their spatiotemporal heterogeneity, especially the evenness, was mainly changed by SED, STM, crop growth, and crop types on the slope scale. In order to increase more crop yields, additional N fertilizer application on both the summit and the bottom during the vegetative growth stage and conservation tillage systems or additional soil amendments on the back slopes was necessary. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Foliar Cd and Zn concentrations in Salix, Populus and Zea mays grown on freshwater tidal marshes were assessed. Soil metal concentrations were elevated, averaging 9.7 mg Cd kg?1 dry soil, 1100 mg Zn kg?1 dry soil and 152 mg Cr kg?1 dry soil. Cd (1.1–13.7 mg kg?1) and Zn (192–1140 mg kg?1) concentrations in willows and poplars were markedly higher than in maize on impoldered tidal marshes (0.8–4.8 mg Cd kg?1 and 155–255 mg Zn kg?1). Foliar samples of maize were collected on 90 plots on alluvial and sediment‐derived soils with variable degree of soil pollution. For soil Cd concentrations exceeding 7 mg Cd kg?1 dry soil, there was a 50% probability that maize leaf concentrations exceeded public health standards for animal fodder. It was shown that analysis of foliar samples of maize taken in August can be used to predict foliar metal concentrations at harvest. These findings can therefore contribute to anticipating potential hazards arising from maize cultivation on soils with elevated metal contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号