首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Characteristics of the treatment processes inside a MSL system were investigated by using a laboratory-scale MSL system, which was set up in a D 10 × W 50 × H 73 cm acrylic box enclosing "soil mixture blocks" alternating with permeable zeolite layers. For the study of the treatment processes inside the system, wastewater, with mean concentrations (mg L−1) of COD: 70, T-N: 12, T-P: 0.9, was introduced into the system at a loading rate of 1,000 L m−2 d−1. Treatment processes in the MSL system were different for the COD, P and N pollutants. Eighty percent of COD was removed in the 1st soil layer among the 6 layers, and the removal rate increased as water moved down and finally reached 90% in the last layer of the system. Phosphorus concentration was lower under the soil mixture layers than under the permeable layers, presumably because P was adsorbed mainly by soil and mixed iron particles. The P concentration in water gradually decreased in the lower layers of the system. The concentration of PO43--P was generally lower in the aerated MSL system than in the non-aerated one. NH4+-N was adsorbed and nitrified in the upper part of the system. The NO3-N concentration was lower in water under the soil mixture layers than under the permeable layers, indicating that denitrification mainly occurred in the soil mixture layers.  相似文献   

2.
To evaluate the coexistence of agricultural managements and wetland ecosystem conservation, the Bibai mire, an ombrotrophic mire in Hokkaido, Japan, was selected as an experimental site that had been affected by neighboring agricultural managements. Since the lowering of the level of the groundwater table in the peripheral area of the mire had threatened indigenous vegetations, keeping the groundwater table shallow by trench irrigation seemed to be an effective measure to recover the original vegetation. The objective of the present study was to quantify the amount of water and the effective area of trench irrigation required in a bamboo-invading area in a pristine mire. We constructed a trench 28 m long and irrigated at the rate of 2.22 m3 d−1 in a bamboo-invading area in the mire. And to analyze the hydro-meteorological conditions under the trench irrigation, we measured the saturated hydraulic conductivity of the peat layer (3.8 × 10−3 cm s−1), the evapotranspiration rate (2.80 mm d−1), the depth of the non-irrigated groundwater table (0.15 m) and the surface gradient (0.00493). In addition, using the mass conservation equation and Darcy's law, we derived a steady state model of the level of the groundwater table formed by trench irrigation, which required the five parameters mentioned above. The irrigated water spread over a distance of only about 15 m to both sides of the trench. The model also estimated that the distance for the irrigated area was 14.6 m and we concluded that the irrigated area was limited within a distance of 20 m distances to both sides of the trench and that the irrigation rate per unit trench length did not exceed 0.12 m2 d−1 for realistic values of the evapotranspiration rate and the saturated hydraulic conductivity in peatland.  相似文献   

3.
Abstract. Hydraulic properties of soils after rice cropping are generally unfavourable for wheat cultivation. Poor drainage, delayed planting and oxygen stress in the root zone may adversely affect the wheat crop after lowland rice cultivation. We studied long-term effects of lantana ( Lantana spp. L.) residue additions at 10, 20 and 30 t ha−1 yr−1 (fresh biomass) on physical properties of a silty clay loam soil under rice–wheat cropping in northwest India. At the end of ten cropping cycles, soil water retention, infiltration rate, saturated hydraulic conductivity and drying rate of soil increased significantly with lantana additions. The available water capacity (AWC), on volume basis, declined at rice harvest (from 22.0 to 18.8–20.9%), but increased at wheat harvest (from 12.9 to 13.4–15.0%) after lantana treatment. The volumes of water transmission (>50 μm) and storage pores (0.5–50 μm) were greater, while the volume of residual pores (<0.5 μm) was smaller in lantana-treated plots than in controls at both rice and wheat harvest. Infiltration rate in the lantana-treated soil was 1.6–7.9 times that of the control (61 mm d−1) at rice harvest, and 2–4.1 times that of the control (1879 mm d−1) at wheat harvest. Thus lantana addition improved soil hydraulic properties to the benefit of the wheat crop in a rice–wheat cropping sequence.  相似文献   

4.
The origin of highly acidic (pH<4.5) barren soils in the Klamath Mountains of northern California was examined. Soil parent material was mica schist that contained an average of 2,700 mg N kg−1, which corresponds to 7.1 Mg N ha−1 contained in a 10-cm thickness of bedrock. In situ soil solutions were dominated by H+, labile-monomeric Al3+ and NO3, indicating that the barren area soils were nitrogen saturated—more mineral nitrogen available than required by biota. Leaching of excess NO3 has resulted in removal of nutrient cations and soil acidification. Nitrogen release rates from organic matter free soil ranged from 0.0163 to 0.0321 mg N kg−1 d−1. Nitrogen release rate from fresh ground rock was 0.0465 mg N kg−1 d−1. This study demonstrates that geologic nitrogen may represent a large and reactive nitrogen pool that can contribute significantly to soil acidification.  相似文献   

5.
Abstract. The saline–sodic soils of the dryland Songnen Plain in northeast China are only slowly permeable to fresh water because of their large content of montmorillinite clay and sodium bicarbonate. Use of slightly saline groundwater containing adequate dissolved calcium and magnesium for leaching and reclamation can potentially prevent dispersion of the clay soil particles during treatment. Amelioration was evaluated using shallow, mildly saline groundwater to irrigate sorghum–corn rotations in a two-year field experiment. After two growing seasons during which a total of 400 mm of leaching water was applied, in addition to some supplemental irrigation water, the average electrical conductivity (ECe) of the top 1.2 m of the soil profile decreased from 14.5±3.5 to 2.7±0.2 dS m−1, and the sodium absorption ratio (SARe) decreased from 35.3±4.1 to 10.1±2.5 (meq L−1)0.5. The soil physical properties were improved: infiltration rate with mildly saline groundwater increased from 12.1 to 42 mm h−1. Salinity changes in the top 1.2 m of soil layers after 700 mm of leaching produced no further improvement. Crop yields produced on plots undergoing amelioration increased by 64–562% compared with the rainfed control. The improved soil conditions after leaching resulted in 59–548% greater crop yields.  相似文献   

6.
We measured the heat flux, temperature distribution and water content of an unsaturated Ando soil under a constant temperature gradient and reduced air pressure to investigate the mechanism of latent heat transfer in the soil and its relationship to the distribution and circulation of soil water. As the air pressure decreased, the heat flux increased for the soil samples with an initial volumetric water content ( θ ini) greater than 0.30 m3 m−3, but did not change for θ ini less than 0.20. While the temperature gradient of the sample did not change for θ ini greater than 0.30 m3 m−3, it did increase on the hotter side of the sample and decreased on the colder side for θ ini less than 0.20. The water content did not change, and a homogeneous distribution of water content was observed for θ ini greater than 0.30 m3 m−3. For θ ini less than 0.20, the water content decreased on the hotter side and increased on the colder side, forming a large water content gradient. The large transfer of latent heat was caused by the circulation of water vapour and liquid water, which resulted in the homogeneous water distribution. We concluded that the soil functions as a heat pipe through a series of micro-heat pipes centred on the soil pores. Our experimental results will help to explain the transfer mechanism of latent heat in soil as a heat pipe phenomenon.  相似文献   

7.
8.
Abstract. Land disposal of sewage sludge in the UK is set to increase markedly in the next few years and much of this will be applied to grassland. Here we applied high rates of digested sludge cake (1–1.5×103 kg total N ha−1) to grassland and incorporated it prior to reseeding. Using automated chambers, nitrous oxide (N2O) and carbon dioxide (CO2) fluxes from the soil were monitored 2–4 times per day, for 6 months after sludge incorporation. Peaks of N2O emission were up to 1.4 kg N ha−1 d−1 soon after incorporation, and thereafter were regularly detected following significant rainfalls. Gas emissions reflected diurnal temperature variations, though N2O emissions were also strongly affected by rainfall. Although emissions decreased in the winter, temperatures below 4 °C stimulated short, sharp fluxes of both CO2 and N2O as temperature increased. The aggregate loss of nitrogen and carbon over the measurement period was up to 23 kg N ha−1 and 5.1 t C ha−1. Losses of N2O in the sludge-amended soil were associated with good microbial conditions for N mineralization, and with high carbon and water contents. Since grassland is an important source of greenhouse gases, application of sewage sludge can be at least as significant as fertilizer in enhancing these emissions.  相似文献   

9.
Abstract

Multi-soil-layering (MSL) system was designed for purifying domestic wastewater and for treating polluted river water. MSL system is typically comprised of layers of soil mixture blocks alternating with permeable layers. The permeable layer has roles of preventing clogging and to increasing the efficiency of infiltration of wastewater through the soil mixture blocks. In this study, the comparative efficiency of five MSL systems as a function of five permeable layer materials (zeolite, zeolitized perlite, perlite, gravel, and charcoal) was investigated. The MSL systems were constructed in 15 × 50 × 100 cm boxes where the soil mixture blocks contained sandy clay soil, kenaf + corncob, and iron scraps at a ratio of 6 : 1 : 1 by weight, respectively, and filled up in alternation with the permeable layer. The results indicated that all the MSL systems at loading rates of 96–346 L m?2 d?1 under nonaerated conditions were able to reduce the levels of COD (342–1,231 mg L?1), BOD5 (201–802 mg L?1), and soluble reactive phosphorus (SRP) (3.5–10.1 mg P L?1) at percentages of 79.0–98.1, 80.0–99.6, and 97.1–100%, respectively. The zeolite and the charcoal-based MSL systems under a 96–346 L m?2 d?1 loading rate effectively reduced the level of TN (41.4–65.5 mg N L?1) at percentages of 79.0–92.1 and 30.7–88.9%, respectively. In terms of prevention of clogging, the charcoal-based MSL system was the most effective, followed by the gravel and zeolite-based MSL. The apparent efficiency of pollutant removal, for zeolitized perlite, perlite, and gravel-based MSL systems was low. With an on-off aeration operation, the efficiency of the MSL systems in the reduction of the levels of COD, BOD5 , and SRP (hereafter reference to as “removal”) was significantly enhanced. Overall, the zeolite-based MSL system seemed to be more effective than the other MSL systems. However, if optimum aeration could be obtained, the removal efficiency of charcoal-based MSL system might be improved. Aeration at a rate of 64,000 L m?3 d?1 for 1 week alternating with 2 weeks of nonaeration enhanced the removal of COD, BOD5 , and SRP but not that of TN.  相似文献   

10.
Effects of organic matter and calcium on soil structural stability   总被引:2,自引:0,他引:2  
The cationic bridging effect of the calcium ion (Ca2+) and the flocculating ability of clay and organic matter are crucial in the formation and stability of soil aggregates. They are therefore likely to influence the soil's saturated hydraulic conductivity ( K s). We tested the individual effects of these factors on aggregate stability and related hydraulic properties, and studied the influence of clay mineralogy also. Samples from the surface (0–10 cm) of three contrasting soils in Trinidad were used. The soils were treated with three levels of Ca2+ and three levels of organic matter in a 3 × 3 × 3 factorial design and incubated for 14 days. Both aggregate stability and saturated hydraulic conductivity were influenced by all factor combinations. Interactions between soil type and Ca2+ revealed the importance of polyvalent cations in aggregate stability of soils with low activity minerals. The influence of organic matter varied with quantity; the more there was, the more stable the soil became, particularly in the soil containing little clay. Clay dispersion and slaking of expanding minerals occurred even with large additions of Ca2+ and organic matter, emphasizing the overall influence of mineralogy in determining the response of soils to stability treatments.  相似文献   

11.
(pp. 25–32)
The effectiveness of drip fertigation, which is known to control fertilizer application, for reducing nitrate in spinach and for improving the other qualities of spinach was investigated. Fertilizer application can be controlled effectively by drip fertigation. In 2002 and 2003, two spinach cultivars were grown in a plastic greenhouse with 4, 8 or 12 g N m−2 of fertilizer application by drip fertigation, and with 8, 12 or 16 g N m−2 of fertilizer application as a basal application. Nitrate concentration of petiole sap extracted by a garlic squeezer was significantly correlated with the water-extractable nitrate concentration. Nitrate concentrations of petiole sap extracted from plants treated with 12, 8 and 4 g N m−2 of fertilizer by drip fertigation were constant, gradually decreased and significantly decreased, respectively, during the last 2 weeks. When nitrate concentration decreased during the last week, nitrate concentration in spinach at harvest was less than 3,000 mg kg−1 FW. Thus it was thought that the pattern of the time course of nitrate in petiole xylem sap is a good indicator for getting spinach with low nitrate. The sugar concentration was negatively correlated with applied nitrogen quantity and the nitrate concentration. The total oxalic acid concentration in spinach treated by drip fertigation was significantly lower than that in spinach treated by basal application, independent of the amount of applied nitrogen. Thus drip fertigation is advantageous for improving crop quality.  相似文献   

12.
Abstract. Soil organic (SOC) and inorganic carbon (SIC) stocks of Kenya were determined using four different methods to provide baseline data. The assessments used an updated version of the 1:1 M soil and terrain database for the country. Estimates for national SOC stocks to 1 m depth ranged from 3452 to 3797 Tg C. The findings highlight the need for comprehensive databases of soil and terrain data of good quality that consider more than one representative profile per soil component. The 95% confidence limits for the median, area-weighted SOC content were largest in the humid highlands (15.4–15.7 kg C m−2) and smallest in the hot arid zone (4.4–4.5 kg C m−2). Conversely, for SIC these values were largest in the arid zone (4.3–4.5 kg C m−2) and smallest in high rainfall areas (<0.1 kg C m−2). Many croplands in Kenya have been over-exploited, resulting in nutrient depletion and loss of organic matter. The SOC gains considered ecologically and technically feasible upon improved management of croplands were estimated at 5.8–9.7 Tg C over the next 25 years. This corresponds to an estimated annual mitigation potential of 5–9% of Kenya's CO2-C emissions from fossil fuels, cement manufacturing and land use change for 1990.  相似文献   

13.
Fluxes of the greenhouse gases methane (CH4) and nitrous oxide (N2O) from histosolic soils (which account for approximately 10% of Swedish agricultural soils) supporting grassley and barley production in Sweden were measured over 3 years using static chambers. Emissions varied both over area and time. Methane was both produced and oxidized in the soil: fluxes were small, with an average emission of 0.12 g CH4 m−2 year−1 at the grassley site and net uptake of −0.01 g CH4 m−2 year−1 at the barley field. Methane emission was related to soil water, with more emission when wet. Nitrous oxide emissions varied, with peaks of emission after soil cultivation, ploughing and harrowing. On average, the grassley and barley field had emissions of 0.20 and 1.51 g N2O m−2 year−1, respectively. We found no correlation between N2O and soil factors, but the greatest N2O emission was associated with the driest areas, with < 60% average water-filled pore space. We suggest that the best management option to mitigate emissions is to keep the soil moderately wet with permanent grass production, which restricts N2O emissions whilst minimizing those of CH4.  相似文献   

14.
Abstract. Three different management systems were compared in an olive grove on a Vertic soil, near the city of Cordoba, Spain. Rainfall, runoff and soil loss were recorded from experimental plots of 6×12 m for three years. Results indicated that the no-tillage system, which was kept weed-free with herbicides, gave the largest soil loss (8.5 t ha−1 yr−1) and average annual runoff coefficient (21.5%), due to increased soil compaction, particularly outside the canopy projection area. A system that used a grass cover gave the lowest soil losses (1.2 t ha−1 yr−1) and average annual runoff coefficient (2.5%) due to the protective effects of the cover and increased soil aggregate stability. The third system, conventional tillage, gave intermediate results, with a soil loss of 4.0 t ha−1 yr−1 and an average runoff coefficient of 7.4%. The search for alternative soil management to conventional tillage should consider occasional light tillage to establish a grass cover that would keep both soil erosion and runoff losses to a minimum.  相似文献   

15.
The status of cobalt (Co) in savanna soils of Nigeria is largely unknown, and a long-term experiment including inorganic fertilizer (NPK) and farmyard manure (FYM) and uncultivated land provided information on the way management affected the dynamics of Co in the soil. Total Co increased with increasing depth, whereas readily extractable Co decreased. The mean concentration of Co (5.6–7.9 mg kg−1) was close to the mean value of 8 mg kg−1 reported for soils worldwide, whereas the concentration of extractable Co was less than that reported in most soils. Regression analysis indicated that total Fe predicted up to 78% of the soil Co. The potentially available Co correlated strongly with pedogenic or reducible Mn oxides extracted with dithionite–citrate–bicarbonate. Mass balance calculations showed that fertilization with either NPK or FYM caused losses of between 0.8 and 1.1 g Co m−2 after 50 years of cultivation against the uncultivated site as a reference. However, Co increased by 1.8 g m−2 in the soil receiving FYM + NPK, suggesting that the Co of the soil was best maintained under this management probably because of incidental additions of Co in the manures. Furthermore, the positive Co balance in the FYM + NPK plot was partly enhanced by its larger contents of clay, Fe and pedogenic Mn oxides than in either the FYM or NPK plots. Clay, Fe and pedogenic oxides served as Co sinks in this particular savanna soil.  相似文献   

16.
We investigated the denitrification activity and the distribution of the denitrifying bacteria of a boring survey site located on a volcanic plateau, where the geological profiles from surface to deep subsurface soil at the groundwater level had been examined. There were differences between the water quality in the Ito pyroclastic flow deposit (Shirasu) layer (44.2 to 54.5 m) and that in the Osumi pumice fall deposit (Pumice) layer (below 54.5 m) corresponding to the impermeable layer of unconfirmed groundwater: The nitrate concentration was less than 1 mg kg−1 in the Shirasu layer and more than 10 mg kg−1 in the Pumice layer (Kubota et al. 2005). Denitrification activity decreased from the surface to the loam layer and was enhanced in the Shirasu layer and the Haraigawa clay impermeable layer at a depth of 65 m. It was observed that the highest potential denitrification activity (103 ng-N2O d−1 g−1) in the impermeable layer was almost equal to that of a Kuroboku surface soil with slurry application. Viable counts of the sonic-samples, which indicated the presence of bacterial group with soil particles attached, increased in the impermeable layer. The ratios of viable or denitrifying bacterial counts in the sonic-samples to those in the wash-samples were significantly higher in the impermeable layer than those in the surface layer. These results suggest that the hydrogeological conditions enhanced the denitrification activity in the impermeable layer, the niches of which might be relatively anaerobic and have a sufficient supply of substrates to enable the denitrifying bacterial populations to multiply.  相似文献   

17.
Ammonia volatilization from granular urea applied at 10gNm−2 to pasture was investigated using an enclosure method. Misting 0, 4 or 16 mm of water on to the soil at field capacity within 3 h of urea application resulted in total NH3 losses of 2.81, 0.92 and 0.18 g N m−2 respectively. Further delaying the watering reduced this effect until at 48 h, volatilization was lowered from 3.33 to only 3.09gNm−2 with 16mm of water. Hydrolysis and NH3 loss were rapid. Similar trends occurred at a lower initial soil moisture content.
On air-dry soil (0.06 g H2O/g soil), hydrolysis was slow (73 ± 14% of the urea remained after 30 days) and volatilization, while gradual, accounted for 33% of applied urea-N after 30 days. Addition of 16 mm of water 48 and 96 h after urea application was followed by a period of rapid hydrolysis and volatilization, resulting in a total loss of 2.59 and 2.40gNm−2 respectively. Repeated addition of 2mm of water produced bursts of hydrolysis and NH3 loss until completion of hydrolysis when additional water had no effect. A total loss after 30 days of 3.94 g N m−2 occurred in this 2 mm treatment.  相似文献   

18.
Release of potassium from some benchmark soils of India   总被引:1,自引:0,他引:1  
Release of potassium from 15 surface samples of benchmark Alluvial, Red and Black soils of India to 0.01 M solutions of BaCl2, CaCl2, NH4Cl and NaCl was studied in soils either untreated or pretreated with 5 × 10−3 M KCl. In the untreated soils, the efficacy of the extractants declined in the sequence: BaCl2 > NH4Cl > CaCl2 > NaCl. Cumulative K-release was greatest from Black soils, followed by Red and Alluvial soils. From soils pretreated with 5 * 10−3 M KCl, more K was released than retained, and more 'native' K was released than that from untreated soils. Increase in the release of 'native' K decreased in the sequence: Red > Alluvial > Black soils. The amounts of surface and internal K, desorption rate constants and parabolic diffusion constants were calculated from K release to the various electrolytes.  相似文献   

19.
Peat land has been considered as an alternative type of land for agricultural development especially in the tropics. In the present study, the N-supplying capacity, one of the most important soil properties in terms of crop production, of peat soils was examined. Ten peat soil samples were collected from Indonesia, Malaysia, and Japan. Gross N mineralization in the soil samples was estimated using a zero-order model, and kinetic parameters of mineralization were determined using a simple type model. Soil organic matter composition was investigated using 13C CPMAS NMR. Mineralization potential ( N 0), apparent activation energy ( E a), and mineralization rate constant ( k ) ranged between 571–2,445 mg kg−1, 281–8,181 J mol−1, and 0.009–0.020 d−1, respectively. Although none of the parameters showed a significant correlation with the soil C/N ratio, a negative correlation was observed between the k value and the ratio of the proportion of alkyl C in total C to that of O -alkyl C estimated by 13C CPMAS NMR. The latter suggested that the k values were higher in the peat soils relatively rich in readily decomposable organic matter including carbohydrates.  相似文献   

20.
Abstract. The effects of especially frequent nitrogen (N) additions (from 1959 to 1986, totalling 860 kg N ha−1) and liming (in 1958 and 1980, totalling 6000 kg CaCO3 ha−1) on CH4 uptake by a boreal forest soil were studied in a stand of Norway spruce. Except for a forested reference plot, the stand was clear-cut in January 1993 and the following year one-half of each clear-cut plot was prepared by mounding. Fluxes of CH4 were measured with static chambers in the autumn before clear-cutting and during the following four summers. The average CH4 uptake during 1993–96 in the forested reference plot was 82 μg CH4 m−2 h−1(ranging from 10 to 147 units). In the first summer after clear-cutting, the cleared plot showed 42% lower CH4 uptake rate than the forested reference plot, but thereafter the difference became less pronounced. The short-term decrease in CH4 consumption after clear-cutting was associated with increases in soil NH4+ and NO3concentrations. Mounding tended at first to stimulate CH4 uptake but later to inhibit it. Neither liming nor N-fertilization had significant effects on CH4 consumption. Our results suggest that over the long term, in N-limited upland boreal forest soils, N addition does not decrease CH4 uptake by the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号