首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CONTENT OF INOSITOL PHOSPHATES IN SOME ENGLISH AND NIGERIAN SOILS   总被引:1,自引:0,他引:1  
The mono-, di-, tri-, tetra-, penta-, and hexaphosphates of inositpl accounted for between 11·2 and 30·4 per cent of the organic P in three English and four Nigerian soils. M yoinositol hexaphosphate was the component present in greatest amount in all soils. The lower esters (mono-, di-, and triphosphates) accounted for less than 3 per cent of the organic P in all soils, with the lowest amounts in the soils from Nigeria. For the penta- and hexaphosphates the ratio of myo- plus dl- isomers to scyll oinositol varied from 2·9 to over 10, the highest ratio occurring in the soils from Nigeria. Examination of the techniques showed that they gave approximately correct estimates of the inositol phosphates. The organic P in soil which was not estimated as inositol phosphate occurred in other forms.  相似文献   

2.
THE NATURE OF ALKALI-SOLUBLE SOIL ORGANIC PHOSPHATES   总被引:2,自引:0,他引:2  
Fractionation of the phosphates in a sodium hydroxide extract of an arable soil has shown the presence of a number of esters of a type not previously detected in soils. These included several mono-phosphorylated carboxylic acids with C to P ratios of approximately 7 or 8 to I and two esters each containing glycerol, myoinositol, chiroinositol and an unidentified component. Another ester, probably containing two phosphate groups, was also detected but was not completely separated from other compounds containing no P. These esters constituted only approximately 3 per cent of the total soil organic P but considerable losses of organic P occurred during the extraction and isolation procedures. The amounts of the inositol phosphates, nucleoside phosphates, and inorganic pyrophosphate in the extract were also measured.  相似文献   

3.
CHANGES IN THE CHEMICAL NATURE OF SOIL ORGANIC PHOSPHATE DURING PEDOGENESIS   总被引:1,自引:0,他引:1  
In two chronosequences of soils, total organic phosphate (P0) accumulated rapidly during the first 50 years of soil development, when organic matter increased and pH decreased. The rate of P0 accumulation then declined with age of soil until a ‘steady state’ was reached. The amounts of phospholipid, inositol phosphates and humic acid—P0 followed the same trends as the total P0. Parent materials and very young soils contained largely citric acid-soluble P0, but after less than 50 years, surface horizons accumulated sufficient organic matter to complex a considerable proportion of the P0. An upper limit of 20–5 per cent citric acid-soluble P0 and 70–80 per cent NaOH-soluble P0 was attained within 50 years of soil formation in the surface layers, and this slowly extended down the profile so that, after 10000 years, the soil had 20 per cent citric acid soluble-P0 and 70 per cent NaOH-soluble P0 to a depth of 1 m.  相似文献   

4.
The nature of the inositol pentaphosphate and hexaphosphate isomers in a number of contrasting Canadian and Scottish soils has been examined. The mixed esters were extracted from the soil with alkali and separated from other soil phosphates by anion-exchange chromatography using HCOONH4 as eluent. The composition of the mixture was established by anion-exchange chromatography using a gradient of HC1 as eluent, followed by paper chromatography of the esters thus separated, and by paper chromatography of the hydrolysis products. Esters of myo- and scylloinositol together constituted more than 90 per cent of the mixture in most cases. Relatively small amounts of dl-inositol and neoinositol were detected in hydrolysates and it was estimated that esters of these cyclitols did not exceed 10 per cent and 1 per cent, respectively, of the total. The ratio of myo-+dl-inositol hexaphosphates to scylloinositol hexaphosphate ranged from 1.1 to 2.7 in the Canadian soils and 1.8 to 4.6 in the Scottish soils. The ratio of hexaphosphates to pentaphosphates ranged from 0.9 to 2.4 in the Canadian soils and 3.0 to 4.3 in the Scottish soils. The three soils with the highest pH values contained relatively large amounts of scyllo- relative to myoinositol hexaphosphate, but one very acid soil also contained a high proportion of this isomer and no consistent relationship was noted between the constitution of the inositol polyphosphate fraction and any other soil property.  相似文献   

5.
Sixteen soils and 4 soil preparations were cropped exhaustively with ryegrass in the glasshouse and monocalcium phosphate potentials (½pCa+pH2PO4=1) were measured after each of 6 consecutive harvests. The amounts of phosphorus (Q) removed from the soils by ryegrass accounted for 95·1–96·6 per cent of the variance in 1 for 3 soils and 2 soil preparations (P < 0·001), for 88·4–93·7 Per cent of the variance for 6 soils and 2 soil preparations (0·001 < P < 0·01), for 71·6–82·6 per cent of the variance for 3 soils (0·01 < P < 0·05) and for insignificant amounts of the variance for 4 soils. Values of ΔIQ ranged from 7 × 10–4 to 431 × 10–4½pCa+pH2PO4/ppm P removed from soil. ΔIQ tended to decrease (i.e. the soils were more buffered) with increasing clay contents and with increasing amounts of NaHCO3-soluble P and to increase (i.e. the soils were less buffered) with increasing amounts of CaCO3. Variations in organic C did not significantly affect ΔIQ. The following equation accounts for 81 per cent of the variance in ΔIQ for all soils except those in equilibrium with octacalcium phosphate: ΔIQ× (104) = 225·9–4·17(% clay)+8·01(% CaCO3)–1·38(ppm NaHCO3-soluble P).  相似文献   

6.
In this paper, spent mushroom compost (SMC), a by‐product of the mushroom industry, is proposed as a suitable organic amendment for soil structure restoration. A 4‐month incubation pot trial was conducted in which fresh and composted SMC was amended at three different rates (50, 100 and 200 t ha−1) to a range of structurally degraded tillage soils (n = 10). Soil OC content and aggregate stability as determined by the three disrupting tests of the Le Bissonnais method (fast‐wetting, slow‐wetting and mechanical breakdown) were investigated. Applications of 50, 100 and 200 t ha−1 fresh SMC increased the OC content by 2·71 per cent, 2·69 per cent and 2·49 per cent respectively, while amendments of composted SMC increased the OC content by 3·28 per cent, 2·94 per cent and 2·87 per cent for each application rate, respectively. The effect of SMC on aggregate stability was generally positive and statistically significant in most soils. However, in soils 3 and 4 an application rate of 200 t ha−1 SMC decreased the aggregate stability, on average, by 15 per cent, in comparison to the control, for the fast‐wetting test. Aggregate stability was strongly controlled by the inherent OC content of the study soils; that is, the OC content prior to SMC addition. A positive correlation coefficient was also evident for the dithionite‐extractable iron, most pronounced for slow‐wetting and mechanical breakdown treatments (r = 0·844 and r = 0·817 respectively). It is clear from this research that SMC amendments have the capacity to improve soil structural stability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The amounts of P applied cumulatively to a neutral arable soil (pH 7.1–7. in 0.01M CaCl2) at Rothamsted, as farmyard manure, alone or with superphosphate, which were converted to organic P in 100 years ranged from 18 to 44 μg P/g of soil (0–23 cm). Superphosphate alone (3300 kg P/ha) slightly lessened the total organic P in the soil. Neither farmyard manure nor super-phosphate significantly changed the amounts (38 to 42 μg P/g) of inositol penta- and hexaphosphate in these soils. In the surface layers (0–7.5 cm) of soils from permanent grassland at Rothamsted, superphosphate (3370kg P/ha) increased organic P by 134 μg P/g at pH 4.5 and 19 μg P/g at pH 6.5, about 6 and 1 per cent respectively of the P remaining from superphosphate applied cumulatively since 1858. In the sub-surface layers (7.5–23 cm) superphosphate increased organic P by 93 μg P/g at pH 4.5 and 62 μg P/g at pH 6.2, about 18 and 10 per cent respectively of the P remaining from superphosphate. The sum of inositol penta- and hexaphosphates accounted for 32 per cent at pH 4.5 and 21 per cent at pH 6.5 of the increases in organic P in the surface layers and 45 per cent and 26 per cent in the sub-surface layers at pH 4.5 and 6.5 respectively. Superphosphate (1260–2100 kg P/ha) applied intermittently or cumulatively increased total organic P by 19 to 52 μg P/g and inositol penta- and hexaphosphates by 13 to 17 μg P/g in acid tea soils (pH 3.2–3.4) from Georgia, U.S.S.R. Rock phosphate (510–1020kg P/ha) applied cumulatively had no effect on either the total organic P or the inositol P in acid tea soils (PH 3.6–3.7) from Ceylon.  相似文献   

8.
Assessments of the effects of deforestation, post-clearance tillage methods and farming systems treatments on soil properties were made from 1978 through 1987 on agricultural watersheds near Ibadan, southwestern Nigeria. These experiments were conducted in two phases: Phase I from 1978 through 1981 and Phase II from 1983 to 1987, with 1 year (1982) as a transition phase when all plots were sown with mucuna (Mucuna utilis). There were six treatments in Phase I involving combinations of land clearing and tillage methods: (1) manual clearing with no-till (MC-NT); (2) manual clearing with plough-till (MC-PT); (3) shear-blade clearing with no-till (SB-NT); (4) tree-pusher/root rake clearing with no-till (TP-NT); (5) tree-pusher/root-rake clearing with plough-till (TP-PT); (6) traditional farming (TF). The six treatments were replicated twice in a completely randomized design. The traditional treatment of Phase I was discontinued during Phase II. The five farming systems studied during Phase II with a no-till system in all treatments were: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) and (3) fallowing with Mucuna utilis on severely degraded and moderately degraded watersheds, respectively, for 1 year followed by maize-cowpea rotation for another; (4) and (5) ley farming involving establishment of pasture in the first year on severely and moderately degraded plots, respectively, controlled grazing in the second year, and growing maize (Zea mays)-cowpea (Vigna unguiculata) in the third year. All treatments, imposed on watersheds of 2–4 ha each, were replicated twice. The soil properties analyzed were particle size distribution, total aggregation and mean weight diameter of aggregates, soil bulk density, penetrometer resistance, water retention characteristics, infiltration capacity and saturated hydraulic conductivity. These properties were measured under the forest cover in 1978, and once every year during the dry season thereafter during Phases I and II. Prior to deforestation, mean soil bulk density was 0·72 Mg m−3 and 1·30 Mg m−3, soil penetration resistance was 32·4 KPa and 90·7 KPa, and mean weight diameter of aggregates was 3·7 mm and 3·2 mm for 0–5 cm and 5–10 cm depths, respectively. The infiltration rate was excessive (54–334 cm hr−1) and saturated hydraulic conductivity was rapid (166–499 cm hr−1) under the forest cover. Furthermore, water transmission properties varied significantly even over short distances of about 1 m. Deforestation and cultivation increased soil bulk density and penetration resistance but decreased mean weight diameter of aggregates. One year after deforestation in 1980, mean soil bulk density was 1·41 Mg m−3 for 0–5 cm depth and 1·58 Mg m−3 for 5–10 cm depth. Soil bulk density and penetration resistance were generally higher for NT than for PT methods, and the penetration resistance was extremely high in all treatments by 1985. During Phase II, soil bulk density was high during the grazing cycle of the ley farming treatment. Sand content at 0–5 cm depth increased and clay content decreased with cultivation duration. Soon after deforestation, saturated hydraulic conductivity and equilibrium infiltration rate in cleared and cultivated land declined to only 20–30 per cent of that under forest. Mean saturated hydraulic conductivity following deforestation was 46·0 cm hr−1 for 0–5 cm depth and 53·7 cm hr−1 for 5–10 cm depth. Further, infiltration rate declined with deforestation and cultivation duration in all cropping systems treatments. During Phase I, mean infiltration rate was 115·8 cm hr−1 under forest cover in 1978, 20·9 cm hr−1 in 1979, 17·4 cm hr−1 in 1980 and 20·9 cm hr−1 in 1981. During Phase II, mean infiltration rate was 8·5 cm hr−1 in 1982, 11·9 cm hr−1 in 1983, 11·0 cm hr−1 in 1984, 11·3 cm hr−1 in 1985 and 5·3 cm hr−1 in 1986. Infiltration rate was generally high in ley farming and mucuna fallowing treatments. Natural fallowing drastically improved the infiltration rate from 19·2 cm hr−1 in 1982 to 193·2 cm hr−1 in 1986, a ten-fold increase within 5 years of fallowing. High-energy soil water retention characteristics in Phase I were affected by those treatments that caused soil compaction by mechanized clearing and no-till systems. Soil water retention at 0·01 MPa potential in 1979 was 19·2 per cent (gravimetrics) for SB, 17·9 per cent for TP, 15·9 per cent for MC and 17·8 per cent for TF methods. With regards to tillage, soil water retention was 17·8 per cent for NT compared with 16·8 per cent for PT. During Phase II, water retention characteristics were not affected by the farming system treatments. Mean soil water retention (average of 4 years' data from 1982 to 1986) at 0·01 MPa for 0–5 cm depth was 16·6 per cent for alley cropping, 16·7 per cent for mucuna fallowing and 16·8 per cent for ley farming. Mean soil water retention for 1·5 MPa suction was 9·3 per cent for alley cropping, 8·7 per cent for mucuna fallowing, and 9·3 per cent for ley farming. Water retention at 1·5 MPa suction correlated with the clay and soil organic carbon content.  相似文献   

9.
Soil properties were significantly related to the adsorption of aniline and p-chloroaniline, greater adsorption always occurring with p-chloroaniline. Multiple regression analysis indicated that the organic matter plus available water (or clay) was better than the simple linear relationship, with organic matter alone. The resulting equations accounted for most of the variability in aniline or p-chloroaniline adsorbed (R2= 0·92 and 0·94, respectively). The contribution of organic matter to the adsorption was calculated as 79 and 77 per cent for aniline and p-chloroaniline. Experimental data on partially oxidized soils emphasized the major role played by soil organic matter. The variability in adsorption was mainly due to the organic matter left after oxidation (R2= 0·72 and 0·64 for aniline and p-chloroaniline). No other combinations of variables significantly improved these relationships.  相似文献   

10.
Large areas in the Upper Tana river catchment, Kenya, have been over‐exploited, resulting in soil erosion, nutrient depletion and loss of soil organic matter (SOM). This study focuses on sections of the catchment earmarked as being most promising for implementing Green Water Credits, an incentive mechanism to help farmers invest in land and soil management activities that affect all fresh water resources at source. Such management practices can also help restore SOM levels towards their natural level. Opportunities to increase soil organic carbon (SOC) stocks, for two broadly defined land use types (croplands and plantation crops, with moderate input levels), are calculated using a simple empirical model, using three scenarios for the proportion of suitable land that may be treated with these practices (low = 40 per cent, medium = 60 per cent, high = 80 per cent). For the medium scenario, corresponding to implementation on ~348 000 ha in the basin, the eco‐technologically possible SOC gains are estimated at 4·8 to 9·3 × 106 tonnes (Mg) CO2 over the next 20 years. Assuming a conservative price of US$10 per tonne CO2‐equivalent on the carbon offset market, this would correspond to ~US$48–93 million over a 20‐year period of sustained green water management. This would imply a projected (potential) payment of some US$7–13 ha−1 to farmers annually; this sum would be in addition to incentives that are being put in place for implementing green water management practices and also in addition to the benefits that farmers would realize from the impact on production of these practices themselves. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Field runoff plots were established in 1984 to evaluate the effects of slope length on runoff, soil erosion and crop yields on newly cleared land for four consecutive years (1984–1987) on an Alfisol at Ibadan, Nigeria. The experimental treatments involved six slope lengths (60 m to 10 m at 10-m increments) and two tillage methods (plough-based conventional tillage and a herbicide-based no-till method) of seedbed preparation. A uniform crop rotation of maize (Zea mays)/cowpeas (Vigna unguiculata) was adopted for all four years. An uncropped and ploughed plot of 25 m length was used as a control. The water runoff from the conventional tillage treatment was not significantly affected by slope length, but runoff from the no-till treatment significantly increased with a decrease in slope length. The average runoff from the no-till treatment was 1·85 per cent of rainfall for 60 m, 2·25 per cent for 40 m, 2·95 per cent for 30 m, 4·7 per cent for 20 m and 5·15 per cent for 10 m slope length. In contrast to runoff, soil erosion in the conventional tillage treatment decreased significantly with a decrease in slope length. For conventional tillage, the average soil erosion was 9·59 Mg ha−1 for 60 m, 9·88 Mg ha−1 for 50 m, 6·84 Mg ha−1 for 40 m, 5·69 Mg ha−1 for 30 m, 1·27 Mg ha−1 for 20 m and 2·19 Mg ha−1 for 10 m slope length. Because the no-till method was extremely effective in reducing soil erosion, there were no definite trends in erosion with regard to slope length. The average sediment load (erosion:runoff ratio) also decreased with a decrease in slope length from 66·3 kg ha−1 mm−1 for 60 m to 36·3 kg ha−1 mm−1 for 10 m slope length. The mean C factor (ratio of soil erosion from cropped land to uncropped control) also decreased with a decrease in slope length. Similarly, the erosion:crop yield ratio decreased with a decrease in slope length, and the relative decrease was more drastic in conventional tillage than in the no-till treatment. The slope length (L) and erosion relationship fits a polynomial function (Y=c+aL+bL2). Formulae are proposed for computing the optimum terrace spacing in relation to slope gradient and tillage method. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
There is growing evidence that population pressure on the land has become the most intractable problem in the developing countries where demand for food exceeds the food production capacity of the land. Southern Burkina Faso has experienced rapid population growth, mostly driven by immigration of farmers. This study was carried out in Sissili Province and used satellite images acquired over 31‐year period, census and survey data to capture migration patterns and its impacts on land use change. Results showed that migrant population which accounted for only 3 per cent in the study area in 1976 shifted to 57 per cent in 2007. Migrant people were using improved technology to progressively convert forest land to cropland. Cropland increased at an annualized rate of 0·46 per cent to the detriment of the dense forest and woodland which decreased at 0·57 per cent per annum. Population growth was highly correlated with increasing area of cropland (r2 = 0·95, p = 0·014) and declining dense forest (r2 = 0·78) and woodland (r2 = 0·95) covers. It can be concluded that rural migration, driven by the relatively good soil and rainfall conditions in the recipient area, is accounted for deforestation in the study area. If rural migration is not checked, it will seriously degrade the environment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Pigeon pea is cultivated by most smallholder crop–livestock farmers mainly as a border crop. It is quite often sparsely intercropped in cereal‐based cropping systems in the subhumid zone of Ghana. Management of pigeon pea and its biomass is a promising means of improving many abandoned arable fields but has not been consciously undertaken. The objective of this trial was to explore the use of pigeon pea and the management of its pruned biomass as part of an improved fallow for crop–livestock farming. Three pigeon‐pea management options and a natural fallow (two‐year fallow period) were compared in terms of maize grain yield and changes in soil organic carbon, total nitrogen and cation exchange capacity. Pigeon pea grain yield ranged between 615 and 678 kg ha−1 and 527 and 573 kg ha−1 in the first and second year of fallow, respectively. In the first year after fallow, maize grain yield ranged between 0·43 and 2·39 t ha−1 and was significantly influenced by the fallow system. There was a marked decrease in maize grain on the pigeon pea fallow plots in the second year, ranging between 50 and 38·6 per cent in Kumayili and between 42·6 and 17·6 per cent in Tingoli. After the two‐year fallow period, increase of soil organic carbon on the pigeon pea fallow plot compared with the natural fallow plot was 30·5 per cent, and there was an improvement of total nitrogen (48·5 per cent) and CEC (17·8 per cent). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Erosion control at low–medium radioactive waste disposal sites is an important concern. A study was carried out in El Cabril (Córdoba, Spain) on two 40 per cent anthropic steep slopes in order to test the effectiveness of hydro‐seeding techniques for controlling soil erosion. Two groups of 10 m × 3 m plots were established. The treatments tested were: hydro‐seeding with the application of vegetal mulch (VM); hydro‐seeding with added humic acids (HA); hydro‐seeding with vegetal mulch and humic acids added (VM + HA); and a control without hydro‐seeding or soil amendment (C). Fifteen run‐off producing rainfall events were recorded during the study period, with intensities ranging between 2 mm h−1 and 33·6 mm h−1. All treatments significantly reduced runoff and soil loss (p < 0·05). The VM+HA treatment was the most effective, reducing 98·5 per cent of total soil loss. The HA treatment (97·1 per cent reduction) was also more effective than the VM treatment (94·8 per cent reduction). A great reduction in runoff and sediment yield was observed in the treated plots during the first stages after hydro‐seeding. This result may be attributed to the combined effect of: (a) the protection against raindrop impact due to the application of straw and mulch to the soil surface, and (b) a general improvement in the soil's structure brought by the organic amendments. Seven months after hydro‐seeding, an increase in the density of the plant cover could be added to the beneficial effects mentioned above. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Hydrological and water-quality measurements were made on a 44·3 ha watershed under forest cover and following deforestation and conversion to an agricultural land-use. Under secondary tropical rainforest, water yield ranged from 2·2 per cent to 3·1 per cent of annual rainfall. Deforestation of 7 per cent of the watershed area increased water yield to 7·0 per cent of annual rainfall. Baseflow increased with deforestation, and increased progressively with time after deforestation. It was 5·1 per cent of annual rainfall in 1979, 15·1 per cent in 1980, 16·4 per cent in 1981 and 17·9 per cent in 1982. In comparison, surface flow was 4·5 per cent in 1979 and 6·2 per cent in 1980, but decreased to 2·3 per cent in 1981 and 2·4 per cent in 1982. Total water yield following deforestation and conversion to agricultural land-use ranged from 9·6 per cent to 21·3 per cent of the annual rainfall received. The dry season flow decreased with time as the dry season progressed, but increased over the years following deforestation. Surface runoff during the rainy season depended on ground cover and soil quality. The extent and severity of soil degradation affected the dynamics of surface flow. Because of actively growing crops, plant nutrient concentrations in surface runoff were low. Forested lysimeters had higher seepage losses than cropped lysimeters, and the water-use efficiency was 1·9–3·6 kg ha−1 mm−1 for cowpeas compared with 6·1–11·0 kg ha−1 mm−1 for maize. The delivery ratio was high immediately after deforestation and decreased to a steady value of about 3·2 per cent within 7 years. The data show five distinct phases of soil degradation in relation to generation of surface runoff. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this study was to measure the in situ soil CO2 flux from grassland, afforested land and reclaimed coalmine overburden dumps by using the automated soil CO2 flux system (LICOR‐8100® infrared gas analyzer, LICOR Inc., Lincoln, NE). The highest soil CO2 flux was observed in natural grassland (11·16 µmol CO2 m−2s−1), whereas the flux was reduced by 38 and 59 per cent in mowed site and at 15‐cm depth, respectively. The flux from afforested area was found 5·70 µmol CO2 m−2s−1, which is 50 per cent lower than natural grassland. In the reclaimed coalmine overburden dumps, the average flux under tree plantation was found to be lowest in winter and summer (0·89–1·12 µmol CO2 m−2s−1) and highest during late monsoon (3–3·5 µmol CO2 m−2s−1). During late monsoon, the moisture content was found to be higher (6–7·5 per cent), which leads to higher microbial activity and decomposition. In the same area under grass cover, soil CO2 flux was found to be higher (8·94 µmol CO2 m−2s−1) compared with tree plantation areas because of higher root respiration and microbial activity. The rate of CO2 flux was found to be determined predominantly by soil moisture and soil temperature. Our study indicates that the forest ecosystem plays a crucial role in combating global warming than grassland; however, to reduce CO2 flux from grassland, mowing is necessary. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Temporal changes in soil chemical and nutritional properties were evaluated in a long-term experiment conducted on Alfisols in West Africa. Effects of land use and cropping duration on soil chemical properties at 0–5 cm and 5–10 cm depths were evaluated for five treatments: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) mucuna (Mucuna utilis) fallowing for 1 year followed by maize (Zea mays)-cowpea (Vigna unguiculata) cultivation for 2 years on severely degraded land; (3) fallowing with mucuna on moderately degraded soils; (4) ley farming involving growing improved pastures for 1 year, grazing for the second year, and growing maize-cowpea for the third year on severely degraded land; (5) ley farming on moderately degraded soils. Soil chemical properties were measured once every year from 1982 through 1986 during the dry season, and included pH, soil organic carbon (SOC), total soil nitrogen (TSN), Bray-P, exchangeable cations, and effective cation exchange capacity (CEC). Regardless of the cropping system treatments, soil chemical quality decreased with cultivation time. The rate of decrease at 0–5 cm depth was 0·23 units year−1 for pH, 0·05 per cent year−1 for SOC, 0·012 per cent year−1 for TSN, 0·49 cmol kg−1 year−1 for Ca2+, 0·03 cmol kg−1 year−1 for Mg2+, 0·018 cmol kg−1 year−1 for K+, and 0·48 cmol kg−1 year−1 for CEC. Although there was also a general decrease in soil chemical quality at 5–10 cm depth, the trends were not clearly defined. In contrast to the decrease in soil properties given above, there was an increase in concentration at 0–5 cm depth of total acidity with cultivation time at the rate of 0·62 cmol kg−1 year−1, and of Mn3+ concentration at the rate of 0·081 cmol kg−1 year−1. Continuous cropping also increased the concentration of Bray-P at 0–5 cm depth due to application of phosphatic fertilizer. Trends in soil chemical properties were not clearly defined with regards to cropping system treatments. In general, however, soil chemical properties were relatively favorable in ley farming and mucuna fallowing treatments imposed on moderately degraded soils. Results are discussed in terms of recommended rates of fertilizer use, in view of soil test values, expected yields, and critical limits of soil properties.  相似文献   

18.
Prolonged occupation of sodic soils by trees results in the latters' amelioration in terms of decreased pH and electrical conductivity and improved organic matter and fertility status. To assess whether sodic soils reclaimed by tree plantations can be used for growing agricultural crops, a greenhouse pot trial was conducted during winter of 1994–95 (November–April) at the Central Soil Salinity Research Institute, Karnal, India. Wheat (Triticum aestivum, L; cultivar HD 2329) and oat (Avena sativa, L. cultivar local) plants were grown in topsoils (30 cm) collected from 24-year-old plantations of Prosopis juliflora, Acacia nilotica, Eucalpytus tereticornis, Terminalia arjuna and Albizia lebbek that had been established in 1970 on a highly sodic soil (pH2 10·2–10·5), and a reclaimed sodic soil from a farm field adjacent to the plantations. The organic carbon content and nutrient status of the soil under the 24-year-old plantations was much higher than that of a reference farm soil reclaimed through gypsum in 1974. Soil amelioration was highest under Prosopis canopies (pH 7·4 and organic carbon 0·89 per cent) in topsoil and minimum in Eucalpytus canopies (pH 8·6 and organic carbon 0·56 per cent). Reduced sodicity and improved fertility resulted in much better growth reference and productivity of the wheat and oat test crops grown on the five plantation soils, than in the reference farm soil. Grain and straw yields of wheat and oats were maximum in Prosopis soil (wheat 61·7 g grains and 87·5 g straw and oats 87·9 g grains and 111·1 g straw per pot) and minimum in Eucalpytus soil (32·3 and 25·3 g, and 42·7 and 58·5 g per pot). Grain yields of both wheat and oats obtained in the Prosopis soil were 4·5 and 3·5 times more, respectively, than obtained in the reference farm soil. The phosphorus concentration in whole plant tissues of wheat and oats was highest in Prosopis soils reflecting the prevailing phosphorus status and better restoration processes of the soils. Potassium concentration was little affected due to different soil treatments. The study clearly indicated that prolonged afforestation of sodic soils by tree plantations, particularly by Prosopis and Acacia trees, may restore the productivity of abandoned soils to much above the present agricultural production levels. The results further suggest that 24 years' occupation of sodic soils by trees, such as Prosopis, Acacia, Eucalyptus, Terminalia and Albizia, did not result in a build-up or accumulation of toxic allelochemicals which could be injurious to wheat and oats cultivation on such soils. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Mined areas are a continuing source of heavy metals and acidity that move off site in response to erosion. Revegetation of the mine tailings could limit the spread of these heavy metals and acidity. This study was conducted to evaluate, at four tailings on opencast mines of Galicia (Touro: copper mine; and Meirama: lignite mine, NW Spain), the chemical and physical soil quality indicators and limiting edaphic factors concerning forest production. Selected zones were: (1) The tailings formed by the waste materials from the depleted Touro mine; (2) the decantation site of deposited sludge coming from the copper extraction in the flotation stage; (3) and (4) tailings of 3 and 10 years old of the Meirama lignite mine. The main physical limitations of the mine soils are the low effective depth (<50 cm), high stoniness (>30 per cent) and high porosity (>60 per cent); which make them vulnerable to soil erosion and seriously interferes with the forest production. Soils coming from the decantation site of copper mine do not have physical limitations. The main chemical limitations of mine soils are their acidity (pH from 3·62 to 5·71), and aluminium saturation (>60 per cent in copper mine soils, and >20 per cent in lignite mine soils), low CECe (from 5·34 to 9·47 cmol(+) kg−1), organic carbon (from 0·47 to 7·52 mg kg−1) and Ca2+ and Mg2+ contents, and imbalance between exchange bases. Mine soils coming from the decantation site of copper mine soils are strongly limited by the high Cu content (1218 mg kg−1). Lime and organic amendments are the most important factors in providing a suitable medium for plant growth. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Due to increased population and urbanization, freshwater demand for domestic purposes has increased resulting in a smaller proportion for irrigation of crops. We carried out a 3‐year field experiment in the Indus Plains of Pakistan on salt‐affected soil (ECe 15·67–23·96 dS m−1, pHs 8·35–8·93, SAR 70–120, infiltration rate 0·72–0·78 cm h−1, ρ b 1·70–1·80 Mg m−3) having tile drainage in place. The 3‐year cropping sequence consisted of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) crops in rotation. These crops were irrigated with groundwater having electrical conductivity (EC) 2·7 dS m−1, sodium adsorption ratio (SAR) 8·0 (mmol L−1)1/2 and residual sodium carbonate (RSC) 1·3 mmolc L−1. Treatments were: (1) irrigation with brackish water without amendment (control); (2) Sesbania (Sesbania aculeata) green manure each year before rice (SM); (3) applied gypsum at 100 per cent soil gypsum requirement (SGR) and (4) applied gypsum as in treatment 3 plus sesbania green manure each year (GSM). A decrease in soil salinity and sodicity and favourable infiltration rate and bulk density over pre‐experiment levels are recorded. GSM resulted in the largest decrease in soil salinity and sodicity. There was a positive relationship between crop yield and economic benefits and improvement in soil physical and chemical properties. On the basis of six crops, the greatest net benefit was obtained from GSM. Based on this long‐term study, combined use of gypsum at 100 per cent soil gypsum requirement along with sesbania each year is recommended for soil amelioration and crop production. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号