首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, electroless silver plating process for polyester was reported. The electroless silver plating is basically divided into four stages including pre-cleaning, sensitisation, electroless silver deposition and post-treatment. As the electroless silver plating stage is the key stage in affecting the brilliant appearance and various functional properties such as conductivity and ultra-violet protection, we will study the effect of process variables, i.e. amount of silver nitrate (AgNO3), concentration of ammonium hydroxide (NH4OH), concentration of sodium hydroxide (NaOH) and process temperature, using increased amount of silver in fabric surface as an indicator, for optimising the electroless silver plating process for possible industrial application. Experimental results revealed that amount of silver nitrate (AgNO3)=1.77×10?3 mole; concentration of ammonium hydroxide (NH4OH)=6.25 %; concentration of sodium hydroxide (NaOH)=0.008 g/ml and process temperature=25 °C can give the best electroless silver plating for polyester fabric. The surface characteristics of the electroless silver-plated polyester fabric were evaluated by scanning electron microscope, X-ray photoelectron spectroscopy and X-ray diffraction analysis. Meanwhile, the performance properties of the electroless silver-plated polyester fabric were measured by CIE L*, a* and b* values, conductivity as well as ultraviolet protection. The experimental results would be discussed thoroughly in this paper.  相似文献   

2.
Chemical plating is one of the metallising treatment processes for fibrous materials that can produce unique textile properties. It poses a great potential for textile products in application aspects including functional and decorative effects. This study has investigated the operation condition and resultant performance of using chemical silver plating on polyester fabric. The silver-plated polyester fabric exhibited a specific protective function and novel appearance if optimum chemical plating condition was chosen. Furthermore, the fabric design practice employed by this chemical technique with design approach had achieved the diverse effects.  相似文献   

3.
Electrical conductivity is an important property of electroless nickel plated fabric. The optimized electroless nickel plating method can provide useful information for textile industries to obtain optimum surface resistance and stable plating. In this study, a screening experiment with factorial design and response surface method (RSM) with central composite design (CCD) was used to optimize the electroless nickel plating on polyester fabric. A two-level full factorial design (FFD) was used to determine the effects of five factors, i.e. the concentrations of nickel sulfate, sodium hypophosphite and sodium citrate, pH and temperature of the plating solution on surface resistance of the electroless nickel plated fabric. It is found that the nickel sulfate concentration and temperature of the plating solution are the most significant variables affecting the surface resistance of electroless nickel plated fabric. The optimum operating condition is finally obtained by using a desirability function. The test for reliability for predicting response surface equations shows that these equations give an excellent fitting to the observed values. In addition, the deposit composition, surface morphology, crystal structure and electromagnetic interference (EMI) shielding effectiveness (SE) were studied. The EMI SE of the nickel plated polyester fabric obtained under the optimal condition is about 60 dB at the frequency ranging from 2 to 18 GHz.  相似文献   

4.
Handle is an important factor when designing the end-uses of fabric as it is also a critical factor for purchasing decision. In the present study, the Kawabata Evaluation System for Fabrics (KES-F) was used for measuring the fabric handle of BTCA-TiO2 treated cotton fabric with or without plasma pre-treatment. The results revealed that the BTCA-TiO2 treated cotton fabrics without plasma pre-treatment had a negative effect on tensile, shearing, compressional, and surface properties while the bending properties were improved. On the other hand, the plasma pre-treatment improved the tensile and compressional properties, but not the bending, shearing, and surface properties.  相似文献   

5.
Oxygen plasma pre-treatment was applied to cotton fabric with the aim of improving the water repellency performance of an inorganic-organic hybrid sol-gel perfluoroalkyl-functionalized polysilsesquioxane coating. Cotton fabric was pre-treated with low-pressure oxygen plasma for different treatment times and operating powers. Afterward, 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF) was applied to the cotton fabric samples using the pad-dry-cure method. The surfaces of the untreated and modified cotton fibers were characterised using Fourier transform infrared spectroscopy, Xray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water repellency of the SiF-coated fabric samples was evaluated using static and sliding contact angle measurements with water. The results show that the plasma treatment with the shortest treatment time (10 s) and the lowest operating current (0.3 A) increased the atomic oxygen/carbon ratio of the cotton fiber surface from 0.6 to 0.8 and induced the formation of a nano-sized grainy surface. Increasing the plasma treatment time and/or operating current did not intensify the surface changes of the cotton fibers. Such saturation effects were explained by the large influence of reactive oxygen atoms during the plasma treatment. The measured static water contact angles on the surface of the untreated and plasma pre-treated and SiF-coated cotton fabrics showed that the oxygen plasma pre-treatment enabled the increase of the water contact angle from 135° to ≈150°, regardless of the applied plasma treatment time and discharge power. This improvement in the hydrophobicity of the SiF coating was followed by a decrease in the sliding angle of water droplets by more than 10° compared to the plasma untreated and SiF-coated sample characterized by a water sliding angle of 45°. Additionally, measurements of the water sliding angle revealed that the increase of the static contact angle from 149° to 150° corresponded to a drop of the water sliding angle from 33 to 24°, which suggests that the plasma pre-treatment of 20 s at an operating current of 0.3 A produced the best water-repellent performance of the SiF-coated cotton fabric.  相似文献   

6.
Co-Ni-P coatings were prepared on ramie fabric by electroless plating with addition of rare earth (RE: Ce, Pr, and Nd). The proposed ultra-low-cost and easy-operated electroless plating method involved successive steps, namely, alkali mercerization, malic acid modification, Co nanoparticles activation, and Co-Ni-P deposition. FT-IR and XPS measurements were utilized to verify the functions of modification and activation procedures. Refined effects of Ce, Pr, and Nd on the structures and morphologies of resulting Co-Ni-P coatings were demonstrated by XRD and FE-SEM measurements. Moreover, by adding tiny dose of RE into the one-pot plating solution, electroless deposition rates were substantially accelerated in all cases. With regard to the resulting fabric-based Co-Ni-P coatings obtained in the presence of RE, not only mechanical durability but also chemical stability were improved. All Co-Ni-P coated fabrics displayed admirable electromagnetic properties and high electromagnetic interference (EMI) shielding effectiveness (SE). Owing to the benefits from RE, EMI SE values of Co-Ni-P shielding fabrics were enhanced with increment of 3-11 dB ranging from 30 to 6000 MHz. Significantly, Co-Ni-P-Nd coated fabric with uniform surface morphology and outstanding corrosion resistance possessed the highest EMI SE of 42.27-66.76 dB.  相似文献   

7.
In this study silver nanoparticles with different particle sizes and hence colors were synthesized on silk and cotton fabrics through reduction of silver nitrate. Particle sizes of the silver colloids were measured by dynamic light scattering (DLS). The structure and properties of the treated fabrics were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and UV-Vis reflectance spectroscopy. Various characteristics of the treated fabrics including antibacterial activities against a Gram positive (Staphylococcus aureus) and a Gram negative (Escherichia coli) bacteria, color effect, wash and light fastness, water absorption, fabric rigidity, and UV blocking properties were also assessed. The results indicated that the treated fabrics displayed different colors in the presence of silver nanoparticles with different particle sizes and exhibited good and durable fastness properties. Also, the size of the silver particles had a tangible effect on antibacterial activity of treated fabrics and its antibacterial performance was improved by decreasing the size of particles. Moreover, this process imparted significantly UV blocking activity to fabric samples.  相似文献   

8.
This study aims to investigate the viability of atmospheric plasma treatment over raw cotton fabric surfaces as an alternative method for superseding the wet textile pre-treatment processes. For this purpose, the fabric samples were treated with air plasma and argon atmospheric plasma. Thereafter, the hydrophilicity and the wickability of plasma treated samples increased, and also the contact angles decreased significantly. Chemical changes were analyzed by FTIR-ATR and XPS. Morphological changes were observed by SEM. The results were inspected for assessing to what extent the replacement might be achieved by inducing this surface modification method.  相似文献   

9.
Properties of electroless copper-plated polyester fabric mainly depend on the plating bath constituents/conditions. The nickel serves to catalyze the copper deposition when hypophosphite is used as a reducing agent. In this study, the effects of deposition parameters including additive NiSO4 concentration and pH on microstructure and properties of the electroless copper plating on polyester fabric using hypophosphite as a reducing agent were investigated. The results show that at a higher NiSO4 concentration, the copper content present in the coating decreases whereas the nickel content increases slightly. On the other hand, the copper content present in the coating increases, whereas the nickel content and phosphorus decreases with respect to the rise of pH. The morphology of the copper deposits show that the particle size increase with respect to the rise of NiSO4 concentration and pH. The XRD patterns indicate that the copper-plated polyester fabrics are crystalline. In addition, there is a decrease in the surface resistance and an increase in the electromagnetic interference (EMI) shielding effectiveness (SE) with respect to the rise of Ni2+ concentration and pH of the solution as a result of gaining a greater weight in the deposits. The results suggest that the copper-plated polyester fabrics have a great potential application as an EMI shielding material.  相似文献   

10.
Electromagnetic shielding polyester fabrics were prepared using carboxymethyl chitosan-palladium (CMCS-Pd) complexes as activation solution, followed by electroless nickel plating. CMCS-Pd complexes were prepared by the complexing adsorption between CMCS and Pd2+. The effects of reaction time and pH value on the adsorption of Pd2+ by CMCS were discussed. The maximum adsorption capacity was calculated as 4.27 mmol/g. CMCS-Pd complexes were characterized by ultraviolet (UV) spectrophotometer and Fourier transform-infrared (FTIR) spectroscopy. The induction time of electroless plating decreased gradually with the increase of Pd2+ concentration. The lowest surface resistance 125 mΩ/sq of the treated polyester fabric was obtained when Pd2+ concentration in CMCS-Pd complex was 1.5 g/l. The prepared polyester fabrics had excellent electromagnetic shielding effectiveness (SE) of 40–60 dB. The treated polyester fabrics were also characterized by scanning electron microscopy (SEM). Results showed that CMCS-Pd was effective to form an active catalyzed layer on polyester substrate and the 1.5 g/l Pd2+ was sufficient to initiate electroless nickel plating reaction. The CMCS-Pd complex activation and electroless nickel plating treatment caused small changes in the polyester fabrics’ tensile strength and air permeability.  相似文献   

11.
Effect of polyester fabric through electroless Ni-P plating   总被引:1,自引:0,他引:1  
Process for electroless nickel-phosphorous (Ni-P) plating has been investigated as a metallizing treatment technology on polyester fabric. The microstructure and mechanical performance of Ni-P-plated polyester fabric are investigated in this study. Surface modifications of Ni-P-plated polyester fiber were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The changes in weight and thickness of the Ni-P-plated polyester fabric were determined through direct measurements. Systematic investigations, including bending rigidity, tearing strength, tensile strength, elongation at break, air permeability, wettability and absorbency, and anti-static property were conducted on untreated and metallized polyester fabrics. A thorough discussion and quantitative report were made on the specific performance of the Ni-P-plated polyester fabric.  相似文献   

12.
Low temperature plasma (LTP) treatment was applied to wool fabric with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabric properties including low-stress mechanical properties, air permeability and thermal properties, were evaluated. The low-stress mechanical properties were evaluated by means of Kawabata Evaluation System Fabric (KES-F) revealing that the tensile, shearing, bending, compression and surface properties were altered after the LTP treatment. The changes in these properties are believed to be related closely to the inter-fiber and inter-yarn frictional force induced by the LTP. The decrease in the air permeability of the LTP-treated wool fabric was found to be probably due to the plasma action effect on increasing in the fabric thickness and a change in fabric surface morphology. The change in the thermal properties of the LTP-treated wool fabric was in good agreement with the above findings and can be attributed to the amount of air trapped between the yarns and fibers. This study suggested that the LTP treatment can influence the final properties of the wool fabric.  相似文献   

13.
The electroless nickel-phosphorous (Ni-P) plating on polyester fiber using sodium hypophosphite as a reducing agent in alkaline medium was studied. The effects of plating parameters including concentrations, pH and bath temperature of the plating bath on deposition rate of the electroless Ni-P plating were investigated. The results reveal that the deposition rates increase with the increase in the concentration of nickel sulfate, sodium hypophosphite, pH and bath temperature, respectively. However, it is determined that the deposition rates decrease with the rise of sodium citrate. The kinetics of the deposition reaction was investigated and an empirical rate equation for electroless Ni-P plating on polyester fiber was developed.  相似文献   

14.
In this study, electroless Ni-Fe3O4 composite plating on polyester fabric modified with 3-aminopropyltrimethoxysilane (APTMS) was investigated under ultrasonic irradiation. Effects of deposit weight on microstructure and properties of Ni-Fe3O4 composite coating were studied. Surface morphology, chemical composition and state, crystal structure of the electroless Ni-Fe3O4 composite plated polyester fabric were characterized by SEM, EDX, XPS and XRD. Magnetic properties, electrical resistivity and electromagnetic interference (EMI) shielding effectiveness (SE) of Ni-Fe3O4 plated polyester fabric were also evaluated. The presence of co-deposition of Fe3O4 in Ni coating on the polyester fabric is demonstrated by an XPS analysis. At a higher deposit weight, there is an increase in particle size and saturation magnetization, and a decrease in electrical resistivity with respect to the rise of deposit weight, respectively. As the Ni-Fe3O4 weight on the treated fabric is 32.90 g/m2, the EMI SE of the Ni-Fe3O4 plated polyester fabric arrives 15–20 dB at frequencies that range from 8 to 18 GHz. The results indicate the Ni-Fe3O4 plated polyester fabrics are used as super-paramagnetic, conductive and EMI shielding materials.  相似文献   

15.
Hybrid yarn was produced by twisting silk with nylon covered lycra yarn. Silk of 20 D in warp and hybrid yarn in weft was woven to develop lustrous woven stretch fabrics for sari blouse. Silk and hybrid yarn fabrics were produced in three different weaves namely plain, crepe and sateen. An in-depth study was carried out to understand the effect of weave on thermal comfort; low stress mechanical properties, total hand value and stretch properties. Nine blouses (3 samples× 3 figures) were constructed from three different woven stretch materials for fit assessment and objective pressure comfort test. The effect of fabric weave, low stress mechanical properties, total hand value and stretch properties on fit and pressure comfort of silk/hybrid yarn stretch fabrics were analyzed. Sateen weave silk/hybrid yarn stretch fabric shows higher total hand value, stretch properties and better thermal comfort properties. Sateen and crepe weave stretch fabrics provided good fit. Sateen weave fabric exerted lower clothing pressure value in the range of 3-12 mmHg at all body locations in standing position and in different postures.  相似文献   

16.
Different silk substrates in form of spun silk tops, nonwoven web, yarn, and fabric were coated with electrically conducting doped polypyrrole (PPy) by in situ oxidative polymerization from an aqueous solution of pyrrole (Py) at room temperature using FeCl3 as catalyst. PPy-coated silk materials were characterized by optical (OM) and scanning electron (SEM) microscopy, FT-IR spectroscopy, and thermal analysis (DSC, TG). OM and SEM showed that PPy completely coated the surface of individual silk fibers and that the polymerization process occurred only at the fiber surface and not in the bulk. Dendrite-like aggregates of PPy adhered to the fiber surface, with the exception of the sample first polymerized in the form of tops and then spun into yarn using conventional industrial machines. FT-IR (ATR mode) showed a mixed spectral pattern with bands typical of silk and PPy overlapping over the entire wavenumbers range. DSC and TG showed that PPy-coated silk fibers attained a significantly higher thermal stability owing to the protective effect of the PPy layer against thermal degradation. The mechanical properties of silk fibers remained unchanged upon polymerization of Py. The different PPy-coated silk materials displayed excellent electrical properties. After exposition to atmospheric oxygen for two years a residual conductivity of 10–20 % was recorded. The conductivity decreased sharply under the conditions of domestic washing with water, while it remained essentially unchanged upon dry cleaning. Abrasion tests caused a limited increase of resistance. PPy-coated silk tops were successfully spun into yarn either pure or in blend with untreated silk fibers. The resulting yarns maintained good electrical properties.  相似文献   

17.
A new application of conventional electroless nickel plating to improve the interfacial properties of PBO fibers was reported. The relationship between surface morphology and interfacial properties of nickel-plated PBO fiber was explored. The continuous nickel coating consisted of nickel and phosphorus elements determined by Energy dispersive spectrometer (EDS) and transmission electron microscope (TEM), exhibiting high adhesive durability. The influence of bath temperature and plating time on the crystal structure, microstructure and mechanical properties of nickel-plated PBO fibers was systematically investigated. X-ray diffractometer (XRD) results revealed that the crystal structure among nickel-plated PBO fibers did not show differences. Scanning electron microscope (SEM) and Atomic force microscope (AFM) images showed that the process parameters had a great influence on surface morphology and roughness of nickel-plated PBO fibers, which could directly affect the interfacial properties of nickel-plated PBO fibers. Single fiber pull-out testing results indicated that the interfacial shear strength (IFSS) of PBO fibers after electroless nickel plating had a significant improvement, which reached maximum at 85 °C for 20 min. Single fiber tensile strength of nickel-plated PBO fibers was slightly lower than that of untreated one. Thermo gravimetric analysis (TGA) indicated that nickel-plated PBO fiber had excellent thermal stability.  相似文献   

18.
The purpose of this work is to improve the thermoregulating performance of Outlast/silk fabric by means of the incorporation of polyurethane microcapsules containing paraffin. The effect of degumming and dyeing process on the heat storage capacity of Outlast/silk fabric was investigated. The endothermic enthalpy of Outlast/silk fabric was found to decrease from 5.41 J/g to 3.94 J/g after that processes. Polyurethane (PU) microcapsules were prepared with paraffin to serve as the core and polyurethane as the shell. The microstructure, morphology as well as phase-change property were systematically characterized by Fourier Transform Infrared spectra (FTIR), Optical Microscope (OM), Scanning Electron Microscope (SEM) and Differential Scanning Calorimetry (DSC). Subsequently, the prepared PU microcapsules were coated onto the Outlast/silk fabric by a conventional coating technique. The results showed that the endothermic enthalpy of the resultant fabric increased to 7.71 J/g, and the prepared PU microcapsules were firmly adhered on the surface of Outlast/silk fabric.  相似文献   

19.
Actinomycins as clinical medicine have been extensively studied, while few investigations were conducted to discover the feasibility of actinomycins as antimicrobial natural dye contributing to the medical value of the functional fabrics. This study was focused on the application of actinomycin X2 (Ac.X2), a peptide pigment cultured from marine-derived Streptomyces cyaneofuscatus, in the dyeing and finishing of silk fabric. The dyeing potential of Ac.X2 with silk vs. cotton fabrics was assessed. As a result, the silk fabric exhibited greater uptake and color fastness with Ac.X2. Through Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses, some changes of chemical property for the dyed fabric and Ac.X2 were studied. The silk fabric dyed with Ac.X2 exhibited good UV protection ability. The antibacterial properties of dyed and finished silk were also evaluated, which exhibited over 90% antibacterial activity even after 20 washing cycles. In addition, the brine shrimp assay was conducted to evaluate the general toxicity of the tested fabric, and the results indicated that the dyed silk fabrics had a good biological safety property.  相似文献   

20.
Here, a novel method is introduced to create tunable properties on the polyester fabric through diverse chemical modifications. The polyester fabric was primarily modified with NaOH or ethylenediamine to enhance the surface activity. This will produce diverse chemical groups on the polyester fabric surface including carboxylate, hydroxyl and amine groups. The fabric was treated with grahene oxide through exhaustion method. The silver nitrate was then added and simultaneously reduced with grapheme oxide using ascorbic acid and ammonia to produce reduced graphen oxide/silver nanocomposites (rGO/Ag) on the fabric surface. The synthesized nanocomposites were characterized by TEM and Raman spectra. The presence and uniform distribution of the nanocomposites on the fabric surface was also confirmed by SEM images and EDX patterns. The electrical resistivity was varied on the raw and modified polyester fabric due to the diverse formation of the graphene nanosheets network on the fabric surface. More Ag particles were formed on the surface of the alkali hydrolyzed polyester whereas more graphene nanosheets deposited on the aminolyzed polyester fabric. Also the hydrolyzed polyester fabric exhibited higher antibacterial properties with the lowest silver nitrate in the processing solution. The aminolyzed fabric showed a lower electrical resistance than the hydrolyzed and raw fabrics with the same amount of GO in the procedure bath. The aminolyzed polyester fabric indicated higher affinity towards GO produced higher antibacterial properties before reduction and without silver nitrate however lower electrical resistance obtained after reduction comparing with other samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号