首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Research has shown there is a positive relationship between urban greenness and the well-being of city residents. But greenness is often unevenly distributed across a city, raising environmental justice issues. In 2011 and 2012 the USDA Forest Service, Forest Inventory and Analysis program installed ground plots in the urbanized areas of Oregon and Washington. We analyze these data for the urban areas west of the Cascade Mountains, linking it with demographic data from the U.S. Census to examine the relationship between greenness and socioeconomic status at a sub-regional scale. To explore some relations between urban forest measures and socioeconomic conditions and measures we developed four models: presence of tree canopy cover with a logistic mixed model, and on a subset of the data, percent tree canopy cover with a linear mixed model and tree count and tree species count with Poisson mixed models. We found that median household income, house value, land use, and years in the Tree City USA program contributed to explaining measures of greenness, such as canopy cover presence, percent canopy cover, tree counts, and tree species counts. This agrees with other studies, but does so at a broad scale covering the most densely populated areas in the Pacific Northwest.  相似文献   

2.
Cities across North America are adopting ambitious goals to grow their urban forests. As existing trees and new planting opportunities are often located on private property, residents’ support and participation is needed in order to meet these goals. However, little research has examined support for municipal urban forestry efforts, including policies specifically targeting residential areas. The objectives of this research are to (1) assess resident’ level of support for common urban forestry policies and (2) determine if there are specific household characteristics associated with different levels of policy support. The objectives are addressed through a statistical analysis of survey responses and a qualitative examination of follow-up interviews with residents in four neighborhoods located in Mississauga (Ontario, Canada). The survey participants and their properties vary in their socioeconomic characteristics, age of development, and urban forest conditions. Our results found that the majority of residents had neutral to very positive attitudes toward common municipal policies encouraging planting and restricting removal of trees, but support levels were lower for the policies than for general statements about desired presence and size of urban trees. Several characteristics are significantly related to level of policy support, including age of household members, education-level, property-level tree density, recent tree planting activity and age of house. Interviews also highlighted residents’ apprehensions about living among tall trees and older resident's concerns with tree maintenance. The results suggest that most residents would be willing partners in urban forestry efforts, with many of these residents already actively planting and maintain trees. However, to increase support and participation rates, different types of trees – including those smaller in stature and ones that require relatively little maintenance – should be part of any planting program to meet the varying needs of households.  相似文献   

3.
The success of urban forest management strategies is dependent on public support for and engagement with urban trees. Satisfaction with urban trees and their management, and the level of trust people have in urban tree managers, are useful for understanding public opinions. Yet these concepts, and the mechanisms leading to the formation of public opinions remain poorly explored in the literature. Here we explore how satisfaction with urban trees and with urban tree management, and trust in the agencies responsible for urban tree management, are explained by cognitive factors (values, beliefs, and knowledge) and socio-ecological contextual factors (tree presence/canopy cover, cultural diversity, and socioeconomic status) using an online survey of 16 local government areas in south-eastern Australia. Analyses of 2367 responses revealed that people’s opinions about trees in general (values and beliefs) were overwhelmingly positive, while their opinions about more contextualised measures such as satisfaction and trust were more mixed. Two distinct pathways that influence satisfaction were identified: one linked to beliefs about having trees in cities, and another one linked to trust in urban tree management. At the local government level, satisfaction was negatively associated with a measure of cultural diversity and very low levels of tree canopy cover, but not with socioeconomic disadvantage. Satisfaction with local trees could be improved by increasing the quality of ecological function of trees, such as habitat provision and tree diversity. Community engagement could also improve satisfaction and trust, particularly perceived procedural fairness of decision-making, reinforce positive beliefs about the outcomes of having trees in cities, and dispel negative beliefs. Engagement processes should recognise that people hold complex and diverse opinions about urban trees, and by incorporating these opinions into decision-making we can meet the increasingly complex and diverse expectations being placed on urban forests.  相似文献   

4.
Urban tree cover is inequitable in many American cities, with low-income and non-white neighborhoods typically having the least coverage. Some municipal and non-profit tree planting programs aim to address this inequity by targeting low-income neighborhoods; however, many programs face lack of participation or resistance from local residents. In this study, we aimed to uncover the economic, social, cultural, and physical barriers that community leaders face in planting trees and fostering engagement in a neighborhood with low tree canopy. In collaboration with an urban greening nonprofit in Philadelphia, Pennsylvania (US), twenty in-depth interviews were conducted with community leaders in a low canopy neighborhood, North Philadelphia. Half of these leaders were already involved with local tree planting programs, while the other half were not. Findings reveal that despite broad appreciation for trees and greenspaces, there are concerns about the risks and costs residents assume over the course of a tree’s life cycle, the threat of neighborhood development and gentrification associated with trees, limited plantable space, and limited time and capacity for community organizations. Additionally, these barriers to participation may be amplified among low-income and communities of color who face the legacies of historical tree disservices and municipal structural disinvestment. Addressing community concerns regarding the long-term care of trees beyond the initial tree planting would likely require further programmatic support. Overall, this research highlights the complexity of addressing inequities in tree canopy and the importance of integrating resident and community leader perspectives about disservices and management costs into tree planting initiatives.  相似文献   

5.
This paper introduces a method to study the temporal relationship between the distribution of trees in cities and the residents’ income, rate of home ownership and level of education. Through photo-interpretation methods, it documents tree cover percentages in five inner city Local Government Areas in Melbourne. A 10-year time frame (2001–2011) is examined. Prior socioeconomic indicators are juxtaposed against future tree cover levels to investigate relationships. This study demonstrates that tree cover inequity is increasing over time in Melbourne. The study indicates that prior income level is a fair precursor to future canopy cover. By comparing different tree policy approaches of the five adjacent local government areas in Melbourne, it is identified that progressive policy helps generate positive outcomes for the urban forest.  相似文献   

6.
Urban trees store and sequester large amounts of carbon and are a vital component of natural climate solutions. Despite the well-recognized carbon benefits of urban trees, there is limited effort to examine how spatial distribution of carbon density varies across distinctive social, demographic, and built dimensions of urban landscapes. Moreover, it is unclear whether specific aspects of landscape structure and design could help increase carbon densities in urban trees. Here, we produced a fine-resolution carbon density map of urban trees in New York City (NYC) by integrating high-resolution land cover map, LiDAR-derived tree metrics, i-Tree Eco, and field survey data. We then explored spatial variations of carbon density across the gradients of urban development intensity, social deprivation index, and neighborhood age, and we examined the relationships between carbon density, and fragmentation, aggregation, size, and shape of tree canopy cover. We find that carbon stored in urban trees in NYC is estimated as 1078 Gg, with an average density of 13.8 Mg/ha. This large amount of carbon is unevenly distributed, with carbon densities being highest in Bronx and in open parks and street trees. Furthermore, carbon densities are negatively associated with urban development intensity and the social gradient of deprivation. Regarding the impacts of tree morphology on carbon density, our results show that while the amount of tree cover is the most influential factor in determining carbon density, small-sized forest patches and moderate levels of forest edges are also conductive to increasing carbon densities of urban trees. To incorporate urban forestry into developing innovative, effective, and equitable climate mitigation strategies, planners and decision makers need to identify the optimal spatial configuration of urban forests and invest in tree planting programs in marginalized communities.  相似文献   

7.
Trees provide important health, ecosystem, and aesthetic services in urban areas, but they are unevenly distributed. Some neighborhoods have abundant tree canopy and others nearly none. We analyzed how neighborhood characteristics and changes in income over time related to the distribution of urban tree canopy in Washington, D.C. and Baltimore, MD. We used stepwise multiple regression analysis to identify strong predictors of UTC, from variables found in neighborhoods with different patterns of wealth-stability over time. We then built spatial lag models to predict variation in UTC cover, using the results of a Principal Component Analysis of the socioeconomic, demographic, and housing characteristics of the two cities. We found that: (1) stable-wealthy neighborhoods were more likely to have more, and more consistent, tree canopy cover than other neighborhood types; (2) decreases and increases in income were negatively associated with UTC in Washington, D.C. but not Baltimore, where income stability in both wealthy and impoverished neighborhoods was a significant predictor of UTC; and (3) the association of high socioeconomic status with UTC coverage varied between the two cities.  相似文献   

8.
Understanding how urban forests developed their current patterns of tree canopy cover, species composition, and diversity requires an appreciation of historical legacy effects. However, analyses of current urban forest characteristics are often limited to contemporary socioeconomic factors, overlooking the role of history. The institutions, human communities, and biophysical conditions of cities change over time, creating layers of legacies on the landscape, shifting urban forests through complex interactive processes and feedbacks. Urban green spaces and planted trees can persist long after their establishment, meaning that today’s mature canopy reflects conditions and decisions from many years prior. In this synthesis article, we discuss some of the major historical human and biophysical drivers and associated legacy effects expressed in present urban forest patterns, highlighting examples in the United States and Canada. The bioregional context – native biome, climate, topography, initial vegetation, and pre-urbanization land use – represents the initial conditions in which a city established and grew, and this context influences how legacy effects unfold. Human drivers of legacy effects can reflect specific historical periods: colonial histories related to the symbolism of certain species, and the urban parks and civic beautification movements. Other human drivers include phenomena that cut across time periods such as neighborhood urban form and socioeconomic change. Biophysical legacy effects include the consequences of past disturbances such as extreme weather events and pest and disease outbreaks. Urban tree professionals play a major role in many legacy effects by mediating the interactions and feedbacks between biophysical and human drivers. We emphasize the importance of historical perspectives to understand past drivers that have produced current urban forest patterns, and call for interdisciplinary and mixed methods research to unpack the mechanisms of long-term urban forest change at intra- and inter-city scales.  相似文献   

9.
Green infrastructure (GI) provides a suite of ecosystem services that are widely recognized as critical to health, well-being, and sustainability on an urbanizing planet. However, the distribution of GI across urban landscapes is frequently uneven, resulting in unequal delivery of these services to low-income residents or those belonging to underserved racial/ethnic identities. While GI distribution has been identified as unequal across municipalities, we investigated whether this was true in public schoolyards within and among urban school districts. We examined schoolyards in four metropolitan areas of diverse socio-economic and demographic compositions in North Carolina, USA to determine if they provided equal exposure to GI, then compared whether this was true of the broader urban landscape. We first classified the land cover of elementary schoolyards and their neighborhoods, then used bivariate and multivariate approaches to analyze the relationships between GI (i.e. tree canopy cover and total GI) and the socioeconomic status and race/ethnicity of the schools and surrounding neighborhoods, respectively. We found that the extent of tree canopy cover and total GI in schoolyards was unrelated to the socioeconomic status and the race/ethnicity of students across the four school districts. In contrast, neighborhoods with lower socioeconomic status and larger populations of underserved race/ethnicity residents had less tree canopy cover and total GI. Although total GI was more evenly distributed in schoolyards, the extent of tree canopy cover and total GI in schoolyards was lower than that in the neighborhoods. This suggests opportunities for school districts to expand GI in schoolyards, leveraging their potential to increase ecosystem services to all children, from increased educational opportunities to improved mental, physical, and environmental well-being.  相似文献   

10.
Declining urban tree canopy cover in the United States underscores the importance of elucidating factors that influence the distribution of urban trees. This is particularly relevant as most urban trees are located on private property while their canopies maintain ecosystem services that constitute public goods. Thus, municipalities establish institutions in the form of canopy cover goals and various policies to incentivize private actions to meet those goals. However, urban land use, as governed by municipal zoning policies, plays a role in the abundance, distribution, and potential future location of urban trees independent of policies meant specifically to manage canopy. For instance, previous research finds that lands zoned for residential and park development have the highest canopy cover relative to other land uses. Yet, little research has explored whether this conclusion holds across scales of analysis and how it might influence our understanding of potential canopy cover and relative canopy cover. Thus, we ask, does the nature of the relationship between zoning and canopy cover change between aggregated and disaggregated zoning scales and how might this knowledge improve the sustainability of urban forest management? To answer this question, we classified high resolution National Agriculture Imagery Program (NAIP) images of Bloomington, Indiana land cover and compared existing, potential and relative canopy cover across aggregated and disaggregated zones. Results demonstrate an important exception to the oft-cited theory that residential lands have higher canopy cover, a conclusion that our data supports only at the scale of an aggregated interpretation of zoning. At a disaggregated scale, residential high density zones are significantly different than all other residential zones and more akin to commercial zones in terms of all canopy metrics. For urban forest managers and urban planners, this suggests the relevance of fine-scale variation in land-use policies and related canopy cover policies.  相似文献   

11.
Recent studies have emphasized the presence of microclimates in urban settings, but most do not have the high resolution observations necessary to understand the interactions taking place at a neighborhood scale. This study used a network of 10 identical weather stations and high resolution land cover data in Knoxville, Tennessee, to analyze the microclimates of a medium-sized city with a temperate climate. Two stations were installed in each of four urban neighborhoods in locations with varying localized tree cover, and two additional stations were installed in the center of downtown and in a nearby urban nature center. The intra-neighborhood results suggested that there is significant temperature variability within a single neighborhood based on the tree canopy density immediately surrounding a given weather station. However, the inter-neighborhood variability (differences between neighborhoods) was similar in magnitude, which suggests that the overall differences in neighborhood characteristics also have an effect on climate. Land cover at the neighborhood scale (in particular tree canopy percentages at the 500-m radii) had the highest correlation with the minimum daily temperature (Tmin) during the summer season. Maximum daily temperature (Tmax) relied most on the distance of each station from Downtown and the amount of impervious area in the 50 m surrounding each station. Tmax was also most influenced by surrounding land cover during dry conditions (a Dry Moderate air mass). Overall, highly localized impervious land cover percentages and larger-scale forested canopy were important in explaining temperature fluctuation, pointing to the importance of scale in microclimate assessments. Dry air masses enhanced the relationship between land cover and temperature during the day, while moist air masses did the same overnight. These data can be used to better inform planning strategies to build resiliency to extreme heat into urban environments by considering the influence of tree canopy.  相似文献   

12.
Trees provide multiple ecosystem services in urban centers and increases in tree canopy cover is a key strategy for many municipalities. However, urban trees also experience multiple stresses and tree growth can be impacted by urban density and impervious surfaces. We investigated the impact of differences in urban form on tree growth in the City of Merri-bek, a local government area in metropolitan Melbourne, which is the temperate climate zone. Merri-bek has a gradient in population density and urban greenness from north to south, and we hypothesized that tree growth in the southern areas would be lower because trees were more likely to have less access to water with high levels of impervious surfaces. We selected three common native evergreen species, Eucalyptus leucoxylon, Melaleuca linariifolia, and Lophostemon confertus that exhibit differences in climate vulnerability and assessed the tree canopy expansion in four urban density zones in Merri-bek between 2009 and 2020 using aerial image analysis. The differences in urban form did not significantly influence tree canopy growth and all species showed similar canopy expansion rates. However, smaller trees showed a greater relative canopy increase in the ten years, whereas larger trees had a greater absolute canopy growth. Thus, older and larger trees should be protected and maintained to achieve the canopy expansion. Our study indicated that differences in urban form are unlikely to have major impacts on the growth and canopy expansion of well adapted native tree species in open, suburban centers.  相似文献   

13.
14.
Trees along footpath zones (or verges) grow on the “front-line” of urban forest ecosystems, increasingly recognised as essential to the quality of human life in cities. Growing so close to where residents live, work and travel, these street trees require careful planning and active management in order to balance their benefits against risks, liabilities, impacts and costs. Securing support and investment for urban trees is tough and robust business cases begin with accurate information about the resource. Few studies have accounted for spatial heterogeneity within a single land-use type in analyses of structure and composition of street tree populations. Remotely sensed footpath tree canopy cover data was used as a basis for stratification of random sampling across residential suburbs in the study area of Brisbane, Australia. Analysis of field survey data collected in 2010 from 80 representative sample sites in 52 suburbs revealed street tree population (432,445 ± 26,293) and stocking level (78%) estimates with low (6.08%) sampling error. Results also suggest that this population was transitioning to low risk, small-medium sized species with unproven longevity that could limit the capacity of the Brisbane’s Neighbourhood Shadeways planting program to expand from 35% footpath tree canopy cover in 2010, to a target of a 50% by 2031. This study advances the use of contemporary techniques for sampling extensive, unevenly distributed urban tree populations and the value of accurate resource knowledge to inform evidence-based planning and investment for urban forests.  相似文献   

15.
While we know that urban vegetation is often distributed unequally, most studies have been undertaken in cities with relatively high levels of income inequality, using a single measure of distribution (usually tree cover) and in a single land use. This study explores predictors of both tree cover and species richness in gardens, streetscapes and parks in Ballarat, Australia. Spatial regression models found that education level was a more important predictor of tree cover than household income across all land uses in Ballarat which can be explained by some people with high incomes relative to education level choosing to live in new residential developments with disproportionately low levels of tree cover. Inequality in tree cover was greater in streetscapes than in residential gardens, suggesting that ‘top down’ political factors are more important than individual behaviours in determining tree cover in Ballarat. In contrast, physical rather than socioeconomic factors were better predictors of species richness across all land uses, highlighting that different measures of vegetation distribution are not necessarily correlated.  相似文献   

16.
The effects of urbanization on urban forest canopy cover has received significant consideration at broad scales, but little research has explored redevelopment-related influences on individual tree removal at a property scale. This study explores the effect of residential property redevelopment on individual trees in Christchurch, New Zealand. The study monitored 6966 trees on 450 residential properties between 2011 and 2015/16. Of the 450 properties, 321 underwent complete redevelopment during that time, while 129 were not redeveloped. The percentage of trees removed on redeveloped and non-redeveloped properties differed markedly, being 44% and 13.5%, respectively. A classification tree (CT) analysis was used to examine the effects of different combinations of 27 explanatory variables, describing land cover, spatial relationships, economic, and resident and household variables, on tree removal or retention on the properties. The best model included land cover, spatial, and economic variables (accuracy = 73.4%). The CT of the corresponding model shows that trees were most likely to be removed if they were within 1.4 m of a redeveloped building on a property with a capital value less than $1,060,000 NZ. The strongest predictor of tree retention was that the property was not redeveloped. The model predicted that trees were over three times as likely to be removed from a redeveloped property relative to a property that was not redeveloped. None of the seven resident and household variables were selected by the CT as important explanatory variables for tree removal or retention. These results provide insights into the factors that influence tree removal during redevelopment on residential properties, and highlight the need for effective tree protection during redevelopment.  相似文献   

17.
The urban forest provides valuable ecosystem services for enhancing human well-being. Its structure and composition determine the quantity and quality of these services. There has been little research on the heterogeneity in structure and composition of urban forests in the Australasian region, especially in the centre of a highly dynamic and rapidly urbanizing city. This paper quantifies the structure and the composition of the urban forest of Melbourne, Australia's city centre. The effects of land tenure and land use on the heterogeneity of canopy cover, tree density and canopy size were explored. Species and family composition by land use, land ownership and street type were also analysed using the Shannon–Wiener and Jaccard similarity indices. Most of the canopy cover in the city centre is located on public land and is unevenly distributed across the municipality. The mean canopy cover (12.3%) is similar to that found for whole city studies around the world, which often include peri-urban forests. Similarly to other cities, structure varied across different land uses, and tree size, density and cover varied with land tenure and street type. The diversity index shows that the urban forest is rich in species (H = 2.9) and is dominated by native species. Improving the distribution, and increasing tree cover and variety of species will result in a more resilient urban centre, able to provide multiple ecosystem services to their residents and its large population of visitors and workers. The study of the urban centre provides further understanding of compact city morphologies, and allows inter-city comparison independent of the size.  相似文献   

18.
Individual Tree Inventory (ITI) is critical for urban planning, including urban heat mitigation. However, an ITI is usually incomplete and costly due to data collection challenges in the dynamic urban landscape. This research developed a methodical GeoAI framework to build a comprehensive ITI and quantify tree species cooling on rising urban heat.The object detection Faster R-CNN model with Inception ResNet V2 was implemented to detect individual trees canopy and seven tree species (Callery pear, Chinese elm, English elm, Mugga ironbark, Plane tree, Spotted gum and White cedar). The land surface temperature (LST) was derived from Landsat 8 surface reflectance imagery. Two models for ITI were further developed for spatial and statistical analysis. Firstly, an ‘Individual tree-based model’ stores the attributes of tree species and its vertical configuration obtained from LiDAR, along with its tree canopy area and surface temperature. Secondly, the ‘LST zone-based model’ stores tree canopy cover and building areas in each zone unit. Pearson correlation, global linear regression, and geographically weighted regression (GWR) were applied to establish the relationship between tree attributes, building areas (explanatory variables) with local temperature (dependent variable). Results showed that English elm has the highest cooling and least by Mugga ironbark in the study area. GWR results demonstrate that 94% of the LST was explained by tree height and tree canopy area. The LST zone-based model showed that 85% of the LST was explained by the percentage of tree species and buildings. Maps of the local R2 and coefficients of the independent variables provide spatially explicit information on the cooling of different tree species compared to building areas. The implemented GeoAI approach provides important insights to urban planners and government to monitor urban trees with the enhanced Individual Tree Inventory and strategies mitigation plan to reduce the impact of climate change and global warming.  相似文献   

19.
Greenspaces can provide restorative experiences, offer opportunities for outdoor recreation, and reduce mental fatigue; all of which may improve community health and safety. Yet few studies have examined the neighborhood-level benefits of greenspace in reducing violent deaths. This study explored the association between three distinct greenspace metrics: public greenspace quantity, public greenspace accessibility, neighborhood tree canopy cover, and intentional deaths (i.e., homicides and suicides). Generalized linear models and spatial error models investigated the association between greenspace, tree canopy and intentional deaths in three geographically distinct cities in North Carolina, USA. Results revealed that increased neighborhood greenspace accessibility and tree canopy cover were associated with reduced intentional deaths in all three urban areas. Neighborhood greenspace accessibility was the most protective factor across all study areas. The association between neighborhood greenspace accessibility and intentional deaths was more significant for non-firearm deaths as compared to firearm deaths, indicating that weapon type may be an important consideration for neighborhood greenspace interventions. Compared to predominantly White neighborhoods, predominantly Black neighborhoods had higher rates of homicide in Asheville and Durham and higher rates of suicide in Charlotte. Future policy and research should focus on improving equitable access to existing and future greenspaces, especially in primarily Black neighborhoods.  相似文献   

20.
The Woodlands Township, TX, has a tree protection policy that consists of tree removal permits and minimum tree and shrub cover regulations. This paper examined the effect of The Woodlands’ tree protection policy on surface urban heat island (SUHI) at the neighborhood scale by comparing the mean land surface temperatures (LSTs) derived from 37 thermal infrared bands of Landsat TM images between The Woodlands’ neighborhoods and nearby control neighborhoods without such a policy. To rule out the effect of confounding factors that may influence LSTs, the control neighborhoods were selected to be similar in physical and socioeconomic status to The Woodlands’ neighborhoods. LSTs of The Woodlands’ neighborhoods were, on average, 1.5–3.9 °C lower than those of the control neighborhoods. The cooling effect of The Woodlands’ tree protection policy was more prominent in summer when SUHI mitigation was mostly needed. Based on these findings, it can be concluded that a local tree protection policy is effective in mitigating SUHI at the neighborhood scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号