首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo investigate plasma drug concentrations and the effect of MK-467 (L-659′066) on sedation, heart rate and gut motility in horses sedated with intravenous (IV) detomidine.Study designExperimental randomized blinded crossover study.AnimalsSix healthy horses.MethodsDetomidine (10 μg kg?1 IV) was administered alone (DET) and in combination with MK-467 (250 μg kg?1 IV; DET + MK). The level of sedation and intestinal sounds were scored. Heart rate (HR) and central venous pressure (CVP) were measured. Blood was collected to determine plasma drug concentrations. Repeated measures anova was used for HR, CVP and intestinal sounds, and the Student's t-test for pairwise comparisons between treatments for the area under the time-sedation curve (AUCsed) and pharmacokinetic parameters. Significance was set at p < 0.05.ResultsA significant reduction in HR was detected after DET, and HR was significantly higher after DET + MK than DET alone. No heart blocks were detected in any DET + MK treated horses. DET + MK attenuated the early increase in CVP detected after DET, but later the CVP decreased with both treatments. Detomidine-induced intestinal hypomotility was prevented by MK-467. AUCsed was significantly higher with DET than DET + MK, but maximal sedations scores did not differ significantly between treatments. MK-467 lowered the AUC of the plasma concentration of detomidine, and increased its volume of distribution and clearance.Conclusions and clinical relevanceMK-467 prevented detomidine induced bradycardia and intestinal hypomotility. MK-467 did not affect the clinical quality of detomidine-induced sedation, but the duration of the effect was reduced, which may have been caused by the effects of MK-467 on the plasma concentration of detomidine. MK-467 may be useful clinically in the prevention of certain peripheral side effects of detomidine in horses.  相似文献   

2.
ObjectiveTo study the effects of oromucosal detomidine gel administered sublingually to calves prior to disbudding, and to compare its efficacy with intravenously (IV) administered detomidine.Study designRandomised, prospective clinical study.AnimalsTwenty dairy calves aged 12.4 ± 4.4days (mean ± SD), weight 50.5 ± 9.0 kg.MethodsDetomidine at 80 μg kg?1 was administered to ten calves sublingually (GEL) and at 30 μg kg?1 to ten control calves IV (V. jugularis). Meloxicam (0.5 mg kg?1) and local anaesthetic (lidocaine 3 mg kg?1) were administered before heat cauterization of horn buds. Heart rate (HR), body temperature and clinical sedation were monitored over 240 minutes. Blood was collected from the V. cephalica during the same period for drug concentration analysis. Pharmacokinetic variables were calculated from the plasma detomidine concentration-time data using non-compartmental methods. Statistical analyses compared routes of administration by Student’s t-test and linear mixed models as relevant.ResultsThe maximum plasma detomidine concentration after GEL was 2.1 ± 1.2 ng mL?1 (mean ±SD) and the time of maximum concentration was 66.0 ± 36.9 minutes. The bioavailability of detomidine was approximately 34% with GEL. Similar sedation scores were reached in both groups after administration of detomidine, but maximal sedation was reached earlier in the IV group (10 minutes) than in the GEL group (40 minutes). HR was lower after IV than GEL from 5 to 10 minutes after administration. All animals were adequately sedated, and we were able to administer local anaesthetic without resistance to all of the calves before disbudding.Conclusions and clinical relevanceOromucosally administered detomidine is an effective sedative agent for calves prior to disbudding.  相似文献   

3.
ObjectiveTo assess anesthetic induction, recovery quality and cardiopulmonary variables after intramuscular (IM) injection of three drug combinations for immobilization of horses.Study designRandomized, blinded, three-way crossover prospective design.AnimalsA total of eight healthy adult horses weighing 470–575 kg.MethodsHorses were administered three treatments IM separated by ≥1 week. Combinations were tiletamine–zolazepam (1.2 mg kg−1), ketamine (1 mg kg−1) and detomidine (0.04 mg kg−1) (treatment TKD); ketamine (3 mg kg−1) and detomidine (0.04 mg kg−1) (treatment KD); and tiletamine–zolazepam (2.4 mg kg−1) and detomidine (0.04 mg kg−1) (treatment TD). Parametric data were analyzed using mixed model linear regression. Nonparametric data were compared using Skillings–Mack test. A p value <0.05 was considered statistically significant.ResultsAll horses in treatment TD became recumbent. In treatments KD and TKD, one horse remained standing. PaO2 15 minutes after recumbency was significantly lower in treatments TD (p < 0.0005) and TKD (p = 0.001) than in treatment KD. Times to first movement (25 ± 15 minutes) and sternal recumbency (55 ± 11 minutes) in treatment KD were faster than in treatments TD (57 ± 17 and 76 ± 19 minutes; p < 0.0005, p = 0.001) and TKD (45 ± 18 and 73 ± 31 minutes; p = 0.005, p = 0.021). There were no differences in induction quality, muscle relaxation score, number of attempts to stand or recovery quality.Conclusions and clinical relevanceIn domestic horses, IM injections of tiletamine–zolazepam–detomidine resulted in more reliable recumbency with a longer duration when compared with ketamine–detomidine and tiletamine–zolazepam–ketamine–detomidine. Recoveries were comparable among protocols.  相似文献   

4.
ObjectiveTo describe selected pharmacodynamic effects of detomidine and yohimbine when administered alone and in sequence.Study designRandomized crossover design.AnimalsNine healthy adult horses aged 9 ± 4 years and weighing 561 ± 56 kg.MethodsThree dose regimens were employed in the current study. 1) 0.03 mg kg?1 detomidine IV, 2) 0.2 mg kg?1 yohimbine IV and 3) 0.03 mg kg?1 detomidine IV followed 15 minutes later by 0.2 mg kg?1 yohimbine IV. Each horse received all three treatments with a minimum of 1 week between treatments. Blood samples were obtained and plasma analyzed for detomidine and yohimbine concentrations by liquid chromatography-mass spectrometry. Behavioral effects, heart rate and rhythm, glucose, packed cell volume and plasma proteins were monitored.ResultsYohimbine rapidly reversed the sedative effects of detomidine in the horse. Additionally, yohimbine effectively returned heart rate and the percent of atrio-ventricular conduction disturbances to pre-detomidine values when administered 15 minutes post-detomidine administration. Plasma glucose was significantly increased following detomidine administration. The detomidine induced hyperglycemia was effectively reduced by yohimbine administration. Effects on packed cell volume and plasma proteins were variable.Conclusions and clinical relevanceIntravenous administration of yohimbine effectively reversed detomidine induced sedation, bradycardia, atrio-ventricular heart block and hyperglycemia.  相似文献   

5.

Objective

To evaluate intravenous (IV) detomidine with methadone in horses to identify a combination which provides sedation and antinociception without adverse effects.

Study design

Randomized, placebo-controlled, blinded, crossover.

Animals

A group of eight adult healthy horses aged (mean ± standard deviation) 7 ± 2 years and 372 ± 27 kg.

Methods

A total of six treatments were administered IV: saline (SAL); detomidine (5 μg kg?1; DET); methadone (0.2 mg kg?1; MET) alone or combined with detomidine [2.5 (MLD), 5 (MMD) or 10 (MHD) μg kg?1]. Thermal, mechanical and electrical nociceptive thresholds were measured, and sedation, head height above ground (HHAG), cardiopulmonary variables and intestinal motility were evaluated at 5, 15, 30, 45, 60, 75, 90, 120 and 180 minutes. Normal data were analyzed by mixed-model analysis of variance and non-normal by Kruskal–Wallis (p < 0.05).

Results

Nociceptive thresholds in horses administered methadone with the higher doses of detomidine (MMD, MHD) were increased above baseline to a greater degree and for longer duration (MMD: 15–30 minutes, MHD: 30–60 minutes) than in horses administered low dose with methadone or detomidine alone (MLD, DET: 5–15 minutes). No increases in nociceptive thresholds were recorded in SAL or MET. Compared with baseline, HHAG was lower for 30 minutes in MMD and DET, and for 45 minutes in MHD. No significant sedation was observed in SAL, MET or MLD. Intestinal motility was reduced for 75 minutes in MHD and for 30 minutes in all other treatments.

Conclusions

Methadone (0.2 mg kg?1) potentiated the antinociception produced by detomidine (5 μg kg?1), with minimal sedative effects.

Clinical relevance

Detomidine (5 μg kg?1) with methadone (0.2 mg kg?1) produced antinociception without the adverse effects of higher doses of detomidine.  相似文献   

6.
7.
ObjectiveTo investigate MK-467 as part of premedication in horses anaesthetized with isoflurane.Study designExperimental, crossover study with a 14 day wash-out period.AnimalsSeven healthy horses.MethodsThe horses received either detomidine (20 μg kg−1 IV) and butorphanol (20 μg kg−1 IV) alone (DET) or with MK-467 (200 μg kg−1 IV; DET + MK) as premedication. Anaesthesia was induced with ketamine (2.2 mg kg−1) and midazolam (0.06 mg kg−1) IV and maintained with isoflurane. Heart rate (HR), mean arterial pressure (MAP), end-tidal isoflurane concentration, end-tidal carbon dioxide tension, central venous pressure, fraction of inspired oxygen (FiO2) and cardiac output were recorded. Blood samples were taken for blood gas analysis and to determine plasma drug concentrations. The cardiac index (CI), systemic vascular resistance (SVR), ratio of arterial oxygen tension to inspired oxygen (PaO2/FiO2) and tissue oxygen delivery (DO2) were calculated. Repeated measures anova was applied for HR, CI, MAP, SVR, lactate and blood gas variables. The Student's t-test was used for pairwise comparisons of drug concentrations, induction times and the amount of dobutamine administered. Significance was set at p < 0.05.ResultsThe induction time was shorter, reduction in MAP was detected, more dobutamine was given and HR and CI were higher after DET+MK, while SVR was higher with DET. Arterial oxygen tension and PaO2/FiO2 (40 minutes after induction), DO2 and venous partial pressure of oxygen (40 and 60 minutes after induction) were higher with DET+MK. Plasma detomidine concentrations were reduced in the group receiving MK-467. After DET+MK, the area under the plasma concentration time curve of butorphanol was smaller.Conclusions and clinical relevanceMK-467 enhances cardiac function and tissue oxygen delivery in horses sedated with detomidine before isoflurane anaesthesia. This finding could improve patient safety in the perioperative period. The dosage of MK-467 needs to be investigated to minimise the effect of MK-467 on MAP.  相似文献   

8.
ObjectiveTo compare the efficacy of a medetomidine constant rate infusion (CRI) with a detomidine CRI for standing sedation in horses undergoing high dose rate brachytherapy.Study designRandomized, controlled, crossover, blinded clinical trial.AnimalsA total of 50 horses with owner consent, excluding stallions.MethodsEach horse was sedated with intravenous acepromazine (0.02 mg kg–1), followed by an α2-adrenoceptor agonist 30 minutes later and then by butorphanol (0.1 mg kg–1) 5 minutes later. A CRI of the same α2-adrenoceptor agonist was started 10 minutes after butorphanol administration and maintained for the treatment duration. Treatments were given 1 week apart. Each horse was sedated with detomidine (bolus dose, 10 μg kg–1; CRI, 6 μg kg–1 hour–1) or medetomidine (bolus dose, 5 μg kg–1; CRI, 3.5 μg kg–1 hour–1). If sedation was inadequate, a quarter of the initial bolus of the α2-adrenoceptor agonist was administered. Heart rate (HR) was measured via electrocardiography, and sedation and behaviour evaluated using a previously published scale. Between treatments, behaviour scores were compared using a Wilcoxon signed-rank test, frequencies of arrhythmias with chi-square tests, and HR with two-tailed paired t tests. A p value <0.05 indicated statistical significance.ResultsTotal treatment time for medetomidine was longer than that for detomidine (p = 0.04), and ear movements during medetomidine sedation were more numerous than those during detomidine sedation (p = 0.03), suggesting there may be a subtle difference in the depth of sedation. No significant differences in HR were found between treatments (p ≥ 0.09). Several horses had arrhythmias, with no difference in their frequency between the two infusions.Conclusions and clinical relevanceMedetomidine at this dose rate may produce less sedation than detomidine. Further studies are required to evaluate any clinical advantages to either drug, or whether a different CRI may be more appropriate.  相似文献   

9.
ObjectiveTo evaluate the anti-nociceptive and sedative effects of slow intravenous (IV) injection of tramadol, romifidine, or a combination of both drugs in ponies.Study designWithin-subject blinded.AnimalsTwenty ponies (seven male, 13 female, weighing mean ± SD 268.0 ± 128 kg).MethodsOn separate occasions, each pony received one of the following three treatments IV; romifidine 50 μg kg (R) tramadol 3 mg kg−1 given over 15 minutes (T) or tramadol 3 mg kg−1followed by romifidine 50 μg kg−1 (RT). Physiologic parameters and caecal borborygmi (CB) were measured and sedation and response to electrical stimulation of the coronary band assessed before and up to 120 minutes following drugs administration. Results were analyzed using the Friedman’s test and 2 way anova as relevant.ResultsWhen compared to baseline, heart (HR, beats minute−1) and respiratory rates (fR, breaths minute−1) increased with treatment T (highest mean ± SD, HR 43 ± 1; fR 33 ± 2) and decreased with R (lowest HR 29 ± 1 and fR 10 ± 4) and RT (lowest HR 32 ± 1 and fR 9 ± 3). There were no changes in other measured physiological variables. The height of head from the ground was lower following treatments R and TR than T. There was slight ataxia with all three treatments. No excitatory behavioural effects were observed. The response to electrical stimulation was reduced for a prolonged period relative to baseline following all three treatments, the effect being significantly greatest with treatment RT.ConclusionTramadol combined with romifidine at the stated doses proved an effective sedative and anti-nociceptive combination in ponies, with no unacceptable behavioural or physiologic side effects.Clinical relevanceSlow controlled administration of tramadol should reduce the occurrence of adverse behavioural side effects.  相似文献   

10.
ObjectiveTo compare the sedative and clinical effects of intravenous (IV) administration of dexmedetomidine and xylazine in dromedary calves.Study designExperimental, crossover, randomized, blinded study.AnimalsA total of seven healthy male dromedary calves aged 14 ± 2 weeks and weighing 95 ± 5.5 kg.MethodsCalves were assigned three IV treatments: treatment XYL, xylazine (0.2 mg kg−1); treatment DEX, dexmedetomidine (5 μg kg−1); and control treatment, normal saline (0.01 mL kg−1). Sedation scores, heart rate (HR), respiratory rate (fR), rectal temperature (RT) and ruminal motility were recorded before (baseline) and after drug administration. Sedation signs were scored using a 4-point scale. One-way anova and Mann–Whitney U tests were used for data analysis.ResultsCalves in treatments XYL and DEX were sedated at 5–60 minutes. Sedation had waned in XYL calves, but not DEX calves, at 60 minutes (p = 0.037). Sedation was not present in calves of any treatment at 90 minutes. HR decreased from baseline in XYL and DEX at 5–90 minutes after drug administration and was lower in DEX than XYL at 5 minutes (p = 0.017). HR was lower in DEX (p = 0.001) and XYL (p = 0.013) than in control treatment at 90 minutes. fR decreased from baseline in XYL and DEX at 5–60 minutes after drug administration and was lower in DEX than XYL at 5 minutes (p = 0.013). RT was unchanged in any treatment over 120 minutes. Ruminal motility was decreased in XYL at 5, 90 and 120 minutes and absent at 10–60 minutes. Motility was decreased in DEX at 5, 10 and 120 minutes and was absent at 15–90 minutes.Conclusion and clinical relevanceThe duration of sedation from dexmedetomidine (5 μg kg–1) and xylazine (0.2 mg kg–1) was similar in dromedary calves.  相似文献   

11.
ObjectiveTo evaluate the anesthetic and cardiorespiratory effects of two doses of intramuscular (IM) xylazine/ketamine in alpacas, and to determine if tolazoline would reduce the anesthetic recovery time.Study designProspective randomized crossover study.AnimalsSix castrated male alpacas.MethodsEach alpaca received a low dose (LD) (0.8 mg kg−1 xylazine and 8 mg kg−1 ketamine IM) and high dose (HD) (1.2 mg kg−1 xylazine and 12 mg kg−1 ketamine IM) with a minimum of one week between trials. Time to sedation, duration of lateral recumbency and analgesia, pulse rate, respiratory rate, hemoglobin oxygen saturation, arterial blood pressure, blood-gases, and the electrocardiogram were monitored and recorded during anesthesia. With each treatment three alpacas were randomly selected to receive tolazoline (2 mg kg−1 IM) after 30 minutes of lateral recumbency.ResultsOnset of sedation, lateral recumbency and analgesia was rapid with both treatments. The HD was able to provide ≥30 minutes of anesthesia in five of six alpacas. The LD provided ≥30 minutes of anesthesia in three of six alpacas. Respiratory depression and hypoxemia occurred with the HD treatment during the first 10 minutes of lateral recumbency: two animals were severely hypoxemic and received nasal oxygen for 5 minutes. Heart rate decreased, but there were no significant changes in arterial blood pressure. Tolazoline significantly shortened the duration of recumbency with the HD.ConclusionsThe HD provided more consistent clinical effects in alpacas than the LD. Intramuscular tolazoline shortened the duration of lateral recumbency in alpacas anesthetized with the HD combination.Clinical relevanceBoth doses of the combination were effective in providing restraint in alpacas and the duration of restraint was dose dependent. Supplemental oxygen should be available if using the HD and IM administration of tolazoline will shorten the recovery time.  相似文献   

12.
ObjectivesTo determine the physiologic and behavioral effects and pharmacokinetic profile of hydromorphone administered intravenously (IV) to horses.Study designProspective, randomized, crossover study.AnimalsA group of six adult healthy horses weighing 585.2 ± 58.7 kg.MethodsEach horse was administered IV hydromorphone (0.025 mg kg–1; treatment H0.025), hydromorphone (0.05 mg kg–1; treatment H0.05) or 0.9% saline in random order with a 7 day washout period. For each treatment, physiologic, hematologic, abdominal borborygmi scores and behavioral data were recorded over 5 hours and fecal output was totaled over 24 hours. Data were analyzed using repeated measures anova with significance at p < 0.05. Blood samples were collected in treatment H0.05 for quantification of plasma hydromorphone and hydromorphone-3-glucuronide and subsequent pharmacokinetic parameter calculation.ResultsHydromorphone administration resulted in a dose-dependent increase in heart rate (HR) and systolic arterial pressure (SAP). HR and SAP were 59 ± 17 beats minute–1 and 230 ± 27 mmHg, respectively, in treatment H0.05 at 5 minutes after administration. No clinically relevant changes in respiratory rate, arterial gases or temperature were observed. The borborygmi scores in both hydromorphone treatments were lower than baseline values for 2 hours. Fecal output did not differ among treatments and no evidence of abdominal discomfort was observed. Recorded behaviors did not differ among treatments. For hydromorphone, mean ± standard deviation for volume of distribution at steady state, total systemic clearance and area under the curve until the last measured concentration were 1.00 ± 0.29 L kg–1, 106 ± 21 mL minute–1 kg–1 and 8.0 ± 1.5 ng hour mL–1, respectively.Conclusions and clinical relevanceHydromorphone administered IV to healthy horses increased HR and SAP, decreased abdominal borborygmi and did not affect fecal output.  相似文献   

13.
ObjectiveTo evaluate the pharmacokinetics and selected pharmacodynamic effects of a commercially available l-methadone/fenpipramide combination administered to isoflurane anaesthetized ponies.Study designProspective single-group interventional study.AnimalsA group of six healthy adult research ponies (four mares, two geldings).MethodsPonies were sedated with intravenous (IV) detomidine (0.02 mg kg–1) and butorphanol (0.01 mg kg–1) for an unrelated study. Additional IV detomidine (0.004 mg kg–1) was administered 85 minutes later, followed by induction of anaesthesia using IV diazepam (0.05 mg kg–1) and ketamine (2.2 mg kg–1). Anaesthesia was maintained with isoflurane in oxygen. Baseline readings were taken after 15 minutes of stable isoflurane anaesthesia. l-Methadone (0.25 mg kg–1) with fenpipramide (0.0125 mg kg–1) was then administered IV. Selected cardiorespiratory variables were recorded every 10 minutes and compared to baseline using the Wilcoxon signed-rank test. Adverse events were recorded. Arterial plasma samples for analysis of plasma concentrations and pharmacokinetics of l-methadone were collected throughout anaesthesia at predetermined time points. Data are shown as mean ± standard deviation or median and interquartile range (p < 0.05).ResultsPlasma concentrations of l-methadone showed a rapid initial distribution phase followed by a slower elimination phase which is best described with a two-compartment model. The terminal half-life was 44.3 ± 18.0 minutes, volume of distribution 0.43 ± 0.12 L kg–1 and plasma clearance 7.77 ± 1.98 mL minute–1 kg–1. Mean arterial blood pressure increased from 85 (±16) at baseline to 100 (±26) 10 minutes after l-methadone/fenpipramide administration (p = 0.031). Heart rate remained constant. In two ponies fasciculations occurred at different time points after l-methadone administration.Conclusions and clinical relevanceAdministration of a l-methadone/fenpipramide combination to isoflurane anaesthetized ponies led to a transient increase in blood pressure without concurrent increases in heart rate. Pharmacokinetics of l-methadone were similar to those reported for conscious horses administered racemic methadone.  相似文献   

14.
ObjectiveTo assess cardiopulmonary function in sedated and anesthetized dogs administered intravenous (IV) dexmedetomidine and subsequently administered IV lidocaine to treat dexmedetomidine-induced bradycardia.Study designProspective, randomized, crossover experimental trial.AnimalsA total of six purpose-bred female Beagle dogs, weighing 9.1 ± 0.6 kg (mean ± standard deviation).MethodsDogs were randomly assigned to one of three treatments: dexmedetomidine (10 μg kg–1 IV) administered to conscious (treatments SED1 and SED2) or isoflurane-anesthetized dogs (end-tidal isoflurane concentration 1.19 ± 0.04%; treatment ISO). After 30 minutes, a lidocaine bolus (2 mg kg–1) IV was administered in treatments SED1 and ISO, followed 20 minutes later by a second bolus (2 mg kg–1) and a 30 minute lidocaine constant rate infusion (L-CRI) at 50 (SED1) or 100 μg kg–1 minute–1 (ISO). In SED2, lidocaine bolus and L-CRI (50 μg kg–1 minute–1) were administered 5 minutes after dexmedetomidine. Cardiopulmonary measurements were obtained after dexmedetomidine, after lidocaine bolus, during L-CRI and 30 minutes after discontinuing L-CRI. A mixed linear model was used for comparisons within treatments (p < 0.05).ResultsWhen administered after a bolus of dexmedetomidine, lidocaine bolus and L-CRI significantly increased heart rate and cardiac index, decreased mean blood pressure, systemic vascular resistance index and oxygen extraction ratio, and did not affect stroke volume index in all treatments.Conclusion and clinical relevanceLidocaine was an effective treatment for dexmedetomidine-induced bradycardia in healthy research dogs.  相似文献   

15.
16.
ObjectiveTo describe the pharmacokinetics of detomidine and yohimbine when administered in combination.Study designRandomized crossover design.AnimalsNine healthy adult horses aged 9 ± 4 years and weighing of 561 ± 56 kg.MethodsThree dose regimens were employed in the current study. 1) 0.03 mg kg?1 detomidine IV (D), 2) 0.2 mg kg?1 yohimbine IV (Y) and 3) 0.03 mg kg?1 detomidine IV followed 15 minutes later by 0.2 mg kg?1 yohimbine IV (DY). Each horse received all three dose regimens with a minimum of 1 week in between subsequent regimens. Blood samples were obtained and plasma analyzed for detomidine and yohimbine concentrations by liquid chromatography-mass spectrometry. Data were analyzed using both non-compartmental and compartmental analysis.ResultsThe maximum measured detomidine concentrations were 76.0 and 129.9 ng mL?1 for the D and DY treatments, respectively. Systemic clearance and volume of distribution of detomidine were not significantly different for either treatment. There was a significant increase in the maximum measured yohimbine plasma concentrations from Y (173.9 ng mL?1) to DY (289.8 ng mL?1). Both the Cl and Vd for yohimbine were significantly less (6.8 mL minute?1 kg?1 (Cl) and 1.7 L kg?1 (Vd)) for the DY as compared to the Y treatments (13.9 mL minute?1 kg?1 (Cl) and 2.7 L kg?1 (Vd)). Plasma concentrations were below the limit of quantitation (0.05 and 0.5 ng mL?1) by 18 hours for both detomidine and yohimbine.Conclusion and clinical relevanceThe Cl and Vd of yohimbine were affected by prior administration of detomidine. The elimination half life of yohimbine remained unaffected when administered subsequent to detomidine. However, the increased plasma concentrations in the presence of detomidine has the potential to cause untoward effects and therefore further studies to assess the physiologic effects of this combination of drugs are warranted.  相似文献   

17.
ObjectiveTo evaluate the effects of detomidine on visceral and somatic nociception, heart and respiratory rates, sedation, and duodenal motility and to correlate these effects with serum detomidine concentrations.Study designNonrandomized, experimental trial.AnimalsFive adult horses, each with a permanent gastric cannula weighing 534 ± 46 kg.MethodsVisceral nociception was evaluated by colorectal (CRD) and duodenal distension (DD). The duodenal balloon was used to assess motility. Somatic nociception was assessed via thermal threshold (TT). Nose–to–ground (NTG) height was used as a measure of sedation. Serum was collected for pharmacokinetic analysis. Detomidine (10 or 20 μg kg?1) was administered intravenously. Data were analyzed by means of a three–factor anova with fixed factors of treatment and time and random factor of horse. When a significant time × treatment interaction was detected, differences were compared with a simple t–test or Bonferroni t–test. Significance was set at p < 0.05.ResultsDetomidine produced a significant, dose–dependent decrease in NTG height, heart rate, and skin temperature and a significant, nondose–dependent decrease in respiratory rate. Colorectal distension threshold was significantly increased with 10 μg kg?1 for 15 minutes and for at least 165 minutes with 20 μg kg?1. Duodenal distension threshold was significantly increased at 15 minutes for the 20 μg kg?1 dose. A significant change in TT was not observed at either dose. A marked, immediate decrease in amplitude of duodenal contractions followed detomidine administration at both doses for 50 minutes.Conclusions and clinical relevanceDetomidine caused a longer period of visceral anti–nociception as determined by CRD but a shorter period of anti–nociception as determined by DD than has been previously reported. The lack of somatic anti–nociception as determined by TT testing may be related to the marked decrease in skin temperature, likely caused by peripheral vasoconstriction and the low temperature cut–off of the testing device.  相似文献   

18.
ObjectiveTo evaluate and compare the antinociceptive effects of the three alpha-2 agonists, detomidine, romifidine and xylazine at doses considered equipotent for sedation, using the nociceptive withdrawal reflex (NWR) and temporal summation model in standing horses.Study designProspective, blinded, randomized cross-over study.AnimalsTen healthy adult horses weighing 527–645 kg and aged 11–21 years old.MethodsElectrical stimulation was applied to the digital nerves to evoke NWR and temporal summation in the left thoracic limb and pelvic limb of each horse. Electromyographic reflex activity was recorded from the common digital extensor and the cranial tibial muscles. After baseline measurements a single bolus dose of detomidine, 0.02 mg kg?1, romifidine 0.08 mg kg?1, or xylazine, 1 mg kg?1, was administered intravenously (IV). Determinations of NWR and temporal summation thresholds were repeated at 10, 20, 30, 40, 60, 70, 90, 100, 120 and 130 minutes after test-drug administration alternating the thoracic limb and the pelvic limb. Depth of sedation was assessed before measurements at each time point. Behavioural reaction was observed and recorded following each stimulation.ResultsThe administration of detomidine, romifidine and xylazine significantly increased the current intensities necessary to evoke NWR and temporal summation in thoracic limbs and pelvic limbs of all horses compared with baseline. Xylazine increased NWR thresholds over baseline values for 60 minutes, while detomidine and romifidine increased NWR thresholds over baseline for 100 and 120 minutes, respectively. Temporal summation thresholds were significantly increased for 40, 70 and 130 minutes after xylazine, detomidine and romifidine, respectively.Conclusions and clinical relevanceDetomidine, romifidine and xylazine, administered IV at doses considered equipotent for sedation, significantly increased NWR and temporal summation thresholds, used as a measure of antinociceptive activity. The extent of maximal increase of NWR and temporal summation thresholds was comparable, while the duration of action was drug-specific.  相似文献   

19.
ObjectiveTo evaluate the heart rate (HR) and systemic arterial pressure (sAP) effects, and propofol induction dose requirements in healthy dogs administered propofol with or without guaifenesin for the induction of anesthesia.Study designProspective blinded crossover experimental study.AnimalsA total of 10 healthy adult female Beagle dogs.MethodsDogs were premedicated with intravenous (IV) butorphanol (0.4 mg kg–1) and administered guaifenesin 5% at 50 mg kg–1 (treatment G50), 100 mg kg–1 (treatment G100) or saline (treatment saline) IV prior to anesthetic induction with propofol. HR, invasive sAP and respiratory rate (fR) were recorded after butorphanol administration, after guaifenesin administration and after propofol and endotracheal intubation. Propofol doses for intubation were recorded. Repeated measures analysis of variance (anova) was used to determine differences in propofol dose requirements among treatments, and differences in cardiopulmonary values over time and among treatments with p < 0.05 considered statistically significant.ResultsPropofol doses (mean ± standard deviation) for treatments saline, G50 and G100 were 3.3 ± 1.0, 2.7 ± 0.7 and 2.1 ± 0.8 mg kg–1, respectively. Propofol administered was significantly lower in treatment G100 than in treatment saline (p = 0.04). In treatments G50 and G100, HR increased following induction of anesthesia and intubation compared with baseline measurements. HR was higher in treatment G100 than in treatments G50 and saline following induction of anesthesia. In all treatments, sAP decreased following intubation compared with baseline values. There were no significant differences in sAP among treatments. fR was lower following intubation than baseline and post co-induction values and did not differ significantly among treatments.Conclusions and clinical relevanceWhen administered as a co-induction agent in dogs, guaifenesin reduced propofol requirements for tracheal intubation. HR increased and sAP and fR decreased, but mean values remained clinically acceptable.  相似文献   

20.
ObjectiveTo determine the effects of intravenous (IV) premedication with acepromazine, butorphanol or their combination, on the propofol anesthetic induction dosage in dogs.Study designProspective, blinded, Latin square design.AnimalsA total of three male and three female, healthy Beagle dogs, aged 3.79 ± 0.02 years, weighing 10.6 ± 1.1 kg, mean ± standard deviation.MethodsEach dog was assigned to one of six IV treatments weekly: 0.9% saline (treatment SAL), low-dose acepromazine (0.02 mg kg–1; treatment LDA), high-dose acepromazine (0.04 mg kg–1; treatment HDA), low-dose butorphanol (0.2 mg kg–1; treatment LDB), high-dose butorphanol (0.4 mg kg–1; treatment HDB); and a combination of acepromazine (0.02 mg kg–1) with butorphanol (0.2 mg kg–1; treatment ABC). Physiologic variables and sedation scores were collected at baseline and 10 minutes after premedication. Then propofol was administered at 1 mg kg–1 IV over 15 seconds, followed by boluses (0.5 mg kg–1 over 5 seconds) every 15 seconds until intubation. Propofol dose, physiologic variables, recovery time, recovery score and adverse effects were monitored and recorded. Data were analyzed using mixed-effects anova (p < 0.05).ResultsPropofol dosage was lower in all treatments than in treatment SAL (4.4 ± 0.5 mg kg–1); the largest decrease was recorded in treatment ABC (1.7 ± 0.3 mg kg–1). Post induction mean arterial pressures (MAPs) were lower than baseline values of treatments LDA, HDA and ABC. Apnea and hypotension (MAP < 60 mmHg) developed in some dogs in all treatments with the greatest incidence of hypotension in treatment ABC (4/6 dogs).Conclusions and clinical relevanceAlthough the largest decrease in propofol dosage required for intubation was after IV premedication with acepromazine and butorphanol, hypotension and apnea still occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号