首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 437 毫秒
1.
辊搓圆筒筛式谷子清选装置设计与试验   总被引:3,自引:0,他引:3  
为解决谷子初脱后因物料中残留谷码多、含水率高而导致清选含杂率和损失率较高的问题,设计了辊搓圆筒筛式谷子清选装置。该装置主要由谷码辊搓装置、圆筒筛装置、横流风机和离心风机等组成,实现了先脱谷码后清选的功能。选取离心风机转速及角度、横流风机转速、圆筒筛转速和谷码辊搓装置主动辊转速作为试验因素,籽粒含杂率和损失率作为试验指标进行了正交试验,试验表明:谷码辊搓装置主动辊转速250 r/min、离心风机角度3°、小圆筒筛转速60 r/min、离心风机转速700 r/min、中圆筒筛转速60 r/min、大圆筒筛转速70 r/min,横流风机转速600 r/min为该清选装置的最优组合。对该参数组合进行验证试验,并对该装置清选性能进行对比试验,结果表明,在最优组合条件下籽粒含杂率为1.64%、总损失率为0.86%,该装置籽粒含杂率与总损失率均低于传统型风机圆筒筛式和风机振动筛式清选装置。  相似文献   

2.
玉米清选装置结构优化设计与试验   总被引:2,自引:0,他引:2  
针对目前玉米籽粒直收机的清选装置存在籽粒损失率和含杂率偏高、传统试验受季节性影响大等问题,基于CASE 4099型联合收获机清选系统,搭建玉米脱粒清选试验平台,设计了一种竖式可调节分风板,并采用数学建模、仿真模拟和试验验证相结合的方法对清选装置作业性能进行优化。建立籽粒在振动筛上运动过程的数学模型,分析了振动筛倾角、振幅、频率、振动方向角和风机风力与振动筛筛面夹角等因素与籽粒在振动筛上平均运动速度和移动距离的关系;对清选装置内部流场风速分布进行仿真和试验,仿真结果表明,分风板左或右偏18°时,流场中风速分布均匀,在垂直方向上差值较小,验证试验结果表明,分风板右偏18°时流场内各测量点风速分布均匀,适于籽粒与杂质分离,清选效果较好;以振动筛转速、风机转速为主要影响因素,以籽粒损失率、含杂率为指标进行正交试验,结果表明当振动筛曲柄转速为275r/min、风机转速900r/min为最优作业参数组合,损失率和含杂率分别为1.34%、1.66%。  相似文献   

3.
油菜分段收获脱粒清选试验   总被引:9,自引:3,他引:6  
对我国南方油菜分段收获割晒后的脱粒清选特性和脱粒清选参数进行了研究。通过在试验台上脱粒和清选正交试验,得出了分段收获捡拾脱粒机脱粒、清选部件形式和两组合理的工作参数。试验结果表明:脱粒分离夹带损失最小的优选参数组合为喂入量1.6kg/s、滚筒转速750r/min、脱粒间隙15mm、滚筒形式钉齿6排;影响脱粒分离夹带损失率的主次因素为滚筒形式、喂入量、脱粒间隙和滚筒转速。综合考虑清选损失率和含杂率最〖JP3〗小的优选参数组合为开度10mm鱼鳞筛、振动筛曲柄转速260r/min、离心风机转速860r/min、离心风机倾角15°;由模糊综合评价值的极差分析可得因素的主次排序为离心风机倾角、振动筛曲柄转速、筛片结构形式和离心风机转速。  相似文献   

4.
纵轴流联合收获机双层异向清选装置设计与试验   总被引:5,自引:0,他引:5  
针对传统纵轴流联合收获机清选系统单层筛架在作业过程中存在大喂入量下损失率和含杂率高等问题,设计了一种结构紧凑、清选能力强、清选效果好的双层振动清选装置,提出了双层异向独立振动的玉米籽粒清选方式,分析确定了筛面和物料的运动规律、清选筛和双风道的结构参数以及传动机构的运动参数。以籽粒含杂率、籽粒损失率和分布比例为评价指标,对曲柄转速进行单因素试验,确定最佳工作参数为上曲柄转速220r/min、下曲柄转速190r/min;选取上筛曲柄长度和下筛曲柄长度为试验因素,进行了两因素三水平正交试验,确定较优组合为:上、下筛曲柄长度分别为50mm与40mm。在较优水平组合下,以8kg/s的喂入量进行验证试验,试验结果表明籽粒损失率为0.45%,籽粒含杂率为0.76%,籽粒分布比例为1.92%,清选效果较好,能满足清选性能要求。  相似文献   

5.
为了了解玉米籽粒收获机清选参数对清选性能的影响情况,基于脱粒清选试验台对风机转速、鱼鳞筛开度、调风板倾角、曲轴转速进行了单因素试验和正交实验,以清选损失率和含杂率为评价指标,利用极差分析法得出了最优清选参数组合,即当风机转速为1 150r/min、鱼鳞筛开度为16mm、调风板倾角为54°、曲轴转速为325r/min时,清选效果最好,损失率为0.286%,含杂率为0.149%。  相似文献   

6.
为进一步提升胡麻脱粒物料分离清选作业机的工作性能,采用数值模拟仿真试验方法分析确定获得的单因素参数,以喂料装置振幅、物料层调节厚度和吸杂风机转速为自变量,以籽粒含杂率和清选损失率为响应值,依照Box-Behnken试验设计原理,采用三因素三水平响应面分析方法,分别建立了各因素与籽粒含杂率和清选损失率之间的数学模型,并对各因素及其交互作用进行分析。结果表明:3个因素对籽粒含杂率影响的主次顺序为吸杂风机转速、喂料装置振幅和物料层调节厚度,对清选损失率影响的主次顺序为吸杂风机转速、物料层调节厚度和喂料装置振幅;作业机最佳工作参数为:喂料装置振幅16.5 mm、物料层调节厚度7.0 mm、吸杂风机转速1 775 r/min(即对应的吸杂风机转速变频频率为59.2 Hz)。验证试验表明,籽粒含杂率和清选损失率均值分别为7.86%和1.58%,说明在最优工作参数下作业机能够降低胡麻脱粒物料在机械化分离清选过程中的含杂与损失程度。  相似文献   

7.
4LZ-1.0Q型稻麦联合收获机脱粒清选部件试验与优化   总被引:9,自引:0,他引:9  
对4LZ -1.0Q型稻麦联合收获机脱粒清选部件进行了正交试验,采用模糊综合评价法对小麦田间试验结果进行分析,得出脱粒清选环节中钉齿脱粒滚筒、栅条凹板筛、上盖板、振动筛、离心风机部件的优化组合参数.试验结果表明,影响脱粒性能的因素主次顺序为:滚筒齿顶线速度、脱离间隙、上盖板导向次数、凹板筛筛分包角、凹板筛筛孔大小和脱粒间隙,优选参数组合为滚筒齿顶线速度25 m/s、脱离间隙55 mm、上盖板导向4次、凹板筛筛分包角204°、凹板筛筛孔尺寸36 mm×15 mm、脱粒间隙15 mm;影响清选性能的因素主次顺序为:振动筛曲柄转速、筛面结构形式、离心风机转速、振动筛振幅,优选参数组合为振动筛曲柄转速404 r/min、筛面16 mm方孔编织筛、离心风机转速1787 r/min、振动筛振幅30 mm.可控制含杂率小于3%、破碎率小于1%、脱粒清选籽粒损失率小于1.5%.  相似文献   

8.
青稞作物机械收获存在清选损失率和含杂率高等问题。为提高青稞作物机械收获的清选质量,测试分析了青稞作物脱粒物料各组分的相关物性和悬浮特性。采用气吹式农业物料悬浮速度测量装置,测得青稞作物脱粒物料中籽粒、麦芒和颖壳、断穗、短茎秆及碎叶的悬浮速度分别为7.07~12.51、1.29~4.08、2.23~6.32、1.82~8.16和1.18~3.65 m/s。采用风筛式清选试验装置,以离心风机风速和风向、振动筛振动频率和振幅为试验因素进行单因素和正交试验,以籽粒清洁率和清选损失率为试验指标,运用极差分析法得出试验因素最佳组合为风机风速8.5 m/s、风向35°、振动筛振幅30 mm和频率190 r/min,其试验结果为清洁率97.32%、损失率3.73%。该试验可为青稞联合收割机清选装置结构参数和工作参数设计提供参考。   相似文献   

9.
为了降低荞麦机械收获中清选环节的含杂率及损失率,提高机械收获性能及效率,在谷物清选试验台上进行了曲柄长度、曲柄转速、上筛面倾角、下筛面倾角、筛面摆动角、风机风向及风机转速的单因素试验,并对这7个因素分别取3水平进行了正交试验和分析。试验结果表明:上筛面倾角、曲柄转速、曲柄长度和风机转速对清选损失率影响显著且影响程度依次降低,风机转速、风机风向角、上筛面倾角、下筛面倾角对籽粒含杂率影响显著,对清选时间影响显著的因素由主及次分别为曲柄转速、曲柄长度、上筛面倾角和风机风速。建立了含杂率、损失率和清选时间的回归模型,并应用遗传算法对该模型进行了优化,得到最佳参数组合,即曲柄长度30mm,曲柄转速和风机转速分别为231、600r/min,风机风向角、上下筛面倾角及基本筛面振动方向角依次为30°、-3.8°、-1°、 5°,此时,清选损失率、含杂率和清选时间分别为1.59%、1.91%、7.93s。经试验验证,在最优参数下,各评价指标的试验值与理论值相对误差分别为3.14%、1.22%、3.24%,且优化所得结果与极差方差分析结果高度一致,说明采用遗传算法对清选回归模型进行优化是可行的,优化结果可...  相似文献   

10.
针对目前玉米籽粒收获机不能适应15kg/s以上的大喂入量清选需要,设计了一种具备预清选功能的清选装置。首先对玉米脱出物离开螺旋输送器到达预清选筛前的玉米籽粒进行受力分析,然后对曲柄连杆机构的运动模型加以简化。其次分析玉米籽粒在筛面上的运动状态;对离心风机叶轮、蜗壳进行设计计算。采用单因素试验确定风机转速、振动频率、上筛筛孔开度取值范围;以风机转速、振动频率、上筛筛孔开度为试验因素,以籽粒含杂率和清选损失率为评价指标,设计三因素三水平中心组合试验,建立各因素与指标之间的回归模型。通过响应曲面方法对试验结果进行分析,并采用Design-Expert12对回归模型进行多目标优化。玉米脱出物喂入量为16kg/s时,得出较优组合为:风机转速1202.50r/min、振动频率5.41Hz、上筛筛孔开度18mm,在此条件下籽粒含杂率为0.79%,清选损失率为1.10%;验证试验结果表明,当风机转速1200r/min、振动频率5Hz、上筛筛孔开度18mm时,籽粒含杂率为0.82%,清选损失率为1.14%,试验值与优化值相对误差小于5%,与传统双层往复振动筛清选装置相比籽粒含杂率降低2.07个百分点,清选损失率降低2.13个百分点,证明所设计合理。  相似文献   

11.
为解决去皮率低、蒜仁易损伤等问题,设计了一款组合式大蒜柔性去皮装置。通过浮动搓擦单元分离蒜皮,振动机构完成输送,蒜瓣经过浮动搓擦、振动梳刷及气吹等组合作用完成柔性去皮。结合大蒜的物理机械特性,设计了搓擦机构、振动机构、梳刷机构、气吹机构等关键部件;通过对蒜瓣在浮动搓擦单元和振动筛内的动力学分析,确定了影响去皮性能试验的主要因素和取值范围。以搓擦筒轴转速、梳刷间距和曲柄转速为试验因素,以去皮率和损伤率为试验指标,进行三因素三水平响应面试验,求得搓擦筒轴转速、梳刷间距和曲柄转速的最优参数组合并进行了试验验证。试验结果表明最优参数组合为:搓擦辊轴转速70.73 r/min、振动频率6.68 Hz、梳刷间隙18.00 mm;最优参数组合下,蒜瓣去皮率为93.68%、损伤率4.40%,试验验证结果与优化结果相对误差均小于5%,满足大蒜去皮要求。  相似文献   

12.
为了解决耕层残膜回收率低的问题,设计了风筛式土壤残膜试验平台装置,并采用双曲柄机构来减小装置的振动性。对土壤残膜进行了无气流条件下的筛分试验,分析了各因素对筛分率的影响,优选了振动筛参数组合。试验结果表明:当曲柄转速为180r/min、筛面倾角为6°、鱼鳞筛开角为20°时,筛分装置有较高的残膜筛分率,即为87.67%。  相似文献   

13.
油葵联合收获机清选装置结构优化与试验   总被引:2,自引:0,他引:2  
针对油葵联合收获作业过程中存在籽粒含杂率及损失率偏高的问题,测定油葵脱粒后脱出物的尺寸特征和悬浮特性,通过机构的运动学分析与物料的受力分析,确定了油葵联合收获机清选装置主要结构参数与工作参数。以风机转速、振动频率和分风板倾角为影响因素,油葵籽粒含杂率和籽粒损失率为评价指标,开展工作参数优化试验,单因素试验结果表明,清选装置较优工作区间为:风机转速1100~1300r/min、振动频率3~5Hz、分风板倾角20°~40°;设计Box-Behnken试验,建立了响应面回归模型,并进行参数优化,结果表明:各试验因素对含杂率和损失率影响显著性大小顺序均为风机转速、振动频率、分风板倾角;当风机转速1200r/min、振动频率4Hz、分风板倾角27°时,试验结果表明平均油葵籽粒含杂率为4.25%,平均籽粒损失率为1.82%,满足油葵联合收获机清选的国家标准要求。  相似文献   

14.
玉米籽粒收获机清选装置参数优化试验   总被引:6,自引:0,他引:6  
针对玉米籽粒直收过程中清选作业损失率高、籽粒含杂率高的问题,开展玉米籽粒收获机清选作业参数优化试验,探究整机作业工况下清选装置作业参数对籽粒损失率和含杂率的影响规律,得到清选作业参数最优组合,并进行田间验证试验。玉米籽粒收获机清选作业参数较优水平区间为风机转速800~1 000 r/min,振动频率6~8 Hz,上清选筛筛孔开度15~25 mm。清选作业籽粒含杂率最优作业参数组合为风机转速1 000 r/min,振动频率7 Hz,上清选筛筛孔开度20 mm;籽粒损失率最优作业参数组合为风机转速900 r/min,振动频率6 Hz,上清选筛筛孔开度20 mm;清选作业综合指标最优作业参数组合为风机转速900 r/min,振动频率7 Hz,上清选筛筛孔开度20 mm。得到玉米籽粒收获机清选作业籽粒含杂率、籽粒损失率和综合指标的回归模型,田间验证试验表明,籽粒含杂率相对误差为5. 56%,籽粒损失率相对误差为5. 10%,综合指标相对误差为4. 60%,最优作业参数组合表现良好,且回归模型可靠。  相似文献   

15.
针对新疆酿酒葡萄树形松散、枝干较细等特点,利用曲柄摇杆机构中连杆与肋条相连,设计可实现平面运动的酿酒葡萄采收装置。对装置开展运动分析,构建采收装置运动学模型,确定影响装置工作性能的主要影响因素为曲柄转速、曲柄长度、肋条调节杆长度和夹持间距。建立酿酒葡萄采收装置虚拟样机,并进行仿真分析,获取肋条各作用点速度与加速度仿真数据,通过加速度分析可知,肋条两侧加速度均可满足酿酒葡萄振动采收需求。以曲柄转速、曲柄长度、夹持间距和肋条调节杆长度为影响因素,以分离率和破损率为指标,开展四因素三水平正交试验,获取最佳参数组合为曲柄转速840 r/min、曲柄长度28 mm、夹持间距100 mm、肋条调节杆长度410 mm,验证装置设计的合理性。  相似文献   

16.
针对胡麻分离清选过程高损失率、高含杂率问题,设计了风筛式胡麻清选装置。利用EDEM-Fluent耦合方法,对胡麻清选装置清选过程进行仿真分析,探究清选装置作业参数对胡麻籽粒含杂率和清选损失率的影响规律,确定最优的组合参数。基于清选装置气流场胡麻脱粒物料的运动分析,建立了胡麻清选装置简化模型;对风机风速、气流倾角、清选筛振动频率和振幅4个参数进行单因素试验和正交试验。结果表明,风机风速、气流倾角、清选筛振动频率和振幅是影响清选装置清选性能的显著因素。应用Design-Expert软件建立了籽粒含杂率和清选损失率的数学回归模型,获得最佳工作参数组合:风机风速4.5 m/s、气流倾角4°、清选筛频率6 Hz、清选筛振幅9 mm,最优工作参数组合下胡麻籽粒含杂率为2.97%,清选损失率为2.39%。该研究结果可为胡麻清选装置的设计和优化提供参考。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号