首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of forest management on biodiversity is a crucial issue for sustainable forestry and nature conservation. However, the ways in which management affects macrofungal and plant communities and diversity of mountain temperate forests still remain poorly understood. We performed a random sampling stratified by stand age and stand type on the sites of temperate montane fir–beech forests. Diversity of macrofungi and the vascular plant understorey in beech- and spruce-dominated managed stands was investigated and compared to primeval forests located in the Po?ana Biosphere Reserve, Western Carpathians. Both the vascular plant and the macrofungal communities were altered by management, and the response of the macrofungal species (especially wood-inhabiting fungi) was more pronounced in terms of species composition change. Species turnover evaluation seems to be an important tool of forest natural status assessment, because alpha diversity did not change as much as species composition. Certain species of Carpathian primeval forests were confirmed as good indicators for natural forest change; others were proposed. Species pool and mean number of species per plot were the highest in unmanaged fir–beech forests, and species diversity significantly decreased in spruce plantations. The number of species decreased significantly due to the change of canopy tree species composition only in the macrofungal communities. As an outcome for forest management, we recommend keeping mixed forests involving all natural tree species and providing at least a minimal amount of dead wood necessary for wood-inhabiting organisms and leaving some area of unmanaged natural forests within complexes of managed stands.  相似文献   

2.
Trade-offs among wood production, wood quality and ecological characteristics in the management of harvested forest stands are explored through model simulation of various silvicultural regimes. Long-term production of merchantable wood, production of various types of high-quality wood, and the level of certain quantitative ecological indicators are projected for coniferous forests of Pacific Northwestern USA. The set of ecological indicators used is based on the species composition and physical structure of old, unlogged forest stands. Simulations are performed with an ecological model of forest stand dynamics that tracks the fate of live and dead trees. Short rotations (<50 years) produce the least amount of high-quality wood over the multi-century simulation period. They also fail to generate ecological attributes resembling those of old forest stands. Production of high-quality wood is moderate to high under all rotations of 80 years or more; however, most ecological indicators require longer rotations unless alternatives to clearcutting are applied. Alternatives examined include retention of 15% cover of live tree canopy at each harvest in combination with artificial thinning between harvests. Thinning from below can expedite the development of large live and dead trees, and canopy height diversity without greatly diminishing wood quantity or quality. Proportional thinning retains understory stems, thereby expediting the recruitment of shade-tolerant trees. A possible drawback to thinning, particularly proportional thinning, is the diminished production of clean-bole wood at rotations of 150 and 260 years. It is concluded that most wood quantity, wood quality and ecological objectives can be met with long rotations (ca. 260 years). Certain objectives can be met with shorter rotations (80–150 years) when treatments of thinning and canopy tree retention are applied.  相似文献   

3.
This study examines the structural characteristics of the tree layer, dead wood, canopy openings, and regeneration patterns of a spruce old-growth forest in the Bohemian Forest, Czech Republic. An old-growth stand with minor human influence and a stand that was presumably logged about 200 years ago were analyzed and compared, as some forest managers considered the presumable human impact as a reason for salvage logging. Even though the stands differed in tree density, height and DBH structure, it was not possible to conclude whether it was due to management history or the environmental differences. The volume of dead wood also differed between the stands. There was about 142 and 83 m3 ha−1 of dead wood in the old-growth stand and presumably logged stand, respectively. The amount of dead wood found in the old-growth stand was comparable with values reported from spruce old-growth stands across Central Europe. In both stands, many canopy trees were arranged in linear patterns, which was a result of spruce regeneration on nurse logs. This suggests that the origin and development of the stands were characterized by natural processes and during the past 200 years typical old-growth structural characteristics have already evolved.  相似文献   

4.
To improve the silvicultural targets for ecologically sustainable forestry, we quantified functionally important structural features for the first time in a representative set of old-growth forests in hemiboreal Europe. Altogether, 23 old-growth stands of four site-type groups were compared with mature commercial stands nearby in the Estonian state forests that hold the Forest Stewardship Council (FSC) certificate of sustainable forestry. These two treatments did not differ significantly in terms of tree-species diversity, volumes of woody debris of <20 cm diameter (including fine woody debris) and its decay-stage composition. However, mature stands had many more early-successional trees and lacked late-successional deciduous species; they also had a higher overall density and volume of live trees, due to abundant individuals of 10–39 cm diameter at breast height. Old-growth stands had at least twice as many live trees ≥40 cm, standing dead trees ≥30 cm and lying wood ≥20 cm in diameter, any freshly fallen debris, and regeneration. For lying wood ≥20 cm in diameter, the treatment effect depended on site type: both treatments of Vaccinium-type dry boreal forests were remarkably deadwood-poor (indicating historical management of the old-growth stands), while mature eutrophic stands of Aegopodium-type were most impoverished relative to old-growth levels. We conclude that many functional characteristics of old growth were present in the FSC-certified, mostly naturally regenerated, commercial stands. The main problem is the lack of very large trees, particularly of late-successional deciduous species, which should be addressed by their well-planned retention in cut areas and reconsideration of salvage logging strategies. A dense regeneration in old-growth stands also indicated the potential of selection cuttings. The study highlighted the need for region- and site-type specific numerical targets for sustainable forest management, which in the hemiboreal region should address the characteristic occurrence of late-successional deciduous trees on fertile soils and higher natural deadwood volumes than in typical boreal forests. For certification, the issues of structural impoverishment revealed both the inadequacy of some silvicultural practices and some indicators set by the national FSC-standard in Estonia.  相似文献   

5.
上杭县林业发展潜力和可持续经营分析   总被引:1,自引:0,他引:1  
根据森林和林业资源消长的客观规律,遵循“法正林”概念和经营模式,运用林木生长和收获模型研究结果,采用动态比较的方法,分析上杭县的林业资源结构及其缺陷,研究并提出了分类指导的经营策略。分析表明,通过科学规划和经营,县域用材林林分在实施分类经营的前提下,可以适度缩减面积,保留生长(立地)类型良好的林分实施集约化经营,在10 a经营期内,可以增加2倍的采伐量,林木蓄积增长73%。同时可以促进竹林、经济林、薪材林等资源的增长,促进林区生产的多样化,实现林业生产、林区经济的协调、可持续发展。  相似文献   

6.
This study considered the effects of thinning on the development of compression wood in stems of 35-year-old stand of Corsican pine (Pinus nigra L.). Part of the stand had been thinned at 5-yearly intervals and part left unthinned. Twenty trees each from the thinned and unthinned stands were randomly selected and felled. Measurements were made on tree height, stem diameter, stem slenderness and canopy depth. Wood samples were removed from the central part of the main log and cross-sectional measurements made on ring width, basic density and compression wood content. Cross-sectional area of compression wood was found to be three time higher in stems from the unthinned trees in comparison with those from the thinned trees. No significant differences in mean radial ring width or basic density were found between treatments. Correlations indicated that, with increasing in stem diameter, compression wood content increased in the unthinned trees, while a decline in compression was observed in the thinned trees. Tree height was also positively correlated with compression wood content in unthinned trees, while no equivalent relationship was observed in thinned trees. Observations from this study, while not conclusive, suggest that phototropic stimulus may be producing stem inclinations in the unthinned stand as trees compete for space in the canopy, whereas crown competition has been largely eliminated in the thinned stand; and that this is responsible for compression wood levels recorded in this study.  相似文献   

7.
Analyses of land snails and habitat factors in acid beech forests were conducted in southern Germany (northern Bavaria). The objectives were to study the effects of habitat characteristics on snail density and species richness. Habitat structures were determined for 37 plots in one big forest. We found a significant relationship between the number of snail species and individuals and the following set of habitat factors coverage of herbaceous layer, growing stock, mean diameter at breast height of the three largest trees (DBHmax), stand age, total dead wood volume per ha, and advanced decomposed dead wood volume per ha. We use maximally selected rank statistics to estimate cutpoints separating stands with low densities, from stands with high snail densities. Here, we define cutpoints for a significant higher snail density at a stand age of 187 years, 57 m3/ha dead wood, 40 m3/ha advanced decomposed dead wood, 63 cm DBHmax and more than 1% herbaceous layer. For species richness, cutpoints are estimated at 338 m3/ha stand volume, 170 years stand age, 50 m3/ha total dead wood amount, 15 m3/ha advanced decomposed dead wood and 56 cm DBHmax. The microhabitat analysis shows a higher pH value and a higher Calcium content at the bottom of large snags and under large lying dead wood pieces in comparison to litter, upper mineral soil and at the bottom of vital living trees. Snail species and individual density are significantly linked to these patterns of chemical parameters. The identified cutpoints are a good base for ecological management decisions in forest management.  相似文献   

8.
We focused our attention on quantifying the factor complex of forest regeneration in 423 mature and old stands with contrasting environmental conditions. We recorded the microhabitat selection of tree recruits, the frequency of tree seedlings, and evaluated the drivers of sapling abundance and diversity. The majority of forest regeneration was established on undisturbed forest floor. Dead wood was a frequent substrate in spruce-(co)dominated forests. Seedling frequency within a stand was related to the site-type specific productivity gradient of stands—pine seedlings were common in low-productivity and spruce in high-productivity boreal forests. Seedlings of temperate broad-leaved trees dominated in productive boreonemoral forests, except for oak, which showed a uniform distribution of abundance in all forest site-types. Sapling abundance was dictated by forest site-type, and facilitated by stand diversity, variability in stand closure, lying dead wood, abundant moss, and a thick organic layer. Only in boreal forests was sapling abundance suppressed by the abundant spruce and younger trees. Upon considering the relationship between sapling abundance and species richness, sapling diversity was dependent on forest site-type, suppressed by stand density and dead wood (old gap) abundance, and facilitated by stand diversity. In addition, boreonemoral stands, competition from herbs, and facilitation by mosses occurred. The observed pattern of tree recruitment points to the importance of top-down effects of the overstory, competing or facilitating interactions with forest floor vegetation, and availability of regeneration microhabitats, which in complex make their ecology comparable with forest herbs. Natural forest regeneration can be enhanced if silvicultural methods support mixed stands and enhance field layer diversity. Oak can provide the universal tree species to improve stand structure over a wide range of habitats.  相似文献   

9.
Thinning treatments in second-growth forest may be a practical means of accelerating the development of certain old-growth structural features in regions where old stands are presently uncommon. We used CANOPY, an individual-tree model calibrated with data from thinned and unthinned stands, to simulate effects of thinning on growth rates and development of old-growth structural features in second-growth northern hardwoods. Three simulated, moderately heavy thinnings over a period of 45 years nearly doubled the predicted mean radial increment of canopy trees, percent of stand basal area in large trees, and area of canopy gaps. Compared to untreated stands, thinned stands had fewer dead trees per ha, but the dead trees were larger in size and the overall volume of snags and logs was little affected. In a 77-year old even-aged stand, moderately heavy thinning was predicted to reduce the time needed to attain the minimum structural features of an old-growth forest from 79 to 36 years. Simulated treatments in an older, uneven-aged stand gave mixed results; the moderately heavy treatment stimulated individual tree growth, but the removal of some medium-sized canopy trees in conjunction with natural mortality delayed the development of old-growth structure. Total volume of dead wood may still be deficient under the thinning regimes investigated in this study, but predicted live-tree structure 45 years after moderately heavy thinning was typical of stands in the advanced transition and steady-state stages of old-growth development. Results suggest that thinning can substantially accelerate the development of old-growth structure in pole and mature northern hardwoods, but response in older, uneven-aged stands is more modest, and treatments in these stands may need to be more conservative to achieve restoration goals.  相似文献   

10.
To gain insight into the question of which vegetation characteristics have the most influence on avian assemblages in late-successional forests, the habitat preferences of bird-guilds in old-growth endemic forests of Macedonian pine were studied over 3 years in the Pirin National Park, Bulgaria. Bird–habitat relationships were investigated by comparing vegetation characteristics, and bird species richness, diversity, abundance, and guild structure of birds (determined according to food type, foraging and nesting sites) between mature (60–100 years old) and over-mature (>120 years old) Macedonian pine forest stands. Studied forest age-classes differed mainly by the density, height and diameter of trees, and the amount of dead wood. The first one of these parameters decreased and the latter two parameters increased with the forest succession. The difference in the vegetation structure affected the abundance of bird-guilds and thus, the overall bird abundance and the structure of avian assemblages within Macedonian pine forests. There was no significant difference in bird diversity among studied forest age-classes, but the overall bird abundance increased with forest maturation. Analyzed by study plots, species richness was higher in over-mature forests, but at cluster level, there was no significant difference between mature and over-mature forest age-classes. Half of the studied (insectivorous, hole- and ground-nesters, bark- and canopy-foraging bird species) guilds were more abundant in over-mature forests, while there was no bird-guild exhibiting a preference for mature forest stands. The abundances of bird-guilds were correlated with tree height, diameter at breast height and the amount of dead wood between the studied forest age-classes and this might explain their preferences for over-mature pine forests. Therefore, for future sustainable management of these endemic forests and the conservation of their avifauna, efforts should focus on protecting the remaining native old-growth forest stands and the importance of the structure of Macedonian pine forests on their bird assemblages should be considered in forestry practices.  相似文献   

11.
Large cavity-nesting birds depend on large-diameter trees for suitable nest sites. The increased spatial extent of commercial timber harvesting is modifying forest structure across the land base and may thus compromise the availability of large trees at the landscape scale. In this study, our objectives were to (1) characterize the availability of large living and dead trees in old-growth stands dominated by different tree species and surficial deposits that encompass the range of natural cover types of eastern Québec's boreal forest; (2) analyze the distribution of trees among decay-classes; and (3) compare the availability of large trees in unharvested, remnant, and harvested stands for the entire range of decay-classes. A total of 116 line transects were distributed across unharvested forests, remnant linear forests, and cutblocks in cutover areas. Unharvested forest stands (black spruce [Picea mariana], balsam fir [Abies balsamea]–black spruce, balsam fir–white spruce [Picea glauca] and balsam fir) reflected a gradient of balsam fir dominance. The remnant forests selected were isolated for 5–15 years. Analyses were performed at two diameter cut-off values. Trees with DBH ≥20 cm were considered for availability of total trees whereas trees with DBH ≥30 cm were considered for availability of large trees. Forest stands comprised high proportions of standing dead trees (33% of all stems, 8% were large dead stems). Availability of total and large standing trees increased with the dominance of balsam fir in stands. Forest stands located on thick surficial deposits showed higher densities of large dead trees for every stand type suggesting a higher productivity on those sites. Availability of stems according to decay-classes showed a dome-shaped distribution with higher densities of snags in intermediate decay stages. However, for large stems, black spruce stands showed a significantly lower availability that was consistent across all decay-classes. In linear remnant forests, pure balsam fir stands were absent. Remnant stands thus showed a much lower availability in large trees when compared with unharvested balsam fir stands. Clearcuts had the lowest densities of dead trees across sampled stands. Current even-aged management practices clearly affect availability and recruitment of large trees, therefore forest-dwelling wildlife relying on these structures for breeding is likely to be affected by large-scale harvesting in coniferous boreal forests.  相似文献   

12.
To preserve biodiversity in managed forest landscapes dead and living trees are retained at final cuttings. In the present study we evaluated the effect of these practices for saproxylic (wood-dependent) beetles inhabiting dead aspen trees (Populus tremulae). For saproxylic beetles, tree retention at final cuttings can be expected to be especially valuable for species adapted to sun-exposed dead wood, a substrate that only rarely occurs in well managed forest stands. Therefore, the current evaluation was conducted as a comparison of species richness, species density (number of species per sample), assemblage composition and occurrence of individual species between clear-cuts, where aspen trees were retained, and closed forest stands with aspen trees. The study was conducted in central Sweden and the beetles were sampled by sieving of bark from CWD (coarse woody debris) of aspen. There was no significant difference in rarefied species richness between forest and clear-cut sites. Species composition differed significantly between the two stand types. Generalized linear mixed-effects models predicted the species density to be 34% lower in CWD objects in forest sites than on clear-cuts. This pattern could partly be explained by differences in CWD diameter, decay class and bark types between the two stand types (clear-cut/forest). Stand type was a significant predictor of occurrence in individual CWD objects for 30% of analysed individual beetle species. For all species except one, the variable stand type predicted higher occurrence on clear-cuts than in forest stands. To conclude, our results demonstrate that retention of aspen on clear-cuts contributes to population recruitment of a different assemblage of species than CWD within stands.  相似文献   

13.
Current silvicultural treatments in beech forests are aimed at achieving thick logs without discoloured hardwood. Therefore intensive thinning is applied already in younger stands with the objective of large-sized trunks at an age of 100 years. However, this approach bears the risk that dead wood structures and broken trees are completely removed from the forest. The impact of three different silvicultural management intensity levels on wood-inhabiting fungi over decades was investigated in a large beech forest (>10,000 ha) in southern Germany in 69 sampling plots: A Intensive Thinning and Logging with high-value trees, B Conservation-Oriented Logging with integration of special structures such as dead wood and broken trees and C Strict Forest Reserves with no logging for 30 years. The analysis of community showed marked differences in the fungus species composition of the three treatments, independent of stand age. The relative frequencies of species between treatments were statistically different. Indicator species for naturalness were more abundant at sites with low silvicultural management intensity. Fomes fomentarius, the most common fungus in virgin forests and strict forest reserves, is almost missing in forests with high-management intensity. The species richness seemed to be lower where intensive thinning was applied (P = 0.051). Species characteristic for coarse woody debris were associated to low management intensity, whereas species with a significant preference for stumps became more frequent with increasing management intensity. A total amount of dead wood higher than 60 m3/ha was found to enable significantly higher numbers of species indicators of naturalness (P = 0.013). In conclusion, when applying intensive silvicultural treatment, the role of dead wood needs to be actively considered in order to maintain the natural biocoenosis of beech forests.  相似文献   

14.
Several heavy wet snowfalls occurred during 2007-2009 across a broad-scale thinning and fertilization experiment to bring overstocked juvenile lodgepole pine (Pinus contorta var. latifolia) in the foothills of Alberta, Canada into an intensive management regime. We examined the bending and breakage of trees in relation to thinning and fertilization and used a multimodel information-theoretic approach to model stand and tree level predictors of snow damage. Fertilized stands suffered the greatest amount of snow damage, and this was most noteworthy when stands were also thinned; here 22% (17% broken stems) of trees were damaged compared to 8% (4% broken stems) in the thinned and unfertilized stands. At the stand level, needle weight and crown cover were reliable predictors of snow damage. At the tree level, separate models were developed for each combination of thinning and fertilization. All models used total tree volume; usually the smaller trees in the stands were more susceptible to damage but in the thinned and fertilized stands larger but slender trees with large asymmetrical crowns tended to be damaged. Also, trees with lower total stem volume were more susceptible to damage. Only in the thinned and fertilized stands were variables related to crown shape and asymmetry important predictors of snow damage. We conclude that snow damage is an important agent for self-thinning in unthinned stands and fertilization tends to exacerbate damage because of increase in foliage size. In areas with regular occurrence of heavy snow, we do not recommend fertilization at the same time as thinning, as the larger and more economically important trees in the stand are at risk.  相似文献   

15.
本文立足于青阳县森林资源特点的分析,归纳出林地利用率不高,森林资源少,分布不均;林分年龄分结构不合理,中幼林多,近成熟林少;林种结构比例不合理,商品林多,公益林少;重造轻管,林分质量差,综合效益低四大问题,研究探讨了实现林业可持续发展的五大对策,即:应用生物措施来培育和改良土壤,增加林业产出;加强中幼林可持续经营抚育,提高林分质量和产量;调整林种结构,培育持续、多功能的森林;依靠科技支撑发展林业,不断提高林业建设的科技含量与综合效益;树立循环经济理念,优化林业产业结构等。这对南方林区促进林业及森林的可持续发展具有重要的借鉴意义。  相似文献   

16.
Silvicultural practices that provide a wide variety of vegetative composition and structure (habitats) in young stands should help manage for biological diversity across forested landscapes. This study was designed to test the hypotheses that: (i) abundance and diversity of stand structure attributes (species diversity and structural diversity of herb, shrub and tree layers) and forest floor small mammal communities, and (ii) relative habitat use by large herbivores, will increase from unthinned to conventionally thinned to chemically thinned stands of young lodgepole pine (Pinus contorta) forest. Replicate study areas were located near Summerland, Kelowna and Williams Lake in south-central British Columbia, Canada. Each study area had three treatments: a conventionally thinned, a chemically thinned and an unthinned stand. Pre-commercial thinning was conducted in 1993. Coniferous stand structure and understory vegetation were measured prior to thinning in 1993 and 5 years later in 1998. Small mammal populations were sampled intensively from 1993 to 1998. Relative habitat use by large herbivores was sampled in 1998.

Our results indicate that chemical thinning of young lodgepole pine stands produced an aggregated pattern of crop trees compared with stands subjected to conventional thinning. Diameter growth of crop trees in the chemically thinned stands was similar to that in the conventionally thinned, but also to that in unthinned stands. Although horizontal stratification (aggregates of trees) was enhanced, vertical stratification (structural diversity of vegetation) was less in the chemically than conventionally thinned stands. Abundance and diversity of understory vegetation and small mammal communities were generally unaffected by stand thinning in these particular installations. Relative habitat use by mule deer (Odocoileus hemionus) occurred in a gradient from highest in the conventionally thinned stand to lowest in the unthinned stand. Habitat use by snowshoe hares (Lepus americanus) tended to have the opposite trend. Moose (Alces alces) exhibited no difference in habitat use among stands. Thus, although there were few differences among treatment stands, chemical thinning could be used to develop an aggregated pattern of crop trees in pre-commercially thinned stands to maintain habitat for herbivores such as snowshoe hares and mule deer. Understory plant and forest floor small mammal communities would be maintained in these stands as well.  相似文献   


17.
We examined 5-year basal area growth of nearly 2600 trees in stem-mapped plots at five locations differing in site characteristics, species composition, and management history on the Olympic Peninsula in Western Washington, USA. Our objectives were to determine if internal edges, the boundaries within the stand between components of the variable-density thinning, influenced individual tree growth, and whether incorporation of individual tree local competition indices in growth prediction models could account for treatment and edge effects. Treatment significantly affected tree growth at all sites, with trees in the thinned matrix displaying on average over 25% greater basal area growth than trees in unthinned patches. Proximity to canopy gaps created as part of the variable-density thinning increased basal area growth of trees in the thinned matrix by nearly 11%. In addition, growth of trees close to skid trails was 11% greater than trees located away from the trails. Past thinning history, and its effect on initial stocking rate, appeared to affect the magnitude of the edge effects. Blocks that had received earlier commercial thinnings, and thus had lower stocking at the onset of the study, displayed lower growth responses than previously unthinned blocks. Including local competition indices in the models generally reduced growth prediction error; however, the indices examined did not fully account for treatment or edge effects. Our results suggest that not accounting for internal edges in spatially complex stands could result in errors in projected growth of trees, although these edge effects are highly variable. Failure to account for the effects of internal edges could affect not just estimates of future stand yield, but also projections of future stand structure.  相似文献   

18.
In forest ecosystems, the level of biodiversity is strongly linked to dead wood and tree microhabitats. To evaluate the influence of current forest management on the availability of dead wood and on the abundance and distribution of microhabitats, we studied the volume and diversity of dead wood objects and the distribution and frequency of cavities, dendrothelms, cracks, bark losses and sporophores of saproxylic fungi in montane beech-fir stands. We compared stands unmanaged for 50 or 100 years with continuously managed stands. A total of 1,204 live trees and 460 dead wood objects were observed. Total dead wood volume, snag volume and microhabitat diversity were lower in the managed stands, but the total number of microhabitats per ha was not significantly different between managed and unmanaged stands. Cavities were always the most frequent microhabitat and cracks the least frequent. Dendrothelm and bark loss were favored by management. Beech (Fagus sylvatica) carried many more microhabitats than silver fir (Abies alba), especially cavities, dendrothelms and bark losses. Fir very scarcely formed dendrothelms. Secondary tree species played an important role by providing cracks and bark losses. The proportion of microhabitat-bearing trees increased dramatically above circumference thresholds of 225 cm for beech and 215 cm for fir. Firs with a circumference of less than 135 cm did not carry microhabitats. In order to conserve microhabitat-providing trees and to increase the volume of dead wood in managed stands, we recommend conserving trees that finish their natural cycle over 10–20% of the surface area.  相似文献   

19.
The intensity and duration of Neodiprion abietis outbreaks have recently increased in forests of North America that were precommercially thinned more than a decade earlier. We tested the hypotheses that changes in stand structure following thinning increase the fitness (i.e., survival rate × fecundity) of N. abietis by either (a) increasing foliar availability and/or quality (i.e., increased availability of primary metabolites and/or reduced foliar defenses) or (b) by reducing any negative effects on foliar quality and/or availability resulting from herbivory that occurred during the preceding season(s). Effects of thinning and previous herbivory on N. abietis and its host plant (Abies balsamea) were determined through (i) a manipulative field experiment that evaluated the effects of experimental defoliation on N. abietis in a thinned stand, (ii) a manipulative field experiment that examined the effects of thinning on N. abietis in undamaged and naturally defoliated stands, and (iii) a field survey to estimate survival of N. abietis in natural populations.Defoliation caused reductions in the availability of different-aged foliage available to larvae and in the fitness of a subsequent N. abietis generation feeding on defoliated branches, but decreases in fitness were smaller in thinned than unthinned stands. In thinned stands, defoliation was associated with increases in foliage production and foliar contents of monoterpenes and nitrogen, as well as with a decrease in foliar contents of water. Conversely, only small changes in plant growth and foliar contents of nutrients and secondary chemicals were observed in defoliated unthinned stands. This suggests that deleterious effects of defoliation on sawfly fitness were offset by an increase in the foliar content of nitrogen, a primary compound known to improve larval growth in sawflies, which supports the hypothesis that thinning moderates negative effects of previous defoliation on sawfly fitness. The present study demonstrates that forestry practices that alter stand structure by reducing tree density may increase herbivory by affecting the way trees respond to insect attack, even after crown closure, with consequences on the buildup of herbivore populations in attacked trees.  相似文献   

20.
Commercial thinning enables forest managers to meet timber production objectives. Thinning reduces tree density to alleviate competition for resources and favour growth of selected tree species. However, in doing so, thinning can homogenize the composition of mixed-species forests and raise biodiversity issues. There is increasing evidence that species richness can lead to higher productivity through a complementarity effect. Hence, thinning that would maintain species diversity of mixed-species forests could enhance stand productivity and help forest managers to reconcile timber production objectives and biodiversity issues. The objective of this study was to compare post-thinning stand production, experimentally over 10 years, in mixed and monospecific stands of black spruce (Picea mariana [Mill.] B.S.P.) and jack pine (Pinus banksiana Lamb.). The post-thinning stand production curve of the mixed stand converged toward that of the unthinned mixed stand while the production curves of the thinned and unthinned monospecific stands remained parallel. The convergent productivity of the mixed stand could be explained by a positive interaction between effects of thinning and niche complementarity. We propose that thinning that maintains species diversity of mixed stands could help forest managers who are implementing ecosystem management to reconcile timber production objectives with biodiversity issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号