首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Minimizing salinity impacts on yield in melon crops cultivated in closed-loop hydroponic systems requires better understanding of the physiological impact of gradual salt accumulation in the recycled solution. To attain this objective, different sodium chloride (NaCl) concentrations in the irrigation water, i.e. 0.7, 2.5, and 5 mM, were applied in two cropping seasons (winter-spring;WS and spring-summer;SS). In both seasons plant biomass and yield were negatively affected only in high NaCl-treated plants, due to stomatal limitations, which restricted carbon dioxide (CO2) diffusion into the leaf, osmotic and salt-specific effects. However, a progressive NaCl built-up to maximum concentrations in the root zone solution of 15 (WS) and 20 mM (SS), enabled plants to preserve several physiological mechanisms, thereby adjusting growth and yield without impairing fruit quality. Our results suggest that the use of irrigation water, containing up to 2.5 mM NaCl, is feasible in melon crops grown in closed-loop hydroponic systems, without yield and quality losses.  相似文献   

2.
Interactive effects of water stress and potassium (K) on some physiological attributes and nutritional status of melon (Cucumis melo L. cv. ‘Tempo F1’) plants were assessed in a pot experiment. Treatments used were: (1) control or well-watered (WW) + K1, (2) WW + K2, (3) WW + K3, (4) water stress (WS) + K1, (5) WS + K2, and (6) WS + K3. Water stress (WS) was imposed by maintaining the moisture level equivalent to 50% pot capacity, whereas well-watered (WW) pots (control) were maintained at full pot capacity (100% PC). Hoagland's nutrient solution was modified to supply K as potassium sulfate (K2SO4) at 6, 9, and 12 mM for K1, K2, and K3 treatments, respectively. Water stress reduced fruit yield, total dry matter, chlorophyll content and relative water content (RWC), but increased proline accumulation in the melon plants. However, additional supply of K as 3 or 6 mM significantly enhanced all the earlier mentioned physiological parameters, but the values were still not the same as the levels of the control treatment. Water stress also reduced leaf calcium (Ca) and K of the melon plants, but additional supply of K to the root zone increased the levels of both nutrients much higher than those at the control (C) treatment. Our study revealed that additional supply of K improved water stress tolerance in melon plants by enhancing chlorophyll, relative water content and concentrations of some essential nutrients in leaves.  相似文献   

3.
Abstract

Five tomato (Lycopersicon esculentum Mill) cultivars were grown in sand nutrient culture experiment in a greenhouse to investigate the effects of salinity on growth and yield. Nutrient solutions were made saline with 50 mM NaCl (EC = 5.5 mS/cm or supplemented with 2 mM KNO3 (EC = 6.8), 20 mM Ca(NO3)2 (EC = 7.5), and combination of potassium (K) and calcium (Ca) (EC = 8.0). Seedlings were irrigated with saline treatments commencing two weeks after transplanting. Determination of sodium (Na) and K in tomato leaves and fruits were by flame photometry. Accumulation of Na in tomato fruits was higher than in leaves under control or saline conditions for all tomato cultivars. The amount of K in the tomato leaves was higher in control than in saline‐grown plants. Addition of K and Ca to the nutrient solution resulted in a 3 to 7 fold increase in K accumulation in all cultivars tested. Stem and leaf growth were significantly reduced with salinity but growth was enhanced following irrigation when K was added to the nutrient solution. Flowering and fruit set were adversely affected by NaCl stress. Reduction of flower number was 44% relative to the control plants. Fresh fruit yield decreased by 78% when plants received 50 mM NaCl. Growth and development of tomatoes under saline conditions was enhanced in this study following the application of K to the saline nutrient solution. Amelioration in growth was also achieved when Ca was used but to a lesser extent. Our results suggest that ion accumulation and regulation of K and Ca contribute to salt tolerance and growth enhancement.  相似文献   

4.
Abstract

Bell pepper (Capsicum annuum cv. Urfa Isoto) and cucumber (Cucumis sativus cv. Beith Alpha F1) were grown in pots containing field soil to investigate the effects of supplementary potassium phosphate applied to the root zone of salt‐stressed plants. Treatments were (1) control: soil alone (C); (2) salt treatment: C plus 3.5 g NaCl kg?1 soil (C + S); and (3) supplementary potassium phosphate: C + S plus supplementary 136 or 272 mg KH2PO4 kg?1 soil (C + S + KP). Plants grown in saline treatment produced less dry matter, fruit yield, and chlorophyll than those in the control. Supplementary 136 or 272 mg KH2PO4 kg?1 soil resulted in increases in dry matter, fruit yield, and chlorophyll concentrations compared to salt‐stressed (C + S) treatment. Membrane permeability in leaf cells (as assessed by electrolyte leakage from leaves) was impaired by NaCl application. Supplementary KH2PO4 reduced electrolyte leakage especially at the higher rate. Sodium (Na) concentration in plant tissues increased in leaves and roots in the NaCl treatment. Concentrations of potassium (K) and Phosphorus (P) in leaves were lowered in salt treatment and almost fully restored by supplementary KH2PO4 at 272 mg kg?1 soil. These results clearly show that supplementary KH2PO4 can partly mitigate the adverse effects of high salinity on both fruit yield and whole plant biomass in pepper and cucumber plants.  相似文献   

5.
Calcium (Ca) has an important role in plant physiology, including involvement in the responses to salt stress, and controls numerous processes. To overcome the negative impact of high salinity, the addition of supplemental Ca to the growth medium as an ameliorative agent could be necessary. Atriplex halimus subsp. schweinfurthii and Atriplex canescens subsp. linearis were grown in hydroponic conditions to investigate the effectiveness of supplementary calcium chloride (CaCl2) applied into nutrient solution on plants grown at high (400 mM) sodium chloride (NaCl) concentration. Treatments were: 1) nutrient solution alone [control (C)]; 2) nutrient solution plus 400 mM sodium chloride (NaCl); and 3) nutrient solution and 400 mM NaCl plus supplementary 40 mM CaCl2 supplied in nutrient solution (NaCl + CaCl2). The experiment was set up as a completely randomized design, consisting of two species (A. halimus and A. canescens), three treatments (control, NaCl, and NaCl + CaCl2), and five replicates. Dry weight and chlorophyll content of plants grown at high NaCl were lower than those at normal nutrient solution. Supplementary CaCl2 ameliorated the negative effects of salinity on plant growth in both species. Root hydraulic conductivity (L 0) decreased with elevated NaCl and increased with supplementary CaCl2 compared to the stressed plants. Membrane permeability increased with high NaCl application and these increases in root membrane permeability decreased with supplementary CaCl2 compared to the NaCl treatment. Sodium (Na) concentration in plant tissues increased in both species in high NaCl level. Application of supplementary CaCl2 lowered Na concentration. Concentrations of calcium (Ca) and potassium (K) were at deficient ranges in the plants grown at high NaCl levels and these deficiencies were corrected by supplementary CaCl2.  相似文献   

6.
等渗Ca(NO3)2和NaCl胁迫对番茄光合作用的影响   总被引:34,自引:3,他引:34  
研究了番茄的光合作用对等渗Ca(NO3)2和NaCl处理的响应。在等渗条件下120mmol.LNaCl和80mmol.LCa(NO3)2胁迫后,番茄叶片的叶绿素a、叶绿素b、总叶绿素含量、Chl.a/Chl.b比值、净光合速率(Pn)、气孔导度(Gs)、原初光能转换效率(Fv.Fm)、光合电子传递量子效率(ΦPSII)、Fv.Fo、光化学猝灭系数(qP)均呈下降趋势,以NaCl处理的下降幅度大于Ca(NO3)2处理;而Ca(NO3)2处理的胞间CO2浓度(Ci)呈下降趋势,NaCl处理的Ci呈升高趋势。因此,两种盐处理均对番茄植株光合作用造成了伤害,NaCl造成的伤害较Ca(NO3)2较为严重,Ca(NO3)2胁迫净光合速率下降可能是气孔限制所引起的,而NaCl胁迫净光合速率下降可能是由非气孔因子限制引起的。  相似文献   

7.
《Journal of plant nutrition》2013,36(7):1367-1382
Abstract

The effect of supplementary potassium nitrate (KNO3) on growth and yield of bell pepper (Capsicum annum cv. 11B 14) plants grown in containers under high root‐zone salinity was investigated. Treatments were (1) control, soil only and (2) high salt treatment, as for control plus 3.5 g NaCl kg?1 soil. Above treatments were combined with or without either 0.5 or 1 g supplementary KNO3 kg?1 soil. Plants grown at high NaCl had significantly less dry matter, fruit yield, and chlorophyll than those in the control treatment. Supplementing the high salt soil with 0.5 and 1 g KNO3 kg?1 increased plant dry matter, fruit yield, and chlorophyll concentrations as compared to high salt treatment. Membrane permeability increased significantly with high NaCl application, but less so when supplementary KNO3 was applied. High NaCl resulted in plants with very leaky root systems as measured by high K efflux; rate of leakage was reduced by supplementary KNO3. These data suggest that NaCl status affect root membrane integrity. Sodium (Na) concentration in plant tissues increased in leaves and roots in the elevated NaCl treatment as compared to control treatment. Concentrations of K and N in leaves were significantly lower in the high salt treatment than in the control. For the high salt treatment, supplementing the soil with KNO3 at 1 g kg?1 resulted in K and N levels similar to those of the control. These results support the view that supplementary KNO3 can overcome the effects of high salinity on fruit yield and whole plant biomass in pepper plants.  相似文献   

8.
为明确不同微咸水水质下枸杞种植效益较高的灌水量范围,揭示枸杞干果产量、外观品质、营养品质在微咸水不同盐浓度和灌水量下的变化规律,该研究对河套灌区不同代表性地下水盐分与灌水量组合下的枸杞干果产量、外观品质、营养品质进行综合评价。基于L8(41×24)正交表在河套灌区开展2 a田间试验,共设置8个处理,灌水量为4个水平(60、70、80和100 mm),典型盐(NaCl、CaCl2、NaHCO3、Na2SO4)浓度设置为2个水平(分别按研究区地下水中离子浓度的1、2倍水平调配)。结果表明:1)干果产量、百粒干质量、果形指数、鲜干果比、黄酮含量受灌水量影响较大;产量、总糖含量受NaCl影响较大,随NaCl升高而降低;类胡萝卜素、甜菜碱、氨基酸总量受CaCl2影响较大,随CaCl2浓度升高而升高。2)综合评分发现,高灌水、高CaCl2的T8处理营养品质贴合度Cpi和种植效益贴合度Ci最高,而高灌水、高NaCl浓度的T5处理两指标均最低。Ci分别与Ca2+、Na+浓度极显著正、负相关(P<0.01),与Cl-显著负相关(P<0.05)。Ca2+主要促进枸杞营养品质发展,与黄酮、类胡萝卜素、甜菜碱、氨基酸总量极显著正相关,Na+、Cl-主要抑制产量、外观品质,分别与干果产量、百粒干质量极显著、显著负相关。3)高斯回归发现,Na+、Ca2+、Cl-浓度分别为34.8~38.8、15.3~15.6、50.9~55.9 mmol/L的微咸水较适宜,单次灌水96.9~97.9 mm下种植效益贴合度Ci>0.7;基于与Ci显著相关的Na+、Ca2+、Cl-浓度,提出了不同离子条件下枸杞种植效益较高的灌水量。研究结果可为河套灌区因地制宜利用微咸水、提高枸杞种植效益提供科学依据。  相似文献   

9.
ABSTRACT

Three vegetative rootstocks of plum (Prunus domestica), Marianna GF 8-1 (Prunus cerasifera × munsoniana), Myrobolan B (P. Cerasifera) and Pixy (P. Insititia) were grown in pots containing sand and irrigated with complete nutrient solution to investigate the effect of calcium sulfate supplied to the nutrient solution on plants grown under salt stress. Treatments were (1) control (C): nutrient solution alone; (2) S (salinity stress): 40 mM NaCl; (3) S+Ca1: 40 mM NaCl +2.5 mM calcium (Ca) and (4) S+Ca2: 40 mM NaCl + 5 mM Ca. Calcium was supplied as CaSO4. The plants grown under 40 mol L?1 NaCl produced less dry matter and had lower chlorophyll content than those without NaCl. Supplementary CaSO4 at both 2.5 and 5 mM concentrations ameliorated the negative effects of salinity on plant dry matter and chlorophyll content. Salt treatment impaired membrane permeability by increasing electrolyte leakage. The addition of calcium sulfate partially maintained membrane permeability. Sodium (Na) concentration in plant tissues increased in both leaves and roots of plants under the high NaCl treatment. Pixy had much lower Na. The CaSO4 treatments lowered significantly the concentrations of Na in both leaves and roots. Pixy was more tolerant to salinity than the other two rootstocks. The accumulation of Na in leaves and roots indicates a possible mechanism whereby Pixy copes with salinity in the rooting medium, and/or may indicate the existence of an inhibition mechanism of Na transport to leaves. Concentrations of Ca and K were lower in the plants grown at high NaCl than in those under the control treatment, and these two element concentrations were increased by calcium sulfate treatments in both leaves and roots, but remained lower than control values in most cases.  相似文献   

10.
The effects of exogenous calcium (Ca2+) on root growth and lignification-related parameters – phenylalanine ammonia-lyase (PAL) and peroxidases (POD) activities, hydrogen peroxide (H2O2) and lignin contents – in roots of NaCl-stressed soybean seedlings were analyzed. Three-day-old seedlings were cultivated in half-strength Hoagland's solution (pH 6.0) with or without 5 mM calcium nitrate [Ca(NO3)2] and 50 to 200 mM sodium chloride (NaCl) in a growth chamber (25°C, 12/12 h light/dark photoperiod, irradiance of 280 μmol m?2 s?1) for 24 h. In general, results showed that the absence of Ca2+ reduced root growth and increased lignification of soybean seedlings grown in NaCl-free nutrient solution. NaCl reduced the root growth and all lignification-related parameters. Root growth, PAL and POD activities and hydrogen peroxide (H2O2) contents were more affected after NaCl treatments without Ca2+ in the nutrient solution. At 5 mM, Ca2+ did not alleviate the deleterious effects of NaCl on lignification-related parameters.  相似文献   

11.
An experiment was conducted to test whether foliar application of KNO3 on wheat in the heading stage could reduce salinity‐induced injuries, produce high grain yield, and improve grain quality. Salt‐resistant DK961 and salt‐sensitive JN17 wheat cultivars under 0 or 100 mM–NaCl conditions were foliarly watered with distilled water or a 10 mM–KNO3 solution. The four treatments included: T1 (CK1), 0 mM NaCl + distilled water; T2, 0 mM NaCl + 10 mM KNO3; T3 (CK2), 100 mM NaCl + distilled water; T4, 100 mM NaCl + 10 mM KNO3. The results indicate that there were no differences (p > 0.05) in plant growth, grain yield, and grain quality between T2 and T1 in both cultivars, but these response variables were significantly lower in T3 than in T1. K+ : Na+ ratio, chlorophyll content, photosynthetic capacity, grain yield, flour yield, water absorbance, ash content, dough‐development time and dough‐stability time were significantly higher in T4 than in T3, while protein concentration, wet‐gluten concentration, and antioxidant enzyme activities were lower. Although foliar application of KNO3 on JN17 enhanced plant growth, grain yield, and grain quality, these parameters were still lower in T4 than in T1. Our findings suggest that cultivating the salt‐resistant wheat cultivar combined with foliar application of KNO3 at heading stage may alleviate salinity injuries and produce higher grain yield and better grain quality under saline conditions.  相似文献   

12.
以厚皮甜瓜迎春为试材,研究了叶面喷施不同浓度硝酸钙对坐果节位叶片衰老及果实生长和品质的影响。结果表明,坐果节位雌花开放后,叶面喷施10、 20、 30 mmol/L 的硝酸钙均可延缓坐果节位叶片叶绿素、 可溶性蛋白质含量的下降,提高叶片的净光合速率( Pn )和过氧化物酶(POD)、 超氧化物歧化酶(SOD)、 过氧化氢酶(CAT) 等抗氧化酶活性,降低丙二醛(MDA) 含量,提高果实的小区产量、 可溶性固形物和可溶性糖含量,其中20 mmol/L 的硝酸钙处理效果与对照差异显著。叶面喷施20 mmol/L 硝酸钙,可延缓厚皮甜瓜坐果节位叶片衰老,提高厚皮甜瓜的果实产量和品质。  相似文献   

13.
A sand culture experiment was conducted to study the effect of saline water on the growth and fruit quality of processing tomato (Lycopersicon esculentum Mill.) Seedlings of five tomato cultivars were transplanted in quartz‐sand pots in a greenhouse at the Agricultural Experiment Station of Sultan Qaboos University. There were four saline nutrient solutions and a control consisting of half‐strength Hoagland solution. Salinity treatments were: 50 raM NaCl + 3 mM K2SO4 (EC 6.75), 50 mM NaCl + 1.5 mM orthophosphoric acid (EC = 7.18), 50 mM NaCl + 1.5 mM orthophosphoric acid + 3 mM R2SO4 (EC 7.29), and 50 mM NaCL (EC = 5.6). Treatments were applied daily commencing two weeks after transplanting. Data were collected on growth, and fruit yield and quality. Partitioning of mineral elements was determined in the vegetative tissue. The results obtained clearly show that concentrations of total soluble solids were increased in fruits treated with saline nutrients. Dry matter content of fruits exposed to salinity were higher than those from the control plants. Fruit acidity was increased with salinity, possibly due to a lower water content and increased organic acid accumulation. In the saline treatments, sodium (Na) content was decreased when potassium (K) was applied with NaCl but Na was higher in stems followed by root and leaf tissues. The partitioning of K followed a trend opposite to that for Na but with higher content in leaves. A similar situation was observed for calcium (Ca) and magnesium (Mg). Accumulation of phosphorus (P) was the lowest among all the ions. These results indicated that survival under saline conditions was accompanied by high ion accumulation. The study confirmed that saline nutrients are important for improving fruit quality of processing tomatoes.  相似文献   

14.
The Mediterranean area has been experiencing an extensive development of intensive horticulture, with a majority of that located in arid and semi-arid regions with limited water resources and poor water quality. One of the most important greenhouse vegetable crops is melon. This article studies the effects of different nitrogen–potassium (N–K) fertilizers applications and two types of irrigation water on yield and nutritional behavior of melon crop Cucumis melo L. (var. cantalupensis Naud. Alpes). The trial was conducted during two cycles under Mediterranean greenhouse conditions, on sandy mulching soil. The experimental design was bifactorial: NK fertigation and water quality, with three nutrition levels and two water qualities [MS with electrical conductivity (EC) = 0.6 dS m?1 and HS with EC = 2.3 dS m?1]. During the first cycle, the fertigation levels were F1 (50% NK), F2 (100% NK), and F3 (125% NK). In the second cycle, the fertigation levels were F2, F4 (125% N and 150% K) and F5 (180% N and 220% K). Treatment F2 was the recommended total doses (220 kg N ha?1 and 355 kg K ha?1). The increase in the NK concentration of the nutritive solution produced a rise in commercial production. The salinity of irrigation water did not affect marketable yield but had an effect on the fruit size, which was compensated for by an increase in the amount of fruit produced. Dry-matter production, N, and K uptake by plant (g m?2) were evaluated in the first and second trials. Salinity and NK nutrition levels significantly affected (P < 0.05) dry matter and N and K uptake by melon plant. Nitrogen and K uptake present interesting correlations with production and with each other, as established by mean regression analysis.  相似文献   

15.
The aim of the study was to examine effect of preharvest sprays of a mixture of calcium (Ca) formate, Ca-acetate, Ca-chloride (CaCl2) and Ca-nitrate [Ca(NO3)2] on quality and apple storability. The experiment was conducted during 2008–2009 at the Experimental Station of the Research Institute of Horticulture in Skierniewice, Poland, on mature ‘Jonagold’ apple trees/M.26, planted at a moderate density on a coarse-textured soil with low status of organic matter and abundant in exchangeable Ca. Apple trees were sprayed with Ca, 7 times per season, at 2-week intervals, starting 3 weeks after blooming. In the spray treatments a mixture of Ca-formate, Ca-acetate, CaCl2 and Ca(NO3)2 (as Insol Wap fertilizer), CaCl2 or Ca(NO3)2 were used at rates of 7.3 kg Ca, 11.8 kg Ca, and 9.9 kg Ca ha?1 per season, respectively. The trees sprayed with water were treated as the control. The results showed that Ca sprays caused no leaf and fruit injury. Calcium spray measures did not affect yield, mean fruit weight, and soluble solids concentration (SSC), titratable acidity and starch index of fruit at harvest. However, at harvest apples sprayed with Ca contained more this nutrient and were firmer than those of the control plots. After storage apples sprayed with Ca had more acids, and were firmer and less liable to bitter pit than the control fruit. Calcium sprays did not affect SSC of fruit after storage but reduced postharvest decay of fruit caused by Peziculla spp. and Penicillium expansum fungi. Apples sprayed with Insol Wap material were the least affected by the above pathogens. It is concluded that in apple orchards preharvest sprays of a mixture of Ca-formate, Ca-acetate, CaCl2 and Ca(NO3)2, containing 10% Ca (w/w) with ca. 50% in an organic form, can be the alternative to sprays of CaCl2 or Ca(NO3)2.  相似文献   

16.
The use of saline water for plant production will become increasingly necessary over future decades. In some cases, fruit quality such as in tomato, can be improved by irrigation with saline water. The influence of different salt concentrations on physiological responses and the expression of some selected genes of cherry tomato (Solanum lycopersicum L), cv. West Virginia 106, was examined. Tomato plants were grown in peatmoss substrate and irrigated with 0, 25, 50, 75, 100 or 150?mM sodium chloride (NaCl) in a glasshouse. The NaCl treatments of 75, 100 and 150?mM salt resulted in shorter plants, decreased stem width, a lower plant dry weight, fewer flowers, and smaller leaf area, while yield was reduced by treatment with concentrations of 50?mM NaCl and above. Average fruit weight and fruit number were also negatively affected by treatment with 50?mM salt and above. Salinity treatment led to increased fruit total soluble solids, titratable acidity and firmness and improved the taste index. Salt-responsive marker genes identified in Moneymaker were also induced in cherry tomato but not at the highest salt concentrations. Our results indicated that cherry tomato treated with 25?mM NaCl produced fruit with improved quality in comparison with non-salinized control plants without compromising yield, while at 50 and 75?mM the improved fruit quality was accompanied by a reduction in yield.  相似文献   

17.
In order to reduce blossom‐end rot occurrence in greenhouse‐grown peppers, experiments were conducted to determine whether foliar applications of antitranspirants would decrease transpiration of pepper (Capsicum annuum L. cv. Hungarian Wax or Midal) leaves and subsequently redirect the flow of calcium (Ca) from plant foliage to developing fruit. Foliar calcium nitrate [Ca(NO3)2] applications were also carried out as a possible means to increase fruit Ca concentration and reduce blossom‐end rot. Initial studies indicated that two antitranspirant applications of 2.5% ‘Vapor Gard’ (di‐1‐p‐menthene) early in the fruiting phase of ‘Hungarian Wax’ peppers significantly increased early yield and tended to increase total Ca in the fruit. In subsequent experiments, weekly applications of either antitranspirant ‐ 1% ‘Vapor Gard’ or 1% ‘Folicote’ (a wax emulsion concentrate) ‐ throughout the fruiting phase significantly increased fruit Ca of ‘Midal’ peppers during at least part of the reproductive stage, and significantly reduced blossom‐end rot‐affected yield. Weekly Ca(NO3)2 applications significantly elevated leaf Ca as well as fruit Ca concentrations, and was the most effective treatment in alleviating blossom‐end rot. However, all weekly Ca(NO3)2 and antitranspirant treatments caused significant declines in marketable yield, so that these treatments, although effective in reducing blossom‐end rot, cannot be recommended for commercial use.  相似文献   

18.
Poor quality of irrigation water (high salinity) has reduced the yields of pistachio over recent years, especially in Kerman. The effects of four salinity levels [0, 30, 60, and 90 mM sodium chloride (NaCl)] and three calcium (Ca) levels [0, 0.5, and 1 mM Ca as calcium nitrate (Ca(NO3)2.4H2O)] on growth and chemical composition of pistachio seedlings cv. ‘Badami’ were studied in sand culture under greenhouse conditions in completely randomized design (CRD) with four replications. After 170 days, leaf area, leaf number, shoot and root dry weights were determined. Also shoot and root sodium (Na), potassium (K), Ca, and magnesium (Mg) concentrations were measured. Results showed salinity decreased all growth parameters. Ca application increased shoot and root Ca concentrations and root K concentration, while Ca application decreased shoot K concentration and shoot and root Mg concentrations. Salinity decreased shoot Ca, root K, and root Mg concentrations, while salinity increased shoot and root total sodium uptake, and shoot and root Cl concentrations.  相似文献   

19.
Foliar sprays of calcium chloride (CaCl2) and to a lesser extent, soil applications of calcium nitrate [Ca(NO3)2] fertilizer, increased calcium (Ca) concentrations in leaves and fruit of apple, (Malus domestica) and pear (Pyrus communis L.) trees. For most years, CaCl2 sprays or Ca(NO3)2 fertilizer increased cold hardiness of ‘Anjou’ pear trees, and reduced the incidence of fruit disorders (alfalfa greening and cork spot of pears and bitter pit of ‘Delicious’ apples). Yield of ‘Anjou’ pears was usually increased with the higher rates of nitrogen (N) fertilizers [ammonium nitrate (NH4NO3), Ca(NO3)2, or urea]. Calcium chloride sprays increased yield of ‘Anjou’ pears if it was applied over many years.  相似文献   

20.
The aim of the study was to examine effect of preharvest sprays of calcium (Ca) in the form of Ca-chloride (CaCl2), Ca-nitrate [Ca(NO3)2], or a mixture of Ca-formate, Ca-acetate, CaCl2, and Ca(NO3)2 on cracking and quality of ‘Schattenmorelle’ sour cherry fruit harvested mechanically. The experiment was conducted in 2008–2009 at a commercial orchard in central Poland. Mature trees grew on a coarse-textured soil poor in organic matter, at a spacing of 4.0 × 1.5 m. The spray treatments of Ca were performed at 7-day intervals, starting 28 days before harvest, at the rates of 5.0–5.6 kg Ca ha?1 per season. The trees sprayed with water were treated as the control. Fruit were harvested mechanically when peduncle-fruit detachment force dropped below 3 N. The results showed that preharvest Ca sprays caused no leaf damage. This measure did not affect yield, mean fruit weight, soluble solids concentration and titratable acidity of fruit, and weight loss of fruit during 24 h after harvest. Fruit sprayed with Ca had improved status of this nutrient, and were less liable to juicy leakage from the stem scar, rain-induced cracking, and preharvest decay caused by Glomerella cingulata. The above effects of Ca sprays did not depend on the tested material. It was concluded that preharvest sprays of Ca as CaCl2 and/or Ca(NO3)2 should be recommended in ‘Schattenmorelle’ sour cherry orchards to reduce fruit losses resulting from rain-induced cracking, leakage of juice, and the incidence of cherry bitter rot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号