首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
The wild species in general is considered to be the reservoir of genes especially for biotic and abiotic stresses. In okra, the predominant biotic stresses are yellow vein mosaic disease (YVMD), shoot and fruit borer and leaf hopper. Sixty eight (68) accessions belonging to four wild Abelmoschus species [Abelmoschus caillei (A. Chev.) Stevels, Abelmoschus manihot (L.) Medik., Abelmoschus moschatus (L.) Medik. and Abelmoschus tuberculatus Pal et Singh] and eight okra varieties were characterized and evaluated for phenological characters including biotic stresses under natural epiphytotic condition. The wild species examined consisted of 18 accessions (16 exotic and 2 indigenous) of A. caillei, 29 accessions of A. manihot, 16 accessions of A. moschatus and 5 accessions of A. tuberculatus. All the wild Abelmoschus species exhibited high diversity (as measured by Shannon Diversity Index) for 3 qualitative characters viz. intensity of stem colour, leaf shape, epicalyx shape, 13 quantitative characters and 3 biotic stress parameters. Among the wild species, A. caillei and A. tuberculatus showed maximum and minimum diversity for qualitative characters, respectively. There was significant variation for 19 out of 24 quantitative characters studied. Inter-species diversity pattern as estimated through Ward’s Minimum Variance Dendrogram and Principal Component Analysis revealed clear differentiation among the species with minimum overlapping indicating close association between geographical origins and clustering pattern. Intra-species diversity indicated role of specific adaptation in sub-clustering. Resistance to YVMD was found in accessions belonging to three wild species viz. A. caillei, A. manihot and A. moschatus while resistance to shoot and fruit borer and leaf hopper was found in accessions of all the four wild species. The resistant accessions can further be used for introgressing biotic stress resistance through pre-breeding into cultivated okra species.  相似文献   

2.
3.
Genetic erosion in cultivated wheat provides a good reason for studying genetic diversity in crop wild relatives. In the present study, genetic diversity of 32 accessions belonging to T. boeoticum species collected from different parts of Iran were evaluated using 13 morphological traits as well as ten inter-simple sequence repeat primers. Statistical analysis for morphological traits showed significant differences among accessions (except number of fertile tillers and total tillers per plant). In principal component analysis, the first three PCA showed 82.65 % of the total morphological variation. Based on the morphological traits, accessions were separated into two main groups by cluster analysis. In molecular analysis, polymerase chain reactions amplified 105 DNA fragments, out of which, 95 (90.47 %) were polymorphic. From geographic perspective, the accessions sampled from western and southwestern of Iran showed the highest and lowest polymorphism, respectively. However, the maximum values of effective number of alleles (Ne), Nei’s gene diversity (He) and Shannon’s information index (I) was related to accessions collected from NW regions. Also, according to cluster analysis and PCoA plot genetic diversity was not related to geographical distribution. Overall, our results revealed a remarkable level of genetic diversity among studied Iranian T. boeoticum accessions; especially accessions collected from Kermanshah and Lorestan provinces, which can be of interest for future breeding programs. So, conservation of germplasm of these areas is recommended.  相似文献   

4.
Studying molecular genetic relationships can substantially contribute to the understanding of the pathways of domestication of a species. Although an increasing number of molecular genetic studies have been performed on Lablab purpureus (hyacinth bean), many covered germplasm of restricted geographic origin or limited intra-specific systematic position. Integrating the molecular diversity found with phenotypic or morpho-agronomic diversity is also deficient. This investigation combines findings of eight molecular genetic studies that include about 400 accessions of both wild and cultivated germplasm, thus providing the largest assessment of diversity in Lablab purpureus to date. In particular, results from a recent molecular investigation (Robotham and Chapman 2015) are revisited and reinterpreted by integrating them with known phenotypic diversity. Wild accessions clearly fall into two types, with characteristic pods—2-seeded and 4-seeded. The large majority of cultivated types are more closely related to 4-seeded pod-types. Certain cultivated 2-seeded pod-type accessions from Ethiopia are genetically closer to wild 2-seeded pod-types. These two major phenotypes are reflected in two chloroplast DNA haplotypes A and B. Hence, two domestication events appear to exist in L. purpureus based on this combined data. No other geographic patterns of diversity, which might assist to trace the dispersal of L. purpureus, were found as cultivated accessions predominantly fell into 2-3 major groups. In all studies, the greatest genetic diversity was found in Africa, making Ethiopia one of the probable centers of domestication.  相似文献   

5.
The genus Zanthoxylum, belonging to Rutaceae, has a long history of cultivation both for economic and chemical values in China. To effectively conserve and sustainably utilize this genus resource, a study on genetic diversity and relationships of Zanthoxylum germplasms was carried out by employing SRAP markers. We used 16 primer combinations to assess genetic variations and relationships among 175 accessions from eight cultivated provenances, including Shandong, Henan, Shanxi, Shaanxi, Gansu, Sichuan, Guizhou and Yunnan. A total of 145 clear repetitive and intense bands were yielded, and the percentage of polymorphic bands was 100 % for per primer combination, indicating a relatively high diversity among Zanthoxylum germplasms. From a geographic perspective, the highest genetic diversity level was observed within Guizhou provenance (N a  = 1.97, Ne = 1.52, H = 0.31, I = 0.46) while Henan provenance had the lowest genetic diversity (N a  = 1.68, Ne = 1.45, H = 0.25, I = 0.37). Based on AMOVA results, the abundant genetic variation was mainly caused by variation of intra-provenances (84.96 %), rather than among provenances (15.038 %). The results indicated low genetic differentiation (G st  = 0.133) and high gene flow (N m  = 3.2605) among provenances. The neighbor-joining tree revealed that the 175 accessions could be divided into four groups, and groupings indicated a divergence between the cultivated accessions of Zanthoxylum bungeanum Maxim. and Z. armatum DC. Moreover, three accessions of Z. piperitum DC. var. inerme without prickles introduced from Japan gathered one cluster. Cluster IV is composed of accessions of different geographical origin, including 11 wild species and 10 cultivated accessions of Z. bungeanum. The cluster analysis also reflected a relatively close relationship between the geographical origins and the classification of accessions in cluster I. Structure analysis indicated that collected Zanthoxylum accessions could be divided into two major groups. The information obtained from our research would benefit to make use of Zanthoxylum germplasms and assist the management of a Zanthoxylum germplasms collection.  相似文献   

6.
Genetic variations and relationships among cultivated and wild genotypes of five taxa of Indian Luffa were examined using inter simple sequence repeats (ISSR), directed amplification of minisatellite DNA (DAMD) markers and morphological characterization. Morphometric evaluation of 21 discrete characters in 51 representative accessions segregated the five taxa of Luffa in three main clusters: the two wild species (L. echinata, L. graveolens) in the first, and the cultivated L. aegyptiaca (smooth gourd) and L. acutangula (ridged gourd)/L. hermaphrodita (Hermaphrodite luffa) in the second and third clusters, respectively. Cumulative data analysis of 15 ISSR and seven DAMD markers revealed high percentage polymorphism (97.67 %), moderate genetic distance (0.06–0.72, avg. 0.51), and low heterozygosity and Shannon index values (H = 0.15; I = 0.22) across all the 76 genotypes assayed. A UPGMA dendrogram, based on the combined marker data, resolved the five taxa in two main clusters with high bootstrap support. The morphological and molecular trees showed incongruence in the number of main clusters resolved and in the disposition of the wild and cultivated taxa in different sub-clusters. The cluster analyses and PCoA plots revealed a nested grouping of the hermaphrodite luffa within the ridge gourd group. The Bayesian STRUCTURE analysis identified three genetic clusters for the five assumed taxa. Outcrossing test revealed a mixed mating system in Indian Luffa. This is the first ever report on the mating system in Luffa using molecular markers. The study also demonstrates the utility of using more than one DNA marker in the assessment of molecular diversity in a widely cultivated crop genus like Luffa with a narrow genetic base.  相似文献   

7.
Motherwort (Leonurus cardiaca L.) is a medicinal plant indigenous to the Mediterranean regions in Europe and Asia. The objective of this study is to apply inter-primer binding site (iPBS) markers to assess the molecular variation and genetic relationships of 89 genotypes of motherwort to assist the genetic improvement of this species. The genotypes comprised 79 from Iran and 10 collected in Australia and 15 additional accessions of two related species (L. heterophyllus Sweet and L. sibiricus L.) collected in Australia, were also included. PCR of 7 iPBS primers (dominant markers) produced a total of 191 bands ranging from 180 to 4000 bp and the mean PIC for primers ranged from 0.2213 to 0.3206 with a mean value 0.2921. The mean expected heterozygosity (0.134), the mean unbiased expected heterozygosity (0.140) and Shannon’s information index (0.213) indicated a high level of inbreeding among the accessions tested. Ordination and cluster analysis showed that the genetic relationships among all accessions could be separated into three major groups—L. cardiaca, L. heterophyllus and L. sibiricus. However, among the 89 accessions of L. cardiaca, genotypes collected from the same geographic region tended to cluster together thus indicating greater genetic similarity. The Motherwort accessions originating in Iran are highly divergent and possess abundant genetic diversity and clearly provide a basis for selection and breeding. The iPBS PCR-based genome fingerprinting technology used in this study is low-cost and effective in differentiating accessions of motherwort and their related species.  相似文献   

8.
A number of genes that contribute to the domestication traits of cultivated rice have been identified. These include Sh4, Rc, PROG1 and LABA1, which are associated with non-shattering rachis, white pericarp, erect growth and barbless awns, respectively. The mutations giving rise to the “domestication alleles” of these genes are either invariable in cultivated rice, or have variability that is strictly associated with the phenotypic trait. This observation forms the basis to those current rice domestication models that envisage a single origin for the domesticated phenotype. Such models assume that the domestication alleles are absent or rare in wild rice, emerged under cultivation and spread across all rice groups by introgressive hybridization. We examined whole-genome sequencing datasets for wild and cultivated rice to test the former two assumptions. We found that the rc and laba1 alleles occur in wild rice with broad geographical distribution, and reach frequencies as high as 13 and 15%, respectively. These results are in agreement with previous observations of the prog1 and sh4 domestication alleles in wild populations. We also show that the diversity of the genomic regions surrounding the rc, laba1, prog1 and sh4 alleles in wild accessions is greater than that in cultivated rice, suggesting that these alleles emerged prior to domestication. Our findings indicate that the possibility that independent rice groups obtained identical domestication alleles directly from the wild population needs to be considered.  相似文献   

9.
Musa L. commonly known as the banana group is one of the most important and oldest food crops of humankind. Among the wild relatives with ornamental interest in the genus, Musa ornata Roxb. shows a disjunct distribution between Asia and North America (Mexico). The wild occurrence of this species in Mexico has led to speculation about the evolutionary relationships with its Asian relatives. This study examined the phylogenetic relationships between intercontinental specimens of this species and, based on registered evidence, explored the more likely hypothesis about the origins of its distribution. The phylogeny of intercontinental specimens, along with other representatives of the same genus, was carried out using three molecular markers (ITS, trnL-F, and atpB-rbcL) and applying three phylogenetic reconstruction methods: maximum parsimony, maximum likelihood, and Bayesian inference. The genetic analysis of the combined dataset grouped together all the Mexican and most Asian specimens, but the monophyly of the species was not supported. The relationships suggest that Mexican populations may have originated from an Asian invasion. However, several studies and historical documents suggest the presence of Musa in America long before the arrival of Europeans. Based on its current distribution, phylogenetic evidence, and fossil record, this species’ disjunct distribution could be explained in terms of an ancestral distribution range that encompassed America and Asia, followed by its subsequent restriction to the Old World and a secondary dispersal by humans. However, further studies are necessary to shed more light on the origins of this disjunct distribution.  相似文献   

10.
Genetic diversity of 139 accessions of diploid Triticum species including Triticum urartu, Triticum boeoticum and Triticum monococcum was studied using 11 SSR (simple sequence repeats) markers. A total of 111 alleles with an average of 10 alleles per locus were detected. The polymorphism information content (PIC) of each SSR marker ranged from 0.30 to 0.90 with an average value of 0.62. Among the three Triticum species T. urartu had the highest number of total alleles (Na?=?81), private alleles (Npa?=?15) and showed higher genetic diversity (Hex?=?0.58; PIC?=?0.54). The genotypes from Turkey exhibited the highest genetic diversity (PIC?=?0.6), while the least diversity was observed among 4 Georgian accessions (PIC?=?0.11). Cluster analysis was able to distinguish 139 wheat accessions at the species level. The highest genetic similarity (GS) was noted between T. boeticum and T. monococcum (GS?=?0.84), and the lowest between T. urartu and T. monococcum (GS?=?0.46). The grouping pattern of the PCoA analysis corresponded with cluster analysis. No significant differences were found in clustering of T. urartu and T. monococcum accessions with respect to their geographic regions, while within T. boeoticum species, accessions from Iran were somewhat associated with their geographical origin and clustered as a close and separate group. The results from our study demonstrated that SSR markers were good enough for further genetic diversity analysis in einkorn wheat species.  相似文献   

11.
An evaluation of diversity of aluminium (Al) tolerance of 180 genebank accessions of diploid, tetraploid and hexaploid of wild Avena species from the world collection of the N.I. Vavilov Institute of Plant Genetic Resources (VIR) showed that the accessions with a high degree of aluminium tolerance belonged to the diploids A. canariensis, A. longiglumis and A. wiestii, the tetraploids A. barbata, A. vaviloviana, and hexaploids A. ludoviciana and A. sterilis. A comparison of the data on Al tolerance with the soil conditions demonstrated that most highly tolerance accessions tend to be collected on different type of soils. According to the results of the principal component analysis, preliminary screening for Al tolerance can be carried out among hexaploid species with higher degree of plant resistance to pathogens.  相似文献   

12.
The present study investigated genetic diversity, structure and hybridization in a collection of the endangered wild pear species Pyrus pyraster (L.) Burgd. A total of 278 putative ‘true type’ P. pyraster trees originating from seven populations in the federal state of Saxony in Germany were analyzed along with 35 pear cultivars commonly cultivated in Saxony. The genetic analysis was performed using nine nuclear microsatellite markers (ncSSR) and two paternally inherited chloroplast marker (cpDNA) amplifying in the intergenic spacer region trnQrps16 and the intron region rps16. On basis of the ncSSR dataset after STRUCTURE analysis 80 % of the wild pear individuals were assigned as ‘true type’ P. pyraster genotypes. The cpDNA analysis showed shared haplotypes in P. pyraster and P. communis but with an unequal frequency in both species. The analysis of molecular variance resulted in a moderate (ncSSR) and great (cpDNA) variation among ‘true type’ P. pyraster and the pear cultivars. The genetic diversity in the ‘true type’ P. pyraster populations was still high and the genetic structure between the populations low (ncSSR and cpDNA) indicating a genetic exchange between the populations by pollen and seeds. The clear discrimination between the P. pyraster and P. communis confirms our expectation of the existence of ‘true type’ P. pyraster individuals in the study area. The existing genetic integrity and the high genetic diversity argue for the implementation of preservation measures in P. pyraster.  相似文献   

13.
The present study used 15 simple sequence repeat loci to characterize the genetic diversity of the germplasm that originated the current industrial chicory and to establish the relationships between and inside Cichoriumintybus L. and Cichorium endivia L. Initially we analyzed 19 cultivated C. endivia accessions, 27 wild and 155 cultivated C. intybus accessions distributed among three groups: 83 root chicories, 42 Witloof and 30 leaf chicories. The leaf chicories comprised cultivars corresponding to the Radicchio, Sugarloaf and Catalogne subgroups. The latter has not been previously included in any genetic diversity study. Subsequently, 1297 individuals from the 15 modern root chicory cultivars at the origin of the breeding of the current industrial root chicory cultivars were analyzed. Although the accessions of C. endivia and C. intybus were clearly separated from each other, seven wild C. intybus individuals were genetically closer to C. endivia than to C. intybus, revealing complex genetic interrelationships between these species. The differentiation of C. intybus into three cultivar groups (Witloof, root chicory and leaf chicory) was confirmed. The leaf chicory individuals were divided into three genetic subgroups, corresponding to the Radicchio, Sugarloaf and Catalogne cultivars, thus attesting to the validity of the classification based on morphological factors. Clear differentiation was observed among the Belgian, Polish and Austrian modern industrial root cultivars, but not among the French industrial modern root cultivars. The high phenotypic and genetic variability of the modern industrial root cultivars indicates that this germplasm constitutes a useful gene pool for cultivar improvement and selection.  相似文献   

14.
Tomato wild relatives are important sources of resistance to many pests of cultivated tomato [Solanum lycopersicum L. (syn. Lycopersicon esculentum Mill.)]. Eleven wild tomato accessions previously identified at AVRDC—The World Vegetable Center as resistant to Bemisia tabaci were evaluated for resistance to the two-spotted spider mite [Tetranychus urticae (Koch.)] based on egg numbers using the leaf disc and Tanglefoot no-choice bioassays, and damage scores in choice bioassays. Highest resistance based on choice and no-choice bioassays was identified in AVRDC S. galapagense accessions VI057400, VI045262, VI037869 and VI037239, and S. cheesmaniae accession VI037240, all of which are new sources of T. urticae resistance. In addition, S. pimpinellifolium accession VI030462 exhibited resistance only in the no-choice bioassay based on egg numbers. Resistance to T. urticae based on the number of eggs from the no-choice bioassays was positively correlated with density of type IV glandular trichomes and negatively correlated with densities of type V trichomes. All resistant accessions accumulated high levels of total acylsugars, which were positively associated with type IV trichomes. There was a significant negative relationship between acylsugar content and T. urticae egg numbers from the no-choice bioassays. There was high correlation between the results from the leaf disc test and the Tanglefoot no-choice bioassay. These findings support the possible presence of broad-based insect and mite resistance in accessions closely related to cultivated tomato.  相似文献   

15.
Cleome gynandra L. is a leafy vegetable native to sub-Saharan Africa and Asia and cultivated on dry areas. The plant plays an important role in the food and nutrition security of local communities. The objective of this study was to illustrate variation and diversity in the Cleome collection held at the World Vegetable Center. In total, 242 accessions were cultivated and morphologically characterized and analyzed. The gynophore and filament, both important organs of the flower, played a key role in taxonomical identification. High morphological variation was detected in traits including plant height, pod length, leaf size, flower color, and earliness. Distinct morphological differentiation was detected between Asian and African accessions. On average, the African accessions were larger, less uniform and later in flowering and seed maturation than the Asian accessions. The results were used to establish a core collection of 49 Cleome accessions. Gaps in the current collection were detected. High within-accessions diversity challenges the existing ex situ conservation system; to maintain diversity, seed should be collected from a large number of plants, both during the collection mission and in ex situ regeneration. The results are relevant for germplasm collection strategies and regeneration protocols for good genebank practices.  相似文献   

16.
There were 15 species and two variants of wild Iris recorded in Liaoning Province, where is a primary distribution area of Iris in China. According to the division of distribution area for wild plants in Liaoning, twenty-eight sites were selected for investigating wild Iris resources in Liaoning. Distribution, habitat and main accompanying plants of each Iris species were recorded. Fifty-three accessions were collected during the investigation and introduced to suitable environment. Morphological characteristics of each accession were observed. According to previous literatures and specimens, all accessions were identified and classified into 12 species and two variants. The analytic hierarchy process (AHP) was used to perform a comprehensive assessment on the ornamental value of 11 Iris species. The results showed that Iris tigridia Bunge and Iris ensata Thunb. had better ornamental value than the other species. Some suggestions for revision and classification were discussed on several Iris species.  相似文献   

17.
Wild species representatives from Northwestern, Central and Southern Florida, and neighboring U.S. states were collected in multiple United States Department of Agriculture (USDA) exploration expeditions and are being preserved at the USDA, Agricultural Research Service, National Clonal Germplasm Repository in Corvallis, Oregon. Germplasm from these southeastern regions of North America is particularly vulnerable to loss in the wild due to encroachment of human development in key habitats and biotic and abiotic stresses from climate change. Fourteen simple sequence repeats (SSRs), previously developed from the highbush blueberry (Vaccinium corymbosum) cultivar ‘Bluecrop’, were used to estimate genetic diversity and genetic differentiation of 67 diploid individuals from three species, including 19 V. elliottii, 12 V. fuscatum, and 35 V. darrowii accessions collected throughout the species’ ranges. Results from our analyses indicated that the samples from each species could be reliably resolved using genetic distance measures with ordination and neighbor joining approaches. In addition, we estimated admixture among these species by using Bayesian assignment tests, and were able to identify a mis-labeled accession of V. darrowii ‘Johnblue’, two mis-classified accessions (CVAC 735.001 and CVAC 1223.001), and four accessions of previously undescribed hybrid origin (CVAC 734.001, CVAC 1721.001, CVAC 1741.001, and Florida 4B CVAC 1790). Allele composition at the 14 SSRs confirmed that Florida 4B CVAC 1790, the donor of low chilling for the southern highbush blueberry, was the critical parent of US 74. Genetic diversity assessment and identification of these wild accessions are crucial for optimal germplasm management and expand opportunities to utilize natural variation in breeding programs.  相似文献   

18.
Potato wild relatives are important sources of novel variation for the genetic improvement of the cultivated potato. Consequently, many natural populations have been sampled and were deposited as accessions in gene banks around the world. Here we investigate to what extent the genetic variation of Bolivian wild potato species is maintained under gene bank conditions and how this diversity relates to that of current in situ populations. For this purpose, materials from seven potato species were screened for microsatellite variation. Genetic changes between different generations of ex situ germplasm were not observed for Solanum leptophyes and S. megistacrolobum, but were detected for S. neocardenasii and S. okadae, while each of the species S. acaule, S. avilesii and S. berthaultii showed stability in some cases and genetic change in others. The observed changes were ascribed to genetic drift and contamination resulting from human error during regeneration. Re-collected populations of six of the studied species showed highly significant genetic differences with the ex situ accessions that, apart from changes during ex situ maintenance, are most likely to be attributed to sampling effects during collecting and in situ genetic changes over time. The implications of the results for ex situ and in situ conservation strategies of wild potato species are discussed.  相似文献   

19.
Germplasm collections of C. reticulatum and C. echinospermum are limited, while both species face threats from over-grazing and habitat change in their natural environments. Recently many new accessions of C. reticulatum and C. echinospermum were collected in east and south-east Anatolia (Turkey) but they have not yet been evaluated for agro-morphological traits. Therefore, the current study investigated agro-morphological traits of new germplasm sources of C. reticulatum and C. echinospermum and evaluated resistance to biotic and abiotic stresses for chickpea improvement. The most attractive agro-morphological traits were canopy width, number of stems and pods per plant and biological yield. The most productive accessions of C. reticulatum and C. echinospermum had 712 and 625 pods per plant, respectively. Two distinct seed, flower and leaf shapes were found in accessions of C. echinospermum. Path analyses indicated that biological yield and harvest index had the most direct influence on seed yield in both species. Factor analyses showed that high seed yield in C. reticulatum depended on high biological yield and number of pods per plant, whereas high seed yield in C. echinospermum depended on harvest index. It was concluded that most accessions of C. reticulatum and C. echinospermum were not only resistant to some biotic and abiotic stresses but also had hidden alleles that could produce transgressive segregation in crosses to cultivated material.  相似文献   

20.
Saponins occur in numerous plants, including agaves, determining benefic and harmful properties to humans; their presence may favor using plants as soap and other products, but also they may cause caustic effects producing contact dermatitis. In domestication, favorable and unfavorable properties of saponins may cause an increase or decrease of their content, respectively. This study quantified and identified saponins among wild and managed populations of three agave species: A. cupreata Trel. et Berger, A. inaequidens Koch with wild and cultivated populations used for mescal production, and A. hookeri Jacobi, existing exclusively cultivated, used for production of the fermented beverage pulque. We studied 272 plants from 19 populations, quantifying contents of crude saponins through spectrometry. In 12 populations, the saponins types were identified by High Performance Liquid Chromatography–Mass-Spectrography-Time-of-Flight HPLC-MS-TOF. The highest crude saponins content was recorded in A. hookeri (26.09 mg/g), followed by A. cupreata (19.85 and 15.17 mg/g in wild and cultivated populations, respectively). For A. inaequidens, we recorded 14.21, 12.95, and 10.48 mg/g in wild, silvicultural managed and cultivated populations, respectively. We identified 18 saponins types, A. inaequidens showing all of them. A hecogenin glycoside (HG1) is found in high amounts in A. hookeri but in low quantities in A. inaequidens and A. cupreata. A. inaequidens had the greatest diversity of saponins. The contents of crude saponins in A. inaequidens and A. cupreata decrease with management intensity, but contrarily to what we expected, it was the highest in A. hookeri. We hypothesize that such high amount could be due to some saponins, probably HG1, may be precursors of sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号