首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
5.
6.
7.
The scarcity of fresh water has forced farmers to use saline water (SW) for irrigation. It is important to understand the response of the soil microbial community and diversity to saline irrigation water. The objective of this study was to determine the effects of irrigation water salinity and nitrogen fertilization rates on soil physicochemical properties, microbial activity, microbial biomass, and microbial functional diversity. The field experiment consisted of a factorial design with three levels of irrigation water salinity (electrical conductivities (ECs) of 0.35, 4.61 or 8.04?dS?m?1) and two nitrogen rates (0 and 360?kg?N?ha?1). The results showed that the 4.61 and 8.04?dS?m?1 treatments both reduced soil microbial biomass C (MBC), microbial biomass N (MBN), basal respiration, total phospholipid fatty acid (PLFA), bacterial PLFA, fungal PLFA, and fungal:bacterial ratios. In contrast, the SW treatments increased the MBC:MBN ratio. Nitrogen fertilization increased soil MBC, MBN, basal respiration, total PLFA, bacterial PLFA, and gram-negative bacterial PLFA. In contrast, N fertilization decreased gram-positive bacterial PLFA, fungal PLFA, and fungal:bacterial ratios. Average well color development, Richness, and Shannon's Index were always lowest in the 8.04?dS?m?1 treatment. Carbon utilization patterns in the 8.04?dS?m?1 treatment were different from those in the 0.35?dS?m?1 treatment. In conclusion, five years of irrigation with brackish or SW reduced the soil microbial biomass, activity, and functional diversity, which may cause the deterioration of soil quality. Thus, the high-salinity water (EC?>?4.61?dS?m?1) is not appropriate as a single irrigation water resource. Proper N fertilizer input may overcome some of the negative effects of salinity on soil microbial.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
The objective of this two-year field experiment was to study the effects of irrigation amount, N rate, and irrigation water salinity on cotton growth and the fate of N fertilizer. The movement of N through the plant-soil system was traced using 15N-labeled urea. The study consisted of twelve treatments, including two irrigation amounts (405 and 540?mm, I405 and I540, respectively); two N application rates (240 and 360?kg?N/ha, N240 and N360, respectively); and three irrigation water salinity levels [0.35, 4.61 and 8.04?dS/m, representing fresh water (FW), brackish water (BW), and saline water (SW), respectively]. A randomized complete block design was used with three replications. The results showed that cotton biomass, N uptake, and yield increased as irrigation amount and N amount increased; however, all three variables were significantly less in SW than in FW and BW. Plant 15N recovery rates were greater (i) in the I540 treatments than in the I405 treatments and (ii) in the N360 treatments than in the N240 treatments. Plant 15N recovery rates in BW were 7.98% and 30.01% greater than those in FW and SW, respectively. Residual soil 15N increased as N fertilizer amount increased but declined as irrigation amount increased. Residual soil 15N in BW and SW was 6.02% and 21.44% greater, respectively, than in FW. Total 15N recovery was significant greater in BW than in FW and SW. The 15N leaching losses increased significantly with increases in irrigation amount, irrigation water salinity, and N rate. Our study suggests that if appropriate amounts of irrigation water and N fertilizer are used, then brackish irrigation water (4.61?dS/m) will not affect cotton growth, yield and N recovery. In contrast, saline irrigation water (EC?>?8?dS/m) reduces cotton growth, yield, and N use efficiency.  相似文献   

18.
To determine the effects of irrigation water quality, plants were irrigated with normal potable water [0.25 dS m?1 electrical conductivity (EC), 25 mg L?1 sodium (Na), 55 mg L?1 chloride (Cl)], treated effluent (0.94 dS m?1 EC, 122 mg L?1 Na, 143 mg L?1 Cl) and saline water with low salinity (1.24 dS m?1 EC, 144 mg L?1 Na and 358 mg L?1 Cl) and high salinity (2.19 dS m?1 EC, 264 mg L ?1Na and 662 mg L?1 Cl) for snow peas, and high salinity (3.07 dS m?1 EC, 383 mg L?1 Na and 965 mg L?1 Cl) and very high salinity (5.83 dS m?1 EC, 741 mg L?1 Na and 1876 mg L?1 Cl) for celery. The greater salts build up in the soil and ion toxicity (Cl and Na) with saline water irrigation contributed to significantly greater reduction in root and shoot biomass, water use, yield and water productivity (yield kg kL?1 of water used) of snow peas and celery compared with treated effluent and potable water irrigation. There was 8%, 56% and 74% reduction in celery yield respectively with treated effluent, high salinity and very high salinity saline water irrigation compared with potable water irrigation. The Na concentration in snow peas shoots increased by 54%, 234% and 501% with treated effluent, low and high salinity saline water irrigation. Similarly, the increases in Na concentration in celery shoots were 19%, 35% and 82%. The treated effluent irrigation also resulted in a significant increase in soil EC, nitrogen (N) and phosphorus (P) content compared with potable water irrigation. The heavy metals besides salts build up appears to have contributed to yield reductions with treated effluent irrigation. The study reveals strong implications for the use of saline water and treated effluent for irrigation of snow peas and celery. The salt build up within the root zone and soil environment would be critical in the long-run with the use of saline water and treated effluent for irrigation of crops. To minimize the salinity level in rhizosphere, an alternate irrigation of potable water with treated effluent or low salinity level water may be better option.  相似文献   

19.
20.
The objective of this study was to investigate the influence of saline groundwater depths (SGDs) (0.3, 0.55, and 0.80 m) with salinity equivalent to irrigation water salinity (WS) and irrigation WS (10, 20, 30, and 40 dS m?1) on physiological characteristics, gas exchange, and plant ion relations of quinoa in cylindrical lysimeters in greenhouse conditions. Root length density (RLD) in the soil layer close to the saline shallow groundwater decreased. Soil aeration was the key point for reduction in RLD by decreasing SGD that was intensified by the increase in WS. It is concluded that root of quinoa was sensitive to anaerobic soil conditions. Results showed that the mean value of leaf water potential (Ψ) dropped from ?1.53 to ?3.09 MPa by increasing WS from 10 to 40 dS m?1. Increasing WS from the lowest to the highest level resulted in 48% decrease in leaf photosynthesis rate (An). Results revealed that leaf stomatal conductance (gs) was more sensitive to salinity than An. Stomatal closure in quinoa started to occur when the Ψ value fell below approximately ?1.0 MPa. In general, increasing WS from 10 to 40 dS m?1 resulted in about 4.6-fold, 2.1-fold, and 2.6-fold increase in plant Na+, Ca2+, and Cl? concentration, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号