首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
As Voyager 1 flew through the Saturn system it returned photographs revealing many new and surprising characteristics of this complicated community of bodies. Saturn's atmosphere has numerous, low-contrast, discrete cloud features and a pattern of circulation significantly different from that of Jupiter. Titan is shrouded in a haze layer that varies in thickness and appearance. Among the icy satellites there is considerable variety in density, albedo, and surface morphology and substantial evidence for endogenic surface modification. Trends in density and crater characteristics are quite unlike those of the Galilean satellites. Small inner satellites, three of which were discovered in Voyager images, interact gravitationally with one another and with the ring particles in ways not observed elsewhere in the solar system. Saturn's broad A, B, and C rings contain hundreds of "ringlets," and in the densest portion of the B ring there are numerous nonaxisymmetric features. The narrow F ring has three components which, in at least one instance, are kinked and crisscrossed. Two rings are observed beyond the F ring, and material is seen between the C ring and the planet.  相似文献   

2.
Voyager 2 images of the southern hemisphere of Uranus indicate that submicrometersize haze particles and particles of a methane condensation cloud produce faint patterns in the atmosphere. The alignment of the cloud bands is similar to that of bands on Jupiter and Saturn, but the zonal winds are nearly opposite. At mid-latitudes (-70 degrees to -27 degrees ), where winds were measured, the atmosphere rotates faster than the magnetic field; however, the rotation rate of the atmosphere decreases toward the equator, so that the two probably corotate at about -20 degrees . Voyager images confirm the extremely low albedo of the ring particles. High phase angle images reveal on the order of 10(2) new ringlike features of very low optical depth and relatively high dust abundance interspersed within the main rings, as well as a broad, diffuse, low optical depth ring just inside the main rings system. Nine of the newly discovered small satellites (40 to 165 kilometers in diameter) orbit between the rings and Miranda; the tenth is within the ring system. Two of these small objects may gravitationally confine the e ring. Oberon and Umbriel have heavily cratered surfaces resembling the ancient cratered highlands of Earth's moon, although Umbriel is almost completely covered with uniform dark material, which perhaps indicates some ongoing process. Titania and Ariel show crater populations different from those on Oberon and Umbriel; these were probably generated by collisions with debris confined to their orbits. Titania and Ariel also show many extensional fault systems; Ariel shows strong evidence for the presence of extrusive material. About halfof Miranda's surface is relatively bland, old, cratered terrain. The remainder comprises three large regions of younger terrain, each rectangular to ovoid in plan, that display complex sets of parallel and intersecting scarps and ridges as well as numerous outcrops of bright and dark materials, perhaps suggesting some exotic composition.  相似文献   

3.
Classical edge diffraction patterns are formed at centimeter wavelengths by several features of Saturn's rings. These patterns were discovered in 3.6-and 13-centimeter radio signals from Voyager 1 during occultation by the rings. The observed shapes are in agreement with theoretical patterns computed for screens of perfectly abrupt edges having large but finite opacity. Comparison with models in which the opacity at the edge tapers to zero from a finite value sets a new bound of less than about 200 meters on the microwave edge thickness. Certain features of the data suggest a smaller upper bound of about 130 meters on the edge thickness.  相似文献   

4.
Voyager 2, during its encounter with the Jupiter system, provided images that both complement and supplement in important ways the Voyager 1 images. While many changes have been observed in Jupiter's visual appearance, few, yet significant, changes have been detected in the principal atmospheric currents. Jupiter's ring system is strongly forward scattering at visual wavelengths and consists of a narrow annulus of highest particle density, within which is a broader region in which the density is lower. On Io, changes are observed in eruptive activity, plume structure, and surface albedo patterns. Europa's surface retains little or no record of intense meteorite bombardment, but does reveal a complex and, as yet, little-understood system of overlapping bright and dark linear features. Ganymede is found to have at least one unit of heavily cratered terrain on a surface that otherwise suggests widespread tectonism. Except for two large ringed basins, Callisto's entire surface is heavily cratered.  相似文献   

5.
The Voyager spacecraft observed a narrow, eccentric ringlet in the Maxwell gap (1.45 Saturn radii) in Saturn's rings. Intercomparison of the Voyager imaging, photopolarimeter, ultraviolet spectrometer, and radio science observations yields results not available from individual observations. The width of the ringlet varies from about 30 to about 100 kilometers, its edges are sharp on a radial scale < 1 kilometer, and its opacity exhibits a double peak near the center. The shape and width of the ringlet are consistent with a set of uniformly precessing, confocal ellipses with foci at Saturn's center of mass. The ringlet precesses as a unit at a rate consistent with the known dynamical oblateness of Saturn; the lack of differential precession across the ringlet yields a ringlet mass of about 5 x 10(18) grams. The ratio of surface mass density to particle cross-sectional area is about five times smaller than values obtained elsewhere in the Saturn ring system, indicating a relatively larger fraction of small particles. Also, comparison of the measured transmission of the ringlet at radio, visible, and ultraviolet wavelengths indicates that about half of the total extinction is due to particles smaller than 1 centimeter in radius, in contrast even with nearby regions of the C ring. However, the color and brightness of the ringlet material are not measurably different from those of nearby C ring particles. We find this ringlet is similar to several of the rings of Uranus.  相似文献   

6.
Voyager 2 radio occultation measurements of the Uranian atmosphere were obtained between 2 and 7 degrees south latitude. Initial atmospheric temperature profiles extend from pressures of 10 to 900 millibars over a height range of about 100 kilometers. Comparison of radio and infrared results yields mole fractions near the tropopause of 0.85 and 0.15 +/- 0.05 for molecular hydrogen and helium, respectively, if no other components are present; for this composition the tropopause is at about 52 kelvins and 110 millibars. Distinctive features in the signal intensity measurements for pressures above 900 millibars strongly favor model atmospheres that include a cloud deck of methane ice. Modeling of the intensity measurements for the cloud region and below indicates that the cloud base is near 1,300 millibars and 81 kelvins and yields an initial methane mole fraction of about 0.02 for the deep atmosphere. Scintillations in signal intensity indicate small-scale stucture throughout the stratosphere and upper troposphere. As judged from data obtained during occultation ingress, the ionosphere consists of a multilayer structure that includes two distinct layers at 2,000 and 3,500 kilometers above the 100-millibar level and an extended topside that may reach altitudes of 10,000 kilometers or more. Occultation measurements of the nine previously known rings at wavelengths of 3.6 and 13 centimeters show characteristic values of optical depth between about 0.8 and 8; the maxim value occurs in the outer region of the in ring, near its periapsis. Forward-scattered signals from this ring have properties that differ from those of any of Saturn's rings, and they are inconsistent with a discrete scattering object or local (three-dimensional) assemblies of orbiting objects. These signals suggest a new kdnd of planetary ring feature characterized by highly ordered cylindrical substructures of radial scale on the order of meters and azimuthal scale of kilometers or more. From radio data alone the mass of the Uranian system is GM(sys) = 5,794,547- 60 cubic kilometers per square second; from a combination of radio and optical navigation data the mass of Uranus alone is GM(u) = 5,793,939+/- 60 cubic kilometers per square second. From all available Voyager data, induding imaging radii, the mean uncompressed density of the five major satellites is 1.40+/- 0.07 grams per cubic centimeter; this value is consistent with a solar mix of material and apparently rules out a cometary origin of the satellites.  相似文献   

7.
Impact craters on Triton are scarce owing to the relatively recent resurfacing by icy melts. The most heavily cratered surface has a crater density about the same as the lunar maria. The transition diameter from simple to complex craters occurs at a diameter of about 11 kilometers, and the depth-diameter relationship is similar to that of other icy satellites when gravity is taken into account. The crater size-frequency distribution has a differential -3 slope (cumulative -2 slope) and is the same as that for the fresh crater population on Miranda. The most heavily cratered region is on the leading hemisphere in Triton's orbit. Triton may have a leading-trailing asymmetry in its crater population. Based primarily on the similarity of size distributions on Triton and Miranda and the relatively young surface on Triton, the source of Triton's craters is probably comets. The very peculiar size distribution of sharp craters on the "cantaloupe" terrain and other evidence suggests they are volcanic explosion craters.  相似文献   

8.
The Voyager 1 planetary radio astronomy experiment detected two distinct kinds of radio emissions from Saturn. The first, Saturn kilometric radiation, is strongly polarized, bursty, tightly correlated with Saturn's rotation, and exhibits complex dynamic spectral features somewhat reminiscent of those in Jupiter's radio emission. It appears in radio frequencies below about 1.2 megahertz. The second kind of radio emission, Saturn electrostatic discharge, is unpolarized, extremely impulsive, loosely correlated with Saturn's rotation, and very broadband, appearing throughout the observing range of the experiment (20.4 kilohertz to 40.2 megahertz). Its sources appear to lie in the planetary rings.  相似文献   

9.
Voyager 1 radio occultation measurements of Titan's equatorial atmosphere successfully probed to the surface, which is provisionally placed at a radius of 2570 kilometers. Derived scale heights plus other experimental and theoretical results indicate that molecular nitrogen is the predominant atmospheric constituent. The surface pressure and temperature appear to be about 1.6 bars and 93 K, respectively. The main clouds are probably methane ice, although some condensation of nitrogen cannot be ruled out. Solar abundance arguments suggest and the measurements allow large quantities of surface methane near its triple-point temperature, so that the three phases of methane could play roles in the atmosphere and on the surface of Titan similar to those of water on Earth. Radio occultation measurements of Saturn's atmosphere near 75 degrees south latitude reached a maximum pressure of 1.4 bars, where the temperature is about 156 K. The minimum temperature is about 91 K near the 60-millibar pressure level. The measured part of the polar ionosphere of Saturn has a peak electron concentration of 2.3 x 10(4) per cubic centimeter at an altitude of 2500 kilometers above the 1-bar level in the atmosphere, and a plasma scale height at the top of the ionosphere of 560 kilometers. Attenuation of monochromatic radiation at a wavelength of 3.6 centimeters propagating obliquely through Saturn's rings is consistent with traditional values for the normal optical depth of the rings, but the near-forward scattering of this radiation by the rings indicates effective scattering particles with larger than expected diameters of 10, 8, and 2 meters in the A ring, the outer Cassini division, and the C ring, respectively. Preliminary analysis of the radio tracking data yields new values for the masses of Rhea and Titan of 4.4 +/- 0.3 x 10(-6) and 236.64 +/- 0.08 x 10(-6) times the mass of Saturn. Corresponding values for the mean densities of these objects are 1.33 +/- 0.10 and about 1.89 grams per cubic centimeter. The density of Rhea is consistent with a solar-composition mix of anhydrous rock and volatiles, while Titan is apparently enriched in silicates relative to the solar composition.  相似文献   

10.
The Voyager 2 photopolarimeter successfully completed the Uranus encounter, acquiring new data on the planet's atmosphere, its principal satellites, and its ring system. Spatially resolved photometry of the atmosphere at 0.27 micrometer shows no enhancement in absorption toward the pole, unlike the case for Jupiter and Saturn. Stellar occultation measurements indicate the temperature at the 1-millibar level over the north pole is near 90 kelvins. The geometric albedos of the five large satellites of Uranus were measured at 0.27 and 0.75 micrometer and indicate the presence of low albedo, spetrally flat absorbing material. Titania seems to have a fluffy surface, as indicated by its phase curve. The nine ground-based rings were detected, and their internal structure, optical depths, and positions were determined. The sharp edges of the in ring made it possible to measure its edge thickness (less than 150 meters) and particle sizes (less than 30 meters); little or no dust was detcted. New narrow rings and partial rings (arcs) were measured, and the narrow component of the eta ring was found to be discontinuous.  相似文献   

11.
Kerr RA 《Science (New York, N.Y.)》1989,245(4925):1450-1451
Any time the view of a planet leaps from a fuzzy dot accompanied by two pinpoints of light to the riveting details of swirling clouds, rings, cratered moonlets, and even individual dust particles, planetary science is going to be in for some upheaval. Voyager 2's encounter with Neptune was no exception. Something as seemingly innocuous as an hour or two shift in the new length of a Neptunian day is giving meteorologists and physicists fits. And Neptune's canted, complex magnetic field found by Voyager knocks into a cocked hat most ideas about why a similar field at Uranus was unique. But there were more reassuring discoveries as well. Here are samplings of both sorts of findings.  相似文献   

12.
Saturn's diffuse E ring spans the region between 3 and 8 saturnian radii (R(s)), has its peak brightness near the orbit of the satellite Enceladus (3.95 R(s)), and is thought to be composed primarily of icy particles 1.0 +/- 0.3 micrometers in radius. Such particles are shown to move periodically along highly elliptical paths that cross the orbits of several saturnian satellites; the resulting energetic collisions of E ring particles with embedded satellites are capable of sustaining the E ring at its current optical depth. With several reasonable assumptions, this model naturally selects Enceladus as the primary source of ring material and may also provide mechanisms that explain the generation of the unusual amount of submicrometer dust in the neighboring F and G rings, the excess of OH molecules observed within the E ring, and the orbital brightness variations of nearby satellites.  相似文献   

13.
In August 2009 the Sun illuminated Saturn's rings from almost exactly edge-on, revealing a subtle corrugation that extends across the entire C ring. This corrugation's amplitude is 2 to 20 meters and its wavelength is 30 to 80 kilometers. Radial trends in the corrugation's wavelength indicate that this structure--like a similar corrugation previously identified in the D ring--results from differential nodal regression within a ring that became tilted relative to Saturn's equator plane in 1983. We suggest that this initial tilt arose because interplanetary debris struck the rings. The corrugation's radial extent implies that the impacting material was a dispersed cloud of debris instead of a single object, and the corrugation's amplitude indicates that the debris' total mass was ~10(11) to 10(13) kilograms.  相似文献   

14.
Careful reprocessing of the Voyager images reveals that the Uranìan lambda ring has marked longitudinal variations in brightness comparable in magnitude to those in Saturn's F ring and Neptune's Adams ring. The ring's variations show a dominant five-cycle (72-degree) periodicity, although additional structure down to scales of about 0.5 degree is also present. The ring's shape is defined by a small overall eccentricity plus a six-cycle (60-degree) sinusoidal variation of radial amplitude around 4 kilometers. Both of these properties can be explained by the resonant perturbations of a moon at a semimajor axis of 56,479 kilometers, but no known moon orbits at this location. Unfortunately, the mass required suggests that such a body should have been imaged by Voyager.  相似文献   

15.
In the outer regions of Saturn's main rings, strong tidal forces balance gravitational accretion processes. Thus, unusual phenomena may be expected there. The Cassini spacecraft has recently revealed the strange "flying saucer" shape of two small satellites, Pan and Atlas, located in this region, showing prominent equatorial ridges. The accretion of ring particles onto the equatorial surfaces of already-formed bodies embedded in the rings may explain the formation of the ridges. This ridge formation process is in good agreement with detailed Cassini images showing differences between rough polar and smooth equatorial terrains. We propose that Pan and Atlas ridges are kilometers-thick "ring-particle piles" formed after the satellites themselves and after the flattening of the rings but before the complete depletion of ring material from their surroundings.  相似文献   

16.
The Voyager 2 photopolarimeter was reprogrammed prior to the August 1981 Saturn encounter to perform orthogonal-polarization, two-color measurements on Saturn, Titan, and the rings. Saturn's atmosphere has ultraviolet limb brightening in the mid-latitudes and pronounced polar darkening north of 65 degrees N. Titan's opaque atmosphere shows strong positive polarization at all phase angles (2.7 degrees to 154 degrees ), and no single-size spherical particle model appears to fit the data. A single radial stellar occultation of the darkened, shadowed rings indicated a ring thickness of less than 200 meters at several locations and clear evidence for density waves caused by satellite resonances. Multiple, very narrow strands of material were found in the Encke division and within the brightest single strand of the F ring.  相似文献   

17.
The gamma and delta rings have by far the largest radial perturbations of any of the nine known Uranian rings. These two rings deviate from Keplerian orbits, having typical root-mean-square residuals of about 3 kilometers (compared to a few hundred meters for the other seven known rings). Possible causes for the perturbations include nearby shepherd satellites and Lindblad resonances. If shepherd satellites are responsible, they could be as large as several tens of kilometers in diameter. The perturbation patterns of the gamma and delta rings have been examined for evidence of Lindblad resonances of azimuthal wave number m = 0, 1, 2, 3, and 4. The beta ring radial residuals are well matched by a 2:1 Lindblad resonance. If this represents a real physical phenomenon and is not an artifact of undersampling, then the most plausible interpretation is that there is an undiscovered satellite orbiting 76,522 +/- 8 kilometers from Uranus, with an orbital period of 15.3595 +/- 0.0001 hours and a radius of 75 to 100 kilometers. Such a satellite would be easily detected by the Voyager spacecraft when it encounters Uranus. The 2:1 resonance location is 41 +/- 9 kilometers inside the delta ring, which makes it unlikely that the resonance is due to a viscous instability within the ring. In contrast, no low-order Lindblad resonance matches the gamma ring perturbations, which are probably caused by one or more shepherd satellites large enough to be clearly visible in Voyager images.  相似文献   

18.
An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern mid-latitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH(3) mixing ratio to be 1.2 x 10(-4) in a region just below the NH(3) clouds, while the observed bright band indicates a 25 percent relative decrease of NH(3) in northern mid-latitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process.  相似文献   

19.
Voyager images of the uranian satellites Ariel and Miranda show flow features with morphologies indicating that ice has been extruded to the satellites' surfaces in the solid state. These images provide the first observational evidence for solid-state ice volcanism in the solar system. Topographic profiles have been measured across a number of flow features on Ariel. With a simple model of extrusion, spreading, and cooling of a viscous flow, the initial viscosity of the flow material is found to have been no more than about 10(16) poise, far lower than expected for H(2)O ice at the ambient surface temperatures in the uranian system. Sharply reduced viscosities may have resulted from incorporation of ices like NH(3) or CH(4) in the uranian satellites.  相似文献   

20.
The Voyager photopolarimeter successfully accomplished its objectives for the Neptune encounter, performing measurements on the planet, several of its satellites, and its ring system. A photometric map of Neptune at 0.26 micrometer (microm) shows the planet to be bland, with no obvious contrast features. No polar haze was observed. At 0.75 microm, contrast features are observed, with the Great Dark Spot appearing as a low-albedo region and the bright companion as being substantially brighter than its surroundings, implying it to be at a higher altitude than the Great Dark Spot. Triton's linear phase coefficients of 0.011 magnitudes per degree at 0.26 microm and 0.013 magnitudes per degree at 0.75 microm are consistent with a solid-surface object possessing high reflectivity. Preliminary geometric albedos for Triton, Nereid, and 1989N2 were obtained at 0.26 and 0.75 microm. Triton's rotational phase curve shows evidence of two major compositional units on its surface. A single stellar occultation of the Neptune ring system elucidated an internal structure in 1989N1R, in the approximately 50-kilometer region of modest optical depth. 1989N2R may have been detected. The deficiency of material in the Neptune ring system, when compared to Uranus', may imply the lack of a "recent" moon-shattering event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号