首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
High-sensitivity x-ray measurements with the recently launched Einstein Observatory are having a major impact on wide areas of astronomical research. The x-ray luminosity of young O, B, and A stars and late K and M stars is found to be several orders of magnitude greater than predicted by current theories of coronal heating. Detailed x-ray images and spectra of supernova remnants are providing new information on the temperature, composition, and distribution of material ejected in supernova explosions as well as of the material comprising the interstellar medium. Observations of galaxies are yielding insights on the formation and evolution of stellar systems and galaxies over a wide range of variables. X-ray time variations are being used to probe the underlying energy source in quasars and active galactic nuclei. The distribution of mass in clusters of galaxies is being traced through detailed x-ray images, and the data are being used to classify clusters and trace their formation and evolution. Substantial progress is being made in several areas of cosmological research, particularly in the study of the diffuse x-ray background.  相似文献   

3.
A surprising discovery in x-ray astronomy was that clusters of galaxies often contain vast quantities of hot (20 million kelvin) diffuse gas. Substantial diffuse extreme-ultraviolet (EUV) emission has recently been detected in the Virgo cluster of galaxies. Depending on the character of the interstellar medium in our galaxy, this emission could be either an aspect of the hot cluster gas or a previously undetected 500,000-kelvin component. Analysis of the observational data in combination with our current knowledge of the interstellar medium revealed that the EUV flux cannot be an effect of the interstellar medium. Hence, a warm cluster component appears likely.  相似文献   

4.
The cosmic infrared background (CIRB) is a record of a large fraction of the emission of light by stars and galaxies over time. The bulk of this emission has been resolved by the Infrared Space Observatory camera. The dominant contributors are bright starburst galaxies with redshift z approximately 0.8; that is, in the same redshift range as the active galactic nuclei responsible for the bulk of the x-ray background. At the longest wavelengths, sources of redshift z >/= 2 tend to dominate the CIRB. It appears that the majority of present-day stars have been formed in dusty starbursts triggered by galaxy-galaxy interactions and the buildup of large-scale structures.  相似文献   

5.
The oldest and most metal-poor Milky Way stars form a kinematically hot halo, which motivates the two major formation scenarios for our galaxy: extended hierarchical accretion and rapid collapse. RR Lyrae stars are excellent tracers of old and metal-poor populations. We measured the kinematics of 43 RR Lyrae stars in the inner regions of the nearby Large Magellanic Cloud (LMC) galaxy. The velocity dispersion equals 53 +/- 10 kilometers per second, which indicates that a kinematically hot metal-poor old halo also exists in the LMC. This result suggests that our galaxy and smaller late-type galaxies such as the LMC have similar early formation histories.  相似文献   

6.
Outflowing winds of multiphase plasma have been proposed to regulate the buildup of galaxies, but key aspects of these outflows have not been probed with observations. By using ultraviolet absorption spectroscopy, we show that "warm-hot" plasma at 10(5.5) kelvin contains 10 to 150 times more mass than the cold gas in a post-starburst galaxy wind. This wind extends to distances > 68 kiloparsecs, and at least some portion of it will escape. Moreover, the kinematical correlation of the cold and warm-hot phases indicates that the warm-hot plasma is related to the interaction of the cold matter with a hotter (unseen) phase at >10(6) kelvin. Such multiphase winds can remove substantial masses and alter the evolution of post-starburst galaxies.  相似文献   

7.
The age of the universe based on abundances of isotopes is in the range 10 billion to 15 billion years. This is consistent with the age range 12 billion to 20 billion years calculated from the evolution of the oldest galactic stars. A third estimate of the age of the universe is based on the Hubble relation between the velocities of galaxies and their distances from us, where the inverse of the Hubble parameter H is a measure of the age of a uniformly expanding universe. Evidence that has been accumulating over the past few years indicates that the expansion of the universe may exhibit a rather large local perturbation due to the gravitational attraction of the Virgo supercluster. Different types of observations still produce conflicting evidence about the velocity with which the Local Group of galaxies (of which our Milky Way system is a member) is falling into the Virgo cluster. The results to date indicate that this velocity lies somewhere in the range 0 to 500 kilometers per second. The resulting ambiguity in the flow pattern for relatively nearby galaxies makes values of H derived from galaxies with radial velocities less than 2000 kilometers per second particularly uncertain, and this restricts determinations of H to distant galaxies, for which distances are particularly uncertain. The best that can be said at present is that H(-1) yields a maximum time scale in the range 10 billion to 20 billion years.  相似文献   

8.
Individual low-mass stars have very long lives, comparable to the age of the universe, and can thus be used to probe ancient star formation. At present, such stars can be identified and studied only in the Milky Way and in the very closest of our neighboring galaxies, which are predominantly small dwarf galaxies. These nearby ancient stars are a fossil record that can provide detailed information about the physical processes that dominated the epoch of galaxy formation and subsequent evolution.  相似文献   

9.
Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.  相似文献   

10.
Astrophysical jets are linear structures associated with stars and galaxies which span about seven orders of magnitude in size; the largest jets emanating from galaxies are about 100 times the size of our galaxy and are the largest single objects in the universe. Jets associated with stars are composed of ionized gas moving away from the star with velocities of a few hundred kilometers per second. Extragalactic jets are composed of relativistic particles, magnetic field, and probably additional amounts of cooler ionized plasma either originally ejected in the jet or entired by it out of the surrounding gaseous medium. The initial outflow velocity for extragalactic jets may be relativistic, and average outflow speeds of several thousand kilometers per second are likely. The energy flux carried by extragalactic jets may be in excess of 10(46) ergs per second, depending upon the nature of the jet. A definition of jet properties, deduced from their interaction with the ambient medium, can place essential constraints on models for the central power source in the parent galaxy or quasi-stellar object where they originate.  相似文献   

11.
Most stars form as members of large associations within dense, very cold (10 to 100 kelvin) molecular clouds. The nearby giant molecular cloud in Orion hosts several thousand stars of ages less than a few million years, many of which are located in or around the famous Orion Nebula, a prominent gas structure illuminated and ionized by a small group of massive stars (the Trapezium). We present x-ray observations obtained with the X-ray Multi-Mirror satellite XMM-Newton, revealing that a hot plasma with a temperature of 1.7 to 2.1 million kelvin pervades the southwest extension of the nebula. The plasma flows into the adjacent interstellar medium. This x-ray outflow phenomenon must be widespread throughout our Galaxy.  相似文献   

12.
Supermassive black holes (SMBHs; mass is greater than or approximately 10(5) times that of the Sun) are known to exist at the center of most galaxies with sufficient stellar mass. In the local universe, it is possible to infer their properties from the surrounding stars or gas. However, at high redshifts we require active, continuous accretion to infer the presence of the SMBHs, which often comes in the form of long-term accretion in active galactic nuclei. SMBHs can also capture and tidally disrupt stars orbiting nearby, resulting in bright flares from otherwise quiescent black holes. Here, we report on a ~200-second x-ray quasi-periodicity around a previously dormant SMBH located in the center of a galaxy at redshift z = 0.3534. This result may open the possibility of probing general relativity beyond our local universe.  相似文献   

13.
Major advances in observational astronomy over the past 20 years have revolutionized our view of cosmic history, transforming our understanding of how the hot, smooth, early universe evolved into the complex and beautiful universe of stars and galaxies in which we now live. I describe how astronomers have used a range of complementary techniques to map out the rise and fall of star formation over 95% of cosmic time, back to the current observational frontier only ~500 million years after the Big Bang.  相似文献   

14.
Instruments carried aboard an Aerobee rocket in April 1965 provided evidence for x-ray emission from the directions of the radio galaxies Cygnus A and M-87 and from the galactic supernova remnant Cassiopeia A. A survey of the Cygnus region revealed a marked decrease in the flux of x-rays from Cygnus XR-1, which was identified in June 1964 as the second brightest object in the first Naval Research Laboratory list of x-ray sources. The detection sensitivity was improved over previous surveys and several new sources were detected at lower flux levels.  相似文献   

15.
Arp H 《Science (New York, N.Y.)》1966,151(3715):1214-1216
Pairs of radio sources which are separated by from 2 degrees to 6 degrees on the sky have been investigated. In a number of cases peculiar galaxies have been found approximately midway along a line joining the two radio sources. The central peculiar galaxies belong mainly to a certain class in the recently compiled Atlas of Peculiar Galaxies. Among the radio sources so far associated with the peculiar galaxies are at least five known quasars. These quasars are indicated to be not at cosmological distances (that is, red shifts not caused by expansion of the universe) because the central peculiar galaxies are only at distances of 10 to 100 megaparsecs. The absolute magnitudes of these quasars are indicated to be in the range of brightness of normal galaxies and downward. Some of the radio sources which have been found to be associated with peculiar galaxies are galaxies themselves. It is therefore implied that ejection of material took place within or near the parent peculiar galaxies with speeds between 10(2) and 10(4) kilometers per second. After traveling for times of the order of 10(7) to 10(9) years, the luminous matter (galaxies) and radio sources (plasma) have reached their observed separations from the central peculiar galaxy. The large red shifts measured for the quasars would seem to be either (i) gravitational, (ii) collapse velocities of clouds of material falling toward the center of these compact galaxies, or (iii) some as yet unknown cause.  相似文献   

16.
Irregular galaxies can be viewed as laboratories for studying the processes of star formation. This class of galaxy, unlike the more familiar spiral galaxies, forms stars without spiral arms and does so from a chemically less-evolved interstellar medium. In this article the problems associated with star formation in irregular galaxies are outlined and their relevance to our understanding of star formaton as a general astrophysical process is discussed.  相似文献   

17.
Recent x-ray, optical, and radio observations coupled with particle and gas dynamics numerical simulations reveal an unexpectedly complex environment within clusters of galaxies, driven by ongoing accretion of matter from large-scale supercluster filaments. Mergers between clusters and continuous infall of dark matter and baryons from the cluster periphery produce long-lived "stormy weather" within the gaseous cluster atmosphere-shocks, turbulence, and winds of more than 1000 kilometers per second. This weather may be responsible for shaping a rich variety of extended radio sources, which in turn act as "barometers" and "anemometers" of cluster weather.  相似文献   

18.
Isolated neutron stars are seen in x-rays through their nonthermal and/or surface thermal emissions. X-ray Multimirror Mission-Newton observations of the Geminga pulsar show a 43-electron volt spectrum from the whole neutron star surface, as well as a power-law component above 2 kiloelectron volts. In addition, we have detected a hot (170 electron volts) thermal emission from an approximately 60-meter-radius spot on the pulsar's surface. Such a thermal emission, only visible at selected phase intervals, may be coming from polar hot spot(s), long thought to exist as a result of heating from magnetospheric accelerated particles. It may provide the missing link between the x-ray and gamma-ray emission of the pulsar.  相似文献   

19.
Merritt D 《Science (New York, N.Y.)》1993,259(5103):1867-1871
Elliptical galaxies were once thought to be similar in their structure and dynamics to rotationally flattened bodies like stars. The discovery that elliptical galaxies rotate much more slowly than a fluid body with the same shape has led to a qualitative change in our understanding of the dynamics of these systems. It is now believed that elliptical galaxies are fully triaxial in shape. Self-consistent triaxial equilibria have been constructed and appear to be long-lived; they are made possible by the existence of conserved quantities, or integrals of motion, for galactic potentials without rotational symmetry. Many self-consistent equilibria are unstable; the nonexistence of elliptical galaxies with axis ratios more extreme than 3:1 is probably the result of such an instability. There is evidence for strong central mass concentrations, perhaps massive black holes, at the centers of some nearby galaxies. Recent observations suggest that many elliptical galaxies formed through the merger of two or more spiral galaxies.  相似文献   

20.
It is proposed that high-velocity pulsars are produced in extended galactic halos, and possibly in extragalactic space, from primordial (population III) stars. Such a population of neutron stars could provide an explanation for the gamma-ray bursters and would then accommodate the possibility that most bursters are not in the visible parts of galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号