首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Abstract

A phosphorus (P) greenhouse experiment was carried out with maize (Zea Mays L.) using surface horizons of three contrasted acid soils from southern Cameroon. The objectives were (i) to assess causal factors of maize differential growth and P uptake and (ii) to explore plant–soil interactions in acid soils under increasing P supply. Shoot and root dry‐matter yield and P uptake were significantly influenced by soil type and P rate (P<0.000), but the interaction was not significant. Soil properties that significantly (P<0.05) influenced maize growth variables were available P, soil pH, exchangeable bases [calcium (Ca), magnesium (Mg)], and exchangeable aluminium (Al). Data ordination through principal‐component analysis highlighted a four‐component model that accounted for 88.1% of total system variance (TSV) and summarized plant reaction in acid soil condition. The first component, associated with 36.1% of TSV, pointed at increasing root–shoot ratio with increasing soil acidity and exchangeable Al. The second component (24.6% of TSV) highlighted soil labile P pool increase as a function of P rate. The third and fourth components reflected nitrogen (N) accumulation in soils and soil texture variability, respectively.  相似文献   

2.
Abstract

Eighty four soil samples collected from southeastern Norway were analyzed for Cd by extraction with NH4OAc, DTPA, NH4OAc-EDTA, NH4NO3, HCl and CaCl2. The total Cd, pH, exchangeable K and Ca, dithionite-extractable Mn, available P and fine sand (0.2–0.02 mm) contents were the principal factors related to the extractable Cd, with some inter-extractant variations. Cadmium extracted by NH4NO3, NH4OAc, HCl and CaCl2 decreased with increasing soil pH, but the Cd extracted by all the extractants increased with increasing total Cd, exchangeable K and Ca, available P, and Mn-oxide contents in the soils. The Cd concentrations in plants were significantly related to the extractable Cd, exchangeable Ca and Mg, pH, Mn-oxides and organic matter content.  相似文献   

3.
This study was conducted to evaluate the redistribution of the heavy metals Cd, Cu, Pb, Ni, and Zn among different soil fractions by N fertilizers. In a lab experiment, soil columns were leached with distilled water, KNO3, NaNO3, NH4NO3, or Ca(NO3)2 · 4H2O. After leaching, soil samples were sequentially extracted for exchangeable (EXCH), carbonate (CARB), organic‐matter (OM), Mn oxide (MNO), Fe oxide (FEO), and residual (RES) fractions. Distilled water significantly increased the concentrations of Cd and Ni in EXCH fraction, while concentration of Cu and Zn did not change significantly. Application of KNO3, NaNO3, NH4NO3, or Ca(NO3)2 · 4H2O significantly increased the concentrations of Cd and Zn in EXCH fraction, while concentration of Pb and Ni was decreased. Application of all fertilizers caused an increase of Cu in the OM fraction. Moreover, leaching with these solutions significantly increased Cd [except in Ca(NO3)2 · 4H2O], Cu, and Zn concentrations in the CARB fraction, while Pb and Ni concentrations were decreased. With application of all leaching solutions, Zn in the EXCH, CARB, FEO, and MNO fractions was significantly increased, while Zn in the OM fraction did not change. The mobility index indicated that Ca(NO3)2 · 4H2O increased the mobility of Cd, Cu, and Zn in the soil, whereas NaNO3 decreased the mobility of Pb and Ni in the soil. The mobility index of Pb decreased by all leaching solutions. Thus, these results suggest that applying N fertilizers may change heavy‐metal fractions in contaminated calcareous soil and possibly enhance metal mobility and that N‐fertilization management therefore may need modification.  相似文献   

4.
Abstract

A steady decline in sulfur additions to Atlantic Canadian soils has prompted the need for an accurate method of determining their plant available sulfur status. Three soils were extracted with five soil extractants ‐ 0.01M Ca(H2PO4)2‐H2O in 2M HOAc, 0.1M CaCl2, Bray‐1 and de‐ionized water. The soil extracts were analyzed for sulfur or sulfate using inductively coupled argon plasma emission spectrometry (ICAP), AutoAnalyzer (AAN), anion exchange‐high performance liquid chromatography (HPLC‐CD) or atomic absorption spectroscopy (AAS). Results were compared with plant response of sulfur treatments to red clover, ryegrass, canola and wheat in a growth room. Instrument reproducibility and crop response indicated the ideal method of determining plant available soil sulfur was HPLC‐CD using the extractant Ca(H2PO4)2‐H2O.  相似文献   

5.
Investigations on the characterization of plant available phosphate in Thuringian calcareous soils Phosphate availability in Thuringian calcareous soils and its characterization by CAL‒, NaHCO3-, H2O- and CaCl2-soil tests was investigated in laboratory and pot experiments. Soil CaCO3 contents > 10% increase the pH value of CAL solution and thus decrease phosphate extractability. The increase of pH also causes an inadequate assessment of plant available phosphate by H2O- and CaCl2-soil tests. The CAL soluble P content of the soil corrected by the pH value of the extraction solution was most suitable for the forecast of P uptake of corn in a pot trial. From both parameters P availability indices for calcareous soils can be calculated which are comparable with those in soils containing < 5% CaCO3. The equation, which still has to be verified in field experiments, reads as CAL-Pcorrected = CAL-Pmeasured · (1 + 0.83·〈pH-valueCAL solution — 4.1〉).  相似文献   

6.
We measured soil chemical and microbial properties at a depth of 0–20 cm among mine tailings, abandoned mined land, contaminated cropland, and uncontaminated cropland around a magnesite mine near Haicheng City, Liaoning Province, China. The objective was to clarify the impact of Mg on the soils. We found that soluble Mg2+ concentration and pH were significantly higher in contaminated soils (266–345 mg kg−1 and 9·9–10·3, respectively) than in uncontaminated soils (140 mg kg−1 and 7·1, respectively). Soil nutrients (total N, total P, mineral N, available P and soluble Ca) and microbial biomass C and N decreased as pH and soluble Mg2+ concentration increased. In addition, an increase of microbial metabolic quotient and a decrease of N mineralization rate were found in contaminated soils. Soluble Mg2+/Ca2+ ratios in contaminated soils were 3·5–8·9‐times higher than in uncontaminated soils. Our results indicate that soil contamination in such magnesite mine regions is characterized by high pH, Mg2+ concentration and soluble Mg2+/Ca2+ ratio, and low microbial activity and N and P availability. Future soil amelioration in the magnesite regions should consider applying acid ameliorants to neutralize high pH and applying calcareous ameliorants to increase Ca2+ concentration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

Results from 2 pastoral field lime trials showed that liming reduced exchangeable Mg. This effect increased with increasing rate of lime and with time following lime application, and was greatest in the top 0–50 mm depth. Soil solutions, sampled 2 years after liming, showed that solution Mg increased in increasing rate of lime. This effect was greatest in the top 20 mm of soil.

Lime incubation studies indicated that Mg fixation did occur on some of the soil studied, at pH >6.2. However, this did not account for the size of the observed effects of liming on exchangeable Mg in the field or explain the observed effects of liming at pH <6.2.

It is suggested therefore, that the major mechanism by which liming reduces exchangeable Mg, on these soils, is through displacement of exchangeable Mg into solution by the added Ca in lime, and subsequent leaching.

Results from other field trials suggest that liming will decrease exchangeable Mg if the change in pH‐dependent CEC (?ECEC) per unit change in soil pH is <15 me 100 g‐1.  相似文献   

8.
Abstract

An experiment was carried under controlled conditions to investigate the influence of the anions, H2PO4 . and Cl on the ionic equilibria, selectivity and effective diffusion of Rb, K, Na, Ca, Mg in two Indiana soils.

Additon of anions to the soils increased the concentration of cations in soil solution. In both the soils receiving H2PO4 , lower cation concentrations were found in the soil solution than in those receiving Cl . Additon of H2PO4 and Cl reduced the ion selectivity coefficient, k, for various homovalent (Rb/K, Rb/Na, K/Na, Ca/Mg) and mono‐divalent ion pairs (Rb/Ca, Rb/Mg, K/Ca, K/Mg). In Zanesville soil treatments receiving H2PO4 had lower k values for mono‐divalent cations than treatments receiving Cl. However, no such conclusions could be drawn for Raub soil. Soils treated with H2PO4 had higher k values for homovalent cations than Cl treated soils. The differences in the selectivity of adsorption in these two soils might be attributable to the differences in the type and nature of exchange materials and cation concentrations on the exchange phase.

Addition of H2PO4 or Cl enhanced the magnitude of effective diffusion coefficient. (De) of all the cations under considerations. The magnitude of effective diffusion coefficient for cations was lower for H2PO4 treated soils than Cltreated soils. Such a reduction in De is related to the reduction in cation concentration in soil solution thereby increasing the buffer capacity for the ions under consideration.  相似文献   

9.
Summary

A simple, single‐step extraction with LiEDTA for the estimation of CEC and exchangeable bases in soils has been developed. Multivalent cations are stripped from the soil adsorption sites by the strongly chelating agent EDTA, and are replaced by Li. In soils without CaCO3 or water soluble salts, exchangeable divalent cations (Ca, Mg) are chelated by EDTA and exchangeable monovalent cations (Na, K) are replaced in a single extraction step using 0.25–2.5 g of soil and 10.0 ml of extractant.

In calcareous soils the CEC can be determined in the same way, but for the extraction of exchangeable Ca and Mg, another separate extraction is needed because dissolution of calcite by EDTA is unavoidable. This extraction is done with as much NaEDTA as needed to extract only exchangeable Ca and Mg in a 1:2 (m/V) soil/alkaline‐50% (V/V) aethanolic solution to minimize dissolution of calcite.

In gypsiferous soils gypsum is transformed into insoluble BaSO4 and soluble CaEDTA by LiBaEDTA thus avoiding interference of Ca from dissolution of gypsum, which renders the traditional methods for determining CEC unsuitable for such soils. To determine exchangeable Ca and Mg, Na4EDTA is used as for calcareous soils.

In saline/sodic soils replacement of Na by Li is incomplete but the Na/Li‐ratio at the complex after extraction is proportional to the molar Na/Li‐ratio in the extracts, so that the CEC and original exchangeable sodium (ESP) content can be calculated. Additional analysis of Cl and, if necessary, SO4 in the extracts of saline soils can be used to correct for the effect of dissolution of the salts on the sum of exchangeable cations.

This new method is as convenient as the recently developed AgTU (silverthiourea), but is better suitable for calcareous and gypsiferous soils.  相似文献   

10.
Industrial activities can contribute to the accumulation of heavy metals in soils, which could potentially threaten public health and the environment. This research was conducted to investigate the relationships between pH and total organic carbon (TOC) with soil chemical parameters, including exchangeable and total Cu, Zn, Cd, Pb, K, and Mg concentrations in soils near Panevėžys and Kaunas, Lithuania. Principal component regression (PCR) and non‐linear regression were used to find statistical relationships between pH, TOC, and the other soil properties studied. The results of correlation tests indicated that pH and TOC had strong relationships with most of the soil properties. The results of PCR [R 2 = 0·87, RMSE = 0·046] and non‐linear regression [R 2 = 0·91, RMSE = 0·041] (pH and the entire parameters), PCR [R 2 = 0·777, RMSE = 0·058] and non‐linear regression [R 2 = 0·871, RMSE = 0·046] (pH and the exchangeable parameters) to model the relationships between pH and soil chemical properties were promising and significant. Exchangeable heavy metal concentrations increased for pH > 5. Even though the relationships between TOC and heavy metals were significant, they were not as powerful as the relationships between pH and these metals. It was concluded that total metal concentrations in the study soils can be predicted by either pH or TOC. Metal mobility could most likely be controlled at the study site by manipulating soil pH and/or TOC. Finally, it is suggested that when there are financial and time limitations, assessment of total exchangeable metal concentrations using soil pH and/or TOC could be productive. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The decrease in anthropogenic deposition, namely SO42— and SO2, in European forest ecosystems during the last 20 years has raised questions concerning the recovery of forest ecosystems. The aim of this study was to evaluate if the long term data of element concentrations at the Fichtelgebirge (NE‐Bavaria, Germany) monitoring site indicates a relationship between the nutrient content of needles and the state of soil solution acidity. The soil at the site is very acidic and has relatively small pools of exchangeable Ca and Mg. The trees show medium to severe nutrient deficiency symptoms such as needle loss and needle yellowing. The Ca and Mg concentrations in throughfall decreased significantly during the last 12 years parallel to the significant decline in the throughfall of H+ and SO42— concentrations. Soil solution concentrations of SO42—, Ca and Mg generally decreased while the pH value remained stable. Aluminum concentrations decreased slightly, but only at a depth of 90 cm. Simultaneously a decrease in the molar Ca/Al and Mg/Al ratios in the soil solution was observed. Ca and Mg contents in the spruce needles decreased, emphasizing the relevance of soil solution changes for tree nutrition. The reasons for the delay in ecosystem recovery are due to a combination of the following two factors: (1) the continued high concentrations of NO3 and SO42— in the soil solution leading to high Al concentrations and low pH values and, (2) the decreased rates of Ca and Mg deposition cause a correlated decrease in the concentration of Ca and Mg in the soil solution, since little Ca and Mg is present in the soil's exchangeable cation pools. It is our conclusion that detrimental soil conditions with respect to Mg and Ca nutrition as well as to Al stress are not easily reversed by the decreasing deposition of H+ and SO42—. Thus, forest management is still confronted with the necessity of frequent liming to counteract the nutrient depletion in soils and subsequent nutrient deficiencies in trees.  相似文献   

12.
Abstract

The effect of calcium (Ca)/magnesium (Mg) ratio in the soil on Mg availability, yield, and yield components of maize (Zea mays L.) was investigated both in the greenhouse and the field at eight different Ca/Mg ratios ranging from 1∶1 and 8∶1. In the greenhouse, exchangeable Ca/Mg ratios of 2∶1 to 3∶1 gave optimum yield of maize without Mg‐deficiency symptoms. The Ca/Mg ratios in the soil were positively and significantly correlated with Ca content and negatively and significantly correlated with Mg content. The Ca/Mg ratio in the soil was also positively and significantly correlated with observed Ca/Mg ratio in the maize plant tissue. The Ca/Mg ratio in the soil could be a limiting factor for Mg nutrition of the maize plant. Under field conditions, exchangeable Ca/Mg ratios in the soil showed no significant effects on the Ca and Mg contents of the maize earleaf. However, optimum maize yield was obtained at an exchangeable Ca/Mg ratio of 6∶1.  相似文献   

13.
pH values in CaCl2 suspensions of some acid Scottish soils increase with time, in some cases by 0·4 units in 24 h. This is attributed to proton uptake by a complex ion displaced into solution, and to obtain unambiguous values, pH in CaCl2 suspensions should be measured within an hour of making up the suspensions. In moderately to strongly acid soils, lime potential (LP) and aluminium hydroxide potential (AHP) vary with salt concentration and soil: solution ratio. Unique values for these ion-activity ratios can be obtained by equilibration with a single solution only when the reference cations, i.e. (Ca2++Mg2+) for LP, and Al3+ for AHP, are the dominant exchangeable cations. Otherwise, equilibrium values should be obtained by interpolation from an exchange isotherm at the point where no exchange occurs, i.e. where Δ(Ca+Mg) = o for LP values and ΔA1 = o for AHP values.  相似文献   

14.
Six phosphorus (P) fertilizers recycled from sewage sludge [Struvite SSL, Struvite AirPrex®, P‐RoC®, Mephrec®, Pyrolysis coal and Ash (Mg‐SSA)] were tested for their plant availability in potted soil of pH 7.2 under greenhouse conditions. The crop sequence simulated a rotation of red clover (Trifolium pratense L.), maize (Zea maize L.), and ryegrass (Lolium perenne L.). Other P fertilizer treatments included: Phosphate Rock (PR), Calcium dihydrogen phosphate [Ca(H2PO4)2], and an unfertilized control. Additionally, soil was regularly inoculated with two strains of plant growth‐promoting rhizobacteria (PGPR; Pseudomonas sp. Proradix, and Bacillus amyloliquefaciens) to test their ability to increase P availability to plants. Sequential P fractionation was conducted to link the amount of readily available P in fertilizers to plant P acquisition. Shoot P content and dry matter of maize decreased in the following order: Struvite SSL ≥ Ca(H2PO4)2 > P‐RoC® ≥ Struvite AirPrex® ≥ Mephrec® > Pyrolysis coal ≥ Mg‐SSA ≥ PR ≥ unfertilized. Rhizobacteria did not affect shoot biomass or P content. The results show that red clover might have mobilized substantial amounts of P. Sequential P fractionation was not suitable to predict the efficacy of the fertilizers. Generally, the sewage sludge‐based fertilizers tested proved to be suitable alternative P sources relevant to organic farming systems. However, the efficacy of recycled fertilizers is strongly dependent on their specific production conditions.  相似文献   

15.
改良剂对镉污染酸性水稻土的修复效应与机理研究   总被引:29,自引:0,他引:29  
为探明田间条件下施用石灰、钙镁磷肥、海泡石和腐殖酸等改良剂对Cd污染酸性水稻土的修复效应和作用机理, 通过在Cd污染区建立田间小区试验, 研究了改良剂单施和与石灰配施对Cd污染酸性水稻土中Cd作物有效性的影响。结果表明, 施用改良剂有效地改变了土壤中Cd的存在形态, 除腐殖酸外, 其他改良剂均使土壤酸提取态Cd不同程度地转化为可还原态Cd和残渣态Cd; 施用改良剂可使0.1 mol·L-1 NaNO3和 0.01 mol·L-1CaCl2提取态Cd 降低26%~97%, 降低效果为石灰+海泡石>海泡石>石灰+钙镁磷肥>钙镁磷肥>石灰>石灰+腐殖酸>腐殖酸; 改良剂使水稻地上部分的Cd吸收量降低6%~49%。试验结果还显示, 施用改良剂提高土壤pH是引起土壤中Cd作物有效性降低的主要原因之一。根据田间试验的结果, 海泡石可推荐作为Cd污染酸性水稻土的改良剂, 而腐殖酸则不宜使用。  相似文献   

16.
17.
Abstract

The relationship between water soluble and exchangeable cations (Ca, Mg, Na, and K) was investigated for surface horizons of 195 soils including many taxonomic categories and a wide range in physical and chemical properties from around the world. This will provide information on exchangeable soil cation solubility for use in estimating plant uptake and leaching potential. Amounts of water soluble and exchangeable cations were not consistently related (r2 of 0.50, 0.08, 0.77, and 0.49 for Ca, Mg, Na, and K). High correlations were biased by high water soluble and exchangeable cation levels of a few soils that had 3.8‐ and 2.5‐fold greater mean than median values. The ratio of exchangeable to water soluble cations was closely related to cation saturation (r2 of 0.87, 0.95, 0.95, and 0.93 for Ca, Mg, Na, and K, respectively). As the degree of saturation of the exchange complex by a certain cation increased, solubility Increased. A change in saturation had less effect on K than on Na, Mg, and Ca solubility. Only exchangeable soil cations (NH4OAc extractable) are routinely measured and reported in soil survey reports, thus, water soluble levels may be determined from cation saturation. This will allow estimation of the amounts of cation that can potentially move in solution through the soil or be taken up by plants. Use of cation saturation, in addition to exchangeable content, will better characterize soil cation availability by representing quantity, intensity, and buffer factors.  相似文献   

18.
Common sequential phosphorus (P) extraction methods are not specific to particular chemical species and have several limitations. This work presents the first chemical method for quantification of individual mineral and sorbed P species. It was developed by combining a conversion technique with a sequential extraction procedure. Mangrove sediments with different characteristics were incubated in pH‐adjusted 0.01 M CaCl2 with and without reference material additions of octacalcium phosphate (Ca8H2(PO4)6·5H2O; OCP), hydroxyapatite (Ca5(PO4)3OH), strengite (FePO4·2H2O) or variscite (AlPO4·2H2O). The changes in soluble phosphate concentration were measured in the supernatant solution, while pH‐induced variations in P composition were determined by subsequent sequential extraction of the sediments. Dissolved phosphate concentration was controlled by adsorption below pH 7.8. Above this pH, soluble phosphate concentration was governed by OCP, which was qualitatively determined by plotting the experimental values of pH + pH2PO4 and pH – 0.5 pCa on a solubility diagram including the isotherms of known crystalline phosphate compounds. In contrast to the often‐predicted slow dissolution rate of crystalline phosphates in soils or sediments, drastic changes in P composition by dissolution, precipitation and adsorption processes were detected after 7 days. These were mainly not observed indirectly by changes in dissolved phosphate through adsorption effects, but were determined quantitatively by subsequent sequential extraction, thus enabling the quantification of individual species. Evaluation of the method was performed by standard addition experiments. Besides P species quantification, the method provides the means for other applications, such as the determination of P mineral dissolution kinetics in soils and sediments, the prediction of P composition in changing environmental settings and the refinement of theoretical models of phosphate solubility in soil and sedimentary environments.  相似文献   

19.
Abstract

In Oxisols, acidity is the principal limiting factor for crop production. In recent years, because of intensive cropping on these soils, deficiency of micronutrients is increasing. A field experiment was conducted on an Oxisol during three consecutive years to assess the response of common bean (Phaseolus vulgaris L.) under a no‐tillage system to varying rates of lime (0, 12, and 24 Mg ha?1) and boron (0, 2, 4, 8, 12, 16, and 24 kg ha?1) application. Both time and boron (B) were applied as broadcast and incorporated into the soil at the beginning of the study. Changes in selected soil chemical properties in the soil profile (0- to 10‐ and 10- to 20‐cm depths) with liming were also determined. During all three years, gain yields increased significantly with the application of lime. However, B application significantly increased common bean yield in only the first crop. Only lime application significantly affected the soil chemical properties [pH; calcium (Ca2+); magnesium (Mg2+); hydrogen (H+)+ aluminum (Al3+); base saturation; acidity saturation; cation exchange capacity (CEC); percent saturation of Ca2+, Mg2+, and potassium (K+); and ratios of exchangeable Ca/Mg, Ca/K, and Mg/K] at both soil depths (0–10 cm and 10–20 cm). A positive significant association was observed between grain yield and soil chemical properties. Averaged across two depths and three crops, common bean produced maximum grain yield at soil pHw of 6.7, exchangeable (cmolc kg?1) of Ca2+ 4.9, Mg2+ 2.2, H++Al3+ 2.6, acidity saturation of 27.6%, CEC of 4.1 cmolc kg?1, base saturation of 72%, Ca saturation of 53.2%, Mg saturation of 17.6%, K saturation of 2.7%, Ca/Mg ratio of 2.8, Ca/K ratio of 25.7, and Mg/K ratio of 8.6. Soil organic matter did not change significantly with addition of lime.  相似文献   

20.
ABSTRACT

Effect of slag-based gypsum (SBG) and commercial gypsum (CG) on maize was investigated in acidic and neutral soils. A randomized complete block design (RCBD) with seven treatments consisting of three levels (150, 450, and 750 kg ha?1) of SBG and CG with recommended dose of fertilizer (RDF) and one control was maintained. Application of SBG @750 kg ha?1 recorded significantly higher (8.61 and 8.69 t ha?1, respectively) cob yield of maize compared to CG and control treatments in both soil condition. Increased levels of SBG application increased soil pH and EC in both the soils, but decreased with the application of CG. Application of 750 kg SBG ha?1 recorded significantly higher soil available nutrients like phosphorus in acidic soil and potassium in neutral soil. Higher exchangeable calcium and magnesium in acidic soil and exchangeable calcium in neutral soil were recorded with the application of CG @750 kg ha?1. Available sulfur was significantly higher with CG @750 kg ha?1 applied treatment in both soils. CaCl2Si content in acidic soil varied significantly and recorded higher with application of SBG, while CaCl2Si content in neutral soil and AASi in both soils had no significant effect by application of SBG. Significantly higher DTPA extractable micronutrients in acidic and neutral soil were noticed in SBG @750 kg ha?1 applied treatment. However, application of SBG had no significant effect on iron and copper content in neutral soil. Higher uptake of nutrients was recorded with 750 kg SBG ha?1 compared CG applied and other treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号