首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
A experiment was carried to evaluate the effects of Al on growth,accumulations of free proline and amino acid in 2 wheat cultivars(Triticum aestivum L.),Yangmai No.5 and Jian 864,differing in Al Sensitivity.Plants grew initially in a nutrient solution without Al for 13 days before the addition of Al and finally in a nutrient solution containing 0.5mmol Al(L^-1)for 19 days,the results showed that there were marked deceases in dry weight,relative growth rate(RGR) and net assimilation rate (NAR)of Al-treated seedlings compared with control plants.The Al effects were more evident in Yangmai No.5 than Jian 864.Leaf area ratio(LAR) was little affected by Al.RGR was highly correlated with NAR rather than LAR.Aluminum increased the concentrations of free proline and total free amino acid in shoots of both the cultivars.The increases were greater in Yangmai No.5 than in Jian 864.The percentage of free proline in total amino acid in shoots was not affected by Al treatment.It was possible that accumulation of proline was merely a symptom of Al injury.The concentrations of total nitrogen in Al-treated plants did not significantly differ from those of control plants.Nitrate reductase activity(NRA),in leaves was severely decreased by Al,and a greater decrease was noted in Yangmai No.5 than in Jian 864,but NRA in roots of both the cultivars was not affected.The decreases in NRA might be and indirect(accumulation of amino acid) rather than a direct result of Al toxicity.  相似文献   

2.
A glasshouse experiment was conducted using a root-bag technique to study the root exudates, rhizosphere Zn fractions, and Zn concentrations and accumulations of two ryegrass cultivars (Lolium perenne L. cvs. Airs and Tede) at different soil Zn levels (0, 2, 4, 8, and 16 mmol kg-1 soil). Results indicated that plant growth of the two cultivars was not adversely affected at soil Zn level≤8 mmol kg-1. Plants accumulated more Zn as soil Zn levels increased, and Zn concentrations of shoots were about 540 /μg g-1 in Aris and 583.9μg g-1 in Tede in response to 16 mmol Zn kg-1 soil. Zn ratios of shoots to roots across the soil Zn levels were higher in Tede than in Airs, corresponding with higher rhizosphere available Zn fractions (exchangeable, bound to manganese oxides, and bound to organic matter) in Airs than in Tede. Low-molecular-weight (LMW) organic acids (oxalic, tartaric, malic, and succinic acids) and amino acids (proline, threonine, glutamic acid, and aspartic acid, etc.) were detected in root exudates, and the concentrations of LMW organic acids and amino acids increased with addition of 4 mmol Zn kg-1 soil compared with zero Zn addition. Higher rhizosphere concentrations of oxalic acid, glutamic acid, alanine, phenylalanine, leucine, and proline in Tede than in Airs likely resulted in increased Zn uptake from the soil by Tede than by Airs. The results suggested that genotypic differences in Zn accumulations were mainly because of different root exudates and rhizosphere Zn fractions.  相似文献   

3.
铝和镉胁迫对两个大麦品种矿质营养和根系分泌物的影响   总被引:7,自引:0,他引:7  
A hydroponic experiment was carried out to study the effect of aluminum (Al) and cadmium (Cd) on Al and mineral nutrient contents in plants and Al-induced organic acid exudation in two barley varieties with different Al tolerance. Al- sensitive cv. Shang 70-119 had significantly higher Al content and accumulation in plants than Al-tolerant cv. Gebeina, especially in roots, when subjected to low pH (4.0) and Al treatments (100 μmol L^-1 Al and 100 μmol L^-1 Al +1.0 μmol L^-1 Cd). Cd addition increased Al content in plants exposed to Al stress. Both low pH and Al treatments caused marked reduction in Ca and Mg contents in all plant parts, P and K contents in the shoots and leaves, Fe, Zn and Mo contents in the leaves, Zn and B contents in the shoots, and Mn contents both in the roots and leaves. Moreover, changes in nutrient concentrations were greater in the plants exposed to both Al and Cd than in those exposed only to Al treatment. A dramatic enhancement of malate, citrate, and succinate was found in the plants exposed to 100 μmol L^-1 Al relative to the control, and the Al-tolerant cultivar had a considerable higher exudation of these organic acids than the Al-sensitive one, indicating that Al-induced enhancement of these organic acids is very likely to be associated with Al tolerance.  相似文献   

4.
The effects of carbon (C) and nitrogen (N) sources on N utilization and biosynthesis of amino acids were examined in the germinating spores of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith after exposure to various N substrates,CO2,glucose,and/or root exudates.The N uptake and de novo biosynthesis of amino acids were analyzed using stable isotopic labeling with mass spectrometric detection.High-performance liquid chromatography-based analysis was used to measure amino acid levels.In the absence of exogenous N sources and in the presence of 25 mL L-1 CO2,the germinating AM fungal spores utilized internal N storage as well as C skeletons derived from the degradation of storage lipids to biosynthesize the free amino acids,in which serine and glycine were produced predominantly.The concentrations of internal amino acids increased gradually as the germination time increased from 0 to 1 or 2 weeks.However,asparagine and glutamine declined to the low levels;both degraded to provide the biosynthesis of other amino acids with C and N donors.The availability of exogenous inorganic N (ammonium and nitrate) and organic N (urea,arginine,and glutamine) to the AM fungal spores using only CO2 for germination generated more than 5 times more internal free amino acids than those in the absence of exogenous N.A supply of exogenous nitrate to the AM fungal spores with only CO2 gave rise to more than 10 times more asparagine than that without exogenous N.In contrast,the extra supply of exogenous glucose to the AM fungal spores generated a significant enhancement in the uptake of exogenous N sources,with more than 3 times more free amino acids being produced than those supplied with only exogenous CO2.Meanwhile,arginine was the most abundant free amino acid produced and it was incorporated into the proteins of AM fungal spores to serve as an N storage compound.  相似文献   

5.
LIANG Yong-Chao 《土壤圈》1998,8(4):289-296
Two contrasting cultivars of barley(Hordeum vulgare L.):Kepin No.7(salt sensitive),and Jian 4(salt tolerant)were grown in a hydropon ics system with 2 NaCl levels:60 mmol NaCl L^-1 and 120 mmol NaCl L^-1 ,and 3 Si levels:0 mmol Si L^-1 ,0.5 mmol Si L^-1 and 1.0 mmol Si L^-1 (as silicic acid).Compared with the plants treated with 60 mmol NaCl L^-1 alone,the leaf chlorophyll contents of plants rreated with salt and Si increased significantly ofr salt-sensitive cultivar at tillering stage,but for alt-tolerant cultivar,the addition of Si resulted in an obivous increase in the leaf chlorophyll content of plants exposed to 120 mmol NaCl L^-1 ,However,this Si-enhancement of leaf chlorophyll content was also observed in the salttolerant plants at joninting stage,but not in the salt-sensitive plants.Moreover,leaf chlorophyll content was consistently higher for the salt-tolerant cultivar than for the salt-sensitive cultivar irrespective of salt and/or Si treatment .Compared with the plants treated with sal alont ,net CO2 assimilation rate in plant leaves increased significantly for both cultivars when treated with salt and Si, Teh addition of Si to the salt teatment was found to improve the cell ultrastructure of leaves.Under salt stress condition,the double membranes of chloroplasts disappeared,but membrane integrity was markedly improved in the salt treatment supplemented with Si.Silicon was also found to ameliorate the damage to the ultrasturcture of chloroplast granae which appeared to be disintegrated and vague in salt treatments without added Si.The results support previous work which showed that Si decreases the permeability of plasma membranes of salt-stressed barley,thus mitigating salt damage.  相似文献   

6.
Results of a 10-year decomposition experiment indicated that the annual mineralization rate of organic N in newly-formed humus varied with the type of original plant materials and the water regimes for decomposition,ranging from 0.028 to 0.074.The mineralization rate under waterlogged conditions was higher than that under upland conditions.The proportion of α-amino acid N in humus newly-formed under waterlogged conditions was slightly higher than that under upland conditions.It decreased gradually with time,while the proportion of nonhydrolyzable N showed no consistent trend,irrespective of the water regines for decomposition.The distribution of amino acids in humus newly-formed from different plant materials under various water regimes was quite similar with that in original plant materials,and only minor differences could be found among them.For example,in comparison to original plant materials,the newly-formed humus contained higher proportions of isoleucine,cysting,γ-amino-butyric acid and ornithine,and lower proportions of phenylalanine and proline.Moreover the proportion of phenylalanine was higher in the humus newly-fored under waterlogged conditions than that under upland conditions.  相似文献   

7.
施用碱稳定污泥污水土壤经γ-辐照后土壤溶液中Cu和Zn   总被引:1,自引:0,他引:1  
Soil samples collected from several acid soils in Guangdong, Fujian, Zhejiang and Anhui provinces of the southern China were employed to characterize the chemical species of aluminumions in the soils. The proportion of monomeric inorganic Al to total Al in soil solution was in the range of 19% to 70%, that of monomeric organic Al (Al-OM) to total Al ranged from 7.7% to 69%, and that of the acid-soluble Al to total Al was generally smaller and was lower than 20% in most of the acid soils studied. The Al-OM concentration in soil solution was positively correlated with the content of dissolved organic carbon (DOC) and also affected by the concentration of Al3+. The complexes of aluminum with fluoride (Al-F) were the predominant forms of inorganic Al, and the proportion of Al-F complexes to total inorganic Al increased with pH. Under strongly acid condition, Al3+ was also a major form of inorganic Al, and the proportion of Al3+ to total inorganic Al decreased with increasing pH. The proportions of Al-OH and Al-SO4 complexes to total inorganic Al were small and were not larger than 10% in the most acid soils. The concentration of inorganic Al in solution depended largely on pH and the concentration of total F in soil solution. The concentrat ions of Al-OM, Al3+, Al-F and Al-OH complexes in topsoil were higher than those in subsoil and decreased with the increase in soil depth. The chemical species of aluminumions were influenced by pH. The concentrations of Al-OM, Al3+, Al-F complexes and Al-OH complexes decreased with the increase in pH.  相似文献   

8.
K. OH  T. KATO  H. L. XU 《土壤圈》2008,18(2):222-226
An experiment was carried out to study the transport process of nitrogen (N) assimilation from tea roots by monitoring the dynamic composition of N compounds in xylem sap after 15^N-NO3 and 15^N-NH4 were fed to the root of tea plants (Camellia sinensis L.). Results showed that the main amino acids were glutamine, theanine, axginine, asparic acid and glutamic acid, which accounted for 49%, 17%, 8%, 7%, and 4%, respectively, of the total amino acids in the xylem sap. After the tea plants were fed with 15^N-NO3 and 15^N-NH4 for 48 h, the amount of total amino acids in xylem sap significantly increased and those fed with 15^N-NH4 had higher increment than those with 15^N-NOa. Two hours after 15^N- NO3 and 15^N-NH4 were fed, 15N abundance in glutamine, asparagine, glutamic acid, alanine, and arginine were detected and increased quickly over time. This indicated that it took less than 2 h for NO3-N and NH4-N to be absorbed by tea roots, incorporated into the above amino acids and transported to the xylem sap. Rapid increase in 15^N-NO3 in the xylem sap of tea plants fed with 15^N-NO3 indicated that nitrate could be directly transported to the xylem sap. Glutamine, theanine, and alanine were the main amino acids transported in xylem sap of tea plants fed with both 15^N-NO3 and 15^N-NH4.  相似文献   

9.
The objective of the present study is to reveal the composition and characteristics of organo-mineral complexes in red soils (red soil,lateritic red soil and latosol) of south China in terms of chemical dissolution and fractional peptization methos.In the combined humus,most of the extractable humus could dissolve in 0.1 M NaOH extractant and belonged to active humus (H1),and there was only a small amount of humus which could be further dissolved in 0.1 M Na4P2O7 extractant at pH 13 and was stably combined humus (H2).The H1/H2 ratio ranged from 3.3 to 33.8 in red soils,and the proportions of both H1 and total extractable organic carbon (H1 H2) in total soil organic carbon and the ratios of H1 to H2 and H1 to (H1 H2) were all higher in lateritic red soil and latosol than in red soil.The differences of combined humus composition in various red soils were directly related to the content of Fe and Al oxides.In organo-mineral complexes,the ratio of Na-dispersed fraction (G1) to Na-ground-dispersed fraction (G2) was generally smaller than 1 for red soils,but there was a higher G1/G2 ratio in red soil than in lateritic red soil and latosol.G1 fraction had a higher content of fulvic acid (FA),but G2 fraction had a higher content of humic acid (HA).The ratios of H1 to H2 and HA to FA were higher in G2 than in G1.The differences in the composition and activity of humus between G1 and G2 fractions were related to the content of free Fe and Al oxides.The quantities of complex Fe and Al,the Fe/C and Al/C atomic ratios were higher in G2 than in G1,and the ratio of Al/C was much higher than that of Fe/C.It may be deduced that aluminum plays a more important role than iron in the formation process of organo-mineral complexes in red soils.  相似文献   

10.
Low-molecular-weight (LMW) organic acids exist widely in soils and have been implicated in many soil processes.The objective of the present paper was to evaluate effect of two LMW organic acids, citric acid and oxalic acid, on Cl^- adsorption by three variable charge soils, a latosol, a lateritic red soil and a red soil, using a batch method. The results showed that the presence of citric acid and oxalic acid led to a decrease in Cl- adsorption with larger decreases for citric acid. Among the different soils Cl- adsorption in the lateritic red soil and the red soil was more affected by both the LMW organic acids than that in the latosol.  相似文献   

11.
A rapid and simple nutrient addition technique was used for evaluating Al tolerance of six local upland rice (Oryza sativa L.) cultivars (BG35, BR21, DA25, DA26, DA14, and DA22) from Bangladesh and three IRRI rice, IR46, IR97, and IR45, cultivars from the Philippines. The plants were grown for 21 days with Al (0 μM, 140 μM, 280 μM or 560 μM) at pH 4.1. The roots were more affected by Al than the shoots. In rating cultivars for Al sensitivity, relative shoot weight (RSW) was found to be the best parameter due to the severe damage of the roots, irrespective of Al sensitivity. The cultivars were rated as Al tolerant (BG35, BR21, DA25, and DA26), mid‐tolerant (DA14, DA22, and IR46) and sensitive (IR97 and IR45) . More Al was retained in the roots of tolerant cultivars than in the mid‐tolerant or sensitive cultivars. In shoots, the Al concentration of tolerant cultivars was less than in the mid‐tolerant or in the sensitive cultivars and the inhibition of growth was proportional to Al concentration irrespective of Al tolerance. Therefore, the variation among cultivars in Al sensitivity could be related to the capacity of roots to retain Al from transport to the shoots.  相似文献   

12.
Reports on varietal diversity of upland rice in relation to relatively low aluminium (Al) levels are limited. Therefore, effects were examined of 35, 70, and 140 μM Al on plant growth and uptake of macro‐ and micro‐nutrients (K, P, Ca, Mg, Fe, Zn, Cu, and Mn) and their distribution in three upland rice (Oryza saliva L.) cultivars (BG35, DA14, and IR45) with different Al sensitivity. After an initial growth period of 5 days without Al, the plants were grown for 21 days in nutrient solutions containing Al at pH 4.1. Cultivar BG35 showed the highest and IR45 the lowest tolerance to Al when fresh weights of shoots or roots were considered. Except for IR45 at 140 μM Al, total dry weight was unaffected by Al, and the cultivars could not be clearly distinguished with respect to Al tolerance. Net Al uptake rate was higher in Al tolerant BG35 than in DA14 or IR45. Conversely, in IR45 the absorbed Al was rapidly transported to the shoots and accumulated there. In BG35, net P and Ca uptake rates in Al‐treated plants were high enough to maintain the P and Ca status of the shoots at all Al levels. Irrespective of Al sensitivity, there was a general depression of internal Mg concentration in Al‐reated plants. The Fe, Zn, Cu, and Mn concentrations of the plants were not negatively affected by Al in any of the cultivars.  相似文献   

13.
14.
Two upland rice (Oryza sativa L.) cultivars with high (IR45) and low (BG35) aluminium (Al) sensitivity were selected to investigate the influence of Al on growth and uptake and distribution of macronutrients [potassium (K), phosphorus (P), calcium (Ca), and magnesium (Mg)] when the plants were grown at various levels of nutrient supply. The plants were grown for 21 days with or without 140 μM Al at pH 4.1. Nutrients were supplied with 2.5, 5.0, 10, or 15% relative increase/day relative nutrient addition rate (RNR), according to a nutrient supply program. In this range of nutrient supply rates, the degree of Al sensitivity in the two rice cultivars was not markedly affected, except for root growth in BG35 that was more inhibited at low RNRs than at high RNRs. Regardless of nutrient supply rate, Al was mainly confined to the roots in both cultivars. However, the concentrations of Al in the shoots was consistently lower in BG35 than in IR45. Different Al sensitivity in BG35 and IR45 was associated with different influence on uptake and distribution of P and Ca. Uptake of Mg was drastically inhibited by Al at all nutrient supply levels in both cultivars. Uptake and distribution of K were not negatively affected by Al.  相似文献   

15.
在高产条件下,冬性春性类型小麦品种各自适期播种,相对早播的冬性半冬性类型的总干物质积累量(简称DMA,后同)高于春性类型;生育前期冬性、半冬性的DMA高于春性,后期春性半冬性高于冬性.茎秆光合产物输出率、成熟期籽粒干重占单株总干重的百分率表现为春性>半冬性>冬性,而基秆干重所占的百分率则呈相反趋势.同期播种,总DMA及籽粒产量都有春性高于冬性、半冬性的趋势.春性及半冬性品种的籽粒干重日增长量和籽粒相对生长率都明显高于冬性品种.因而春性及半冬性品种单株粒重大,经济产量高.本文提出在冬性春性类型品种交叉地区,  相似文献   

16.
Toxic effects of aluminium (Al) on root tips are considered to decrease export of cytokinins to shoots, and deficiency of cytokinins has been made responsible for Al‐induced inhibition of shoot growth. But no experimental data on the influence of Al on endogenous cytokinin levels in higher plants have been reported. In this study, the endogenous levels of zeatin riboside (ZR) and dihydrozeatin riboside (DHZR) of roots, stems, and leaves of two bean cultivars (Phaseolus vulgaris L. cv Contender and cv Strike) exposed to Al in continuously flowing nutrient solution (pH 4.5) was analysed. The supply of a high Al concentration (sum of monomeric Al species, 127 μM) caused severe inhibition of root elongation in both cultivars. The cv Strike was more affected by both Al‐induced mineral nutrient disorders and Al‐induced alteration of leaf water relationships. In both cultivars Al‐supply significantly increased ZR and DHZR. Leaves of Al‐treated plants exhibited a more than three times higher concentration of ribosylated cytokinins than controls. Nevertheless, stomatal resistance was significantly increased by Al in both cultivars. Our results support the hypothesis that Al affects plants not by inducing deficiency of cytokinins but of some other factor necessary for the manifestation of cytokinin action.  相似文献   

17.
Two separate experiments were conducted to investigate the aluminium (Al) and calcium (Ca) effects on wheat seedling growth and on seed germination. Wheat (Tritcum aestivum L, cs Yangmai No. 5) seedlings were grown for a 15‐day period and treated with 0.5 mM Al with low Ca (1 mM Ca) or high Ca (5 mM Ca). The growth of seedlings was signficantly inhibited by Al. Supplement of Ca improved the growth of Al‐treated plants, increased dry matter weight of plant and leaf area, and decreased shoot/root ratio. This showed that Ca ameliorated Al toxicity in wheat. In experiments on seed germination, Al concentrations less than 2 mM in the germinating medium had little or no visible effect on length of shoot and root of germinating seed. The germinating rate of seed was not affected significantly by Al, when Al concentrations lower than 5 mM Al. The addition of 3 mM Ca did not increase the length of shoot and root and germination rate of seeds. Both pretreatments with 6 mM Ca and 1 μM GA had no significant effect on the length of shoot and root and amylolytic activity of Al‐treated germinating seeds. No significant differences were found in the total amylolytic activity in Al‐treated and control seeds two days and five days after germination. The results of Al and Ca effects on seedlings and seed germination showed that Al‐toxicity on germinating seeds was different from on seedling growth. The high concentrations of Al inhibit growth of roots and shoots of germinating seeds by other toxicity mechanism rather than interaction of Al with Ca and mobilization of carbohydrate reserves.  相似文献   

18.
Abstract

Barley, Hordeum vulgare L., is extremely sensitive to excess soluble or exchangeable aluminum (Al) in acid soils having pH values below about 5.5. Aluminum tolerant cultivars are needed for use in rotations with potatoes which require a soil pH below 5.5 for control of scab disease. They are also potentially useful in the currently popular “low input, sustainable agriculture (LISA)”; in which liming even the plow layer of soil is not always possible or cost effective, or in situations where surface soils are limed but subsoils are acidic and Al toxic to roots. Ten barley cultivars were screened for Al tolerance by growing them for 25 days in greenhouse pots of acid, Al‐toxic Tatum subsoil (clayey, mixed, thermic, typic Hapludult) treated with either 750 or 4000 μg?g‐1 CaCO3 to produce final soil pH values of 4.4 and 5.7, respectively. Based on relative shoot dry weight (weight at pH 4.4/weight at pH 5.7 X 100), Tennessee Winter 52, Volla (England), Dayton and Herta (Denmark) were significantly more tolerant to the acid soil than Herta (Hungary), Kearney, Nebar, Dicktoo, Kenbar and Dundy cultivars. Relative shoot dry weights averaged 28.6% for tolerant and 14.1% for sensitive cultivar groups. Comparable relative root dry weights were 41.7% and 13.7% for tolerant and sensitive cultivars, respectively. At pH 4.4, Al concentrations were nearly three times as high in shoots of sensitive cultivars as in those of the tolerant group (646 vs. 175 μg?g‐1), but these differences were reduced or absent at pH 5.7. At pH 4.4, acid soil sensitive cultivars also accumulated phosphorus concentrations that were twice as high as those in tolerant cultivars (1.2% vs. 0.64%). At pH 5.7, these P differences were equalized at about 0.7% for both tolerant and sensitive groups. At pH 4.4, shoots of the Al‐sensitive cultivar Nebar contained 1067 μg?g‐1 Al and 1.5% P. Concentrations of Al and P in the shoots of acid soil sensitive cultivars grown at pH 4.4 exceeded levels reported to produce toxicity in barley. The observed accumulation of such concentrations of Al and P in the shoots of plants grown under Al stress is unusual and deserves further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号