首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Common scab caused by the soil-borne bacterium Streptomyces scabies is a serious disease for the potato industry. We have identified a strong source of resistance in the diploid wild relative Solanum chacoense. This resistance has been introgressed into tetraploid cultivated potato via unilateral sexual polyploidization. This paper describes three hybrid clones (M8, M16, M17) for use by potato breeding programs to enhance resistance to common scab. They were created by crossing a diploid clone (50% S. tuberosum, 50% S. chacoense) to tetraploid cultivars, producing hybrids with 75% cultivated and 25% wild germplasm. The clones are male and female fertile, and are adapted to temperate zone production environments.  相似文献   

2.
The effect of chloropicrin fumigation on the soil populations of Spongospora subterranea and the development of powdery scab, formation of root galls and tuber yield was investigated in seven field trials conducted in Minnesota and North Dakota. Sixteen potato cultivars, with different levels of susceptibility to disease on roots and tubers, were planted in plots treated with chloropicrin at rates ranging from zero to 201.8 kg a.i. ha?1. The amount of S. subterranea DNA in soil was determined using qPCR. Bioassays were conducted to further assess the effect of chloropicrin fumigation on root colonization by S. subterranea in two potato cultivars with contrasting disease susceptibility. In the field, chloropicrin applied at rates between 70.1 to 201.8 kg a.i. ha?1 significantly decreased S. subterranea initial inoculum in soil but increased the amount of disease observed on roots and tubers of susceptible cultivars. The effect of increasing disease was confirmed in controlled conditions experiments. Although the amount of S. subterranea DNA in roots of bioassay plants increased with increasing chloropicrin rates, it remained similar among potato cultivars. Chloropicrin fumigation significantly increased tuber yield which in cultivars such as Shepody and Umatilla Russet were associated with the amount root galls (r = 0.30; P < 0.03). Results of these studies contradict earlier reports on the use of chloropicrin fumigation for the control of powdery scab. Factors other than inoculum level, such as environmental conditions that affect inoculum efficiency and host susceptibility, may be significant contributors to the development of powdery scab and root gall formation.  相似文献   

3.
Powdery scab caused by Spongospora subterranea f. sp. subterranea (Sss) causes extensive losses in potato production systems globally. Two pot experiments were established in the greenhouse in summer 2013 and winter 2014 to evaluate the effectiveness of different soil chemicals, fumigant, amendments and biological control agents (BCAs) against Sss in the rhizospheric soil, potato roots and tubers. The study used visual assessment methods to assess the effect of treatments on root galling and zoosporangia production, and qPCR to measure Sss concentration in the soil and in the potato roots and tubers. All six soil treatments, namely metam sodium, fluazinam, ZincMax, calcium cyanamide, Biocult and a combination of Bacillus subtilis and Trichoderma asperellum recorded significantly (P < 0.05) lower numbers of zoosporangia in the roots compared to the untreated control. The same effect was observed on the concentration of Sss DNA in the roots at tuber initiation. A more diverse picture was obtained when root gall scores at tuber initiation and Sss DNA in the rhizospheric soil at tuber initiation and harvesting were compared. Significant differences (P < 0.05) were also noted in disease severity, disease incidence, and tuber yield between metam sodium, fluazinam, ZincMax, calcium cyanamide and the untreated control. Calcium cyanamide gave the highest tuber yield. The study demonstrated the potential of soil treatments such as metam sodium, fluazinam, ZincMax and calcium cyanamide in managing Sss in potatoes by reducing the pathogen both in the rhizospheric soil and the roots of the potato plant.  相似文献   

4.
The pathogenicity of 10 bacterial isolates was investigated on potato, radish, carrot and beet, including sensitivity and pathogen control efficacy. The isolates were identified by morphological, biochemical and molecular methods. All isolates were pathogenic on radish, carrot, and beet, and were highly virulent on potato. Although the isolates were obtained from different locations in the El Fuerte Valley (Sinaloa, Mexico), they were similar in their morphological, physiological and biochemical characteristics. Sequences of the 16S rRNA gene obtained by PCR were identical for all isolates. These results indicate that the bacterial isolates from potato scabby tissue belong to S. acidiscabies. Furthermore, the effectiveness of fluazinam, both in vitro and under greenhouse and field conditions, represents a possibleoption for chemical control of potato common scab disease. While our results suggest that spraying at seeding is effective in controlling common scab, future studies to combine this treatment with seed dressing before planting will be conducted to determine if there is an increase in disease control.  相似文献   

5.
Resistance to common scab continues to be a high priority trait for potato breeders. We have identified a source of resistance in the diploid wild potato relative Solanum chacoense and have introgressed it into cultivated potato by crossing it to a dihaploid. A clone generated by crossing two full-sib hybrids is highly resistant and produces both 2n pollen and 2n eggs. This clone, named 4–48, is homozygous for a major QTL for scab resistance derived from S. chacoense. Clone 4–48 was reciprocally crossed to three round white cultivars Megachip, Pike, and White Pearl. Common scab resistance was transferred to tetraploid offspring, with transmission through the male parent generally more effective than through the female parent. The majority of progeny (70%) exhibited stability for resistance to common scab across environments. This germplasm will be useful for breeding new resistant cultivars.  相似文献   

6.
Consistent and effective methods for early discrimination of pathogen resistance, and selection of times for tissue sampling, are important for experiments using global gene expression and metabolomics. Assays for resistance to the vascular pathogen Verticillium dahliae (Vd), the causal agent of Verticillium wilt (VW), are particularly difficult because escapes are common in field assays. Seedling dip assays offer a potential solution, but homogeneous populations are not typically available. As an alternative strategy, we have developed a protocol for studying spatiotemporal infection dynamics of Vd using potato stem cuttings. The protocol was validated using genotypes varying in resistance/susceptibility to Vd. Although there were no visual symptoms in the plants, stem sections were infested with Vd as early as 7 dpi. Symptoms were first observed in the most susceptible genotype at 10 dpi and became apparent on all test subjects at 14 dpi. The protocol has potential applications in resistance breeding and ‘omics’ studies where populations derived from true seeds are not available.  相似文献   

7.
Verticillium wilt is a fungal disease of potato caused by two species of Verticillium, V. dahliae and V. albo atrum. The pathogen infects the vascular tissue of potato plants through roots, interfering with the transport of water and nutrition, and reducing both the yield and quality of tubers. We have evaluated the reaction of 283 potato clones (274 cultivars and nine breeding selections) to inoculation with V. dahliae under greenhouse conditions. A significant linear correlation (r = 0.4, p < 0.0001) was detected between plant maturity and partial resistance to the pathogen, with late maturing clones being generally more resistant. Maturity-adjusted resistance, that takes into consideration both plant maturity and resistance, was calculated from residuals of the linear regression between the two traits. Even after adjusting for maturity, the difference in the resistance of clones was still highly significant, indicating that a substantial part of resistance cannot be explained by the effect of maturity. The highest maturity-adjusted resistance was found in the cv. Navajo, while the most susceptible clone was the cv. Pungo. We hope that the present abundance of data about the resistance and maturity of 283 clones will help potato breeders to develop cultivars with improved resistance to V. dahliae.  相似文献   

8.
TerraRossa (POR01PG20–12) is a mid-season specialty potato, released by Oregon State University, and is a product of the Northwest Potato Variety (Tri-State) Development Program. This cultivar is unique among commercially available potato cultivars in that plants produce small- to medium-sized smooth, oblong- to long-shaped tubers with red skin and red flesh. Total tuber yields of TerraRossa are similar to Dark Red Norland and less than Red La Soda. Average tuber size (136 g) is less than both of the comparison cultivars, reflecting inherent differences in tuber size distribution. TerraRossa tubers have total antioxidant levels higher than traditional white fresh varieties and comparable to the All Blue purple potato, known for its high antioxidant levels. Sensory evaluations of TerraRossa tubers indicated that it has good culinary attributes following boiling, baking, and microwaving. Potato chips made from TerraRossa tubers retained their unique red color, which represents a novelty in the chipping industry. TerraRossa could be a good candidate for the organic sector due to its tolerance to common scab (Streptomyces scabies) and tuber late blight (Phytophthora infestans) and its resistance to golden cyst nematode (Globodera rostochiensis). Due to its high yields, high chipping quality, good culinary properties, high antioxidant content and disease resistance, TerraRossa is a good candidate for opening new specialty type markets, adding diversity to the marketplace.  相似文献   

9.

Background

The brown planthopper (BPH) has become the most destructive and a serious threat to the rice production in Asia. Breeding the resistant varieties with improved host resistance is the most effective and ecosystem-friendly strategy of BPH biological management. As host resistance was always broken down by the presence of the upgrading BPH biotype, the more resistant varieties with novel resistance genes or pyramiding known identified BPH resistance genes would be needed urgently for higher resistant level and more durability of resistance.

Results

Here, we developed near isogenic lines of Bph9 (NIL-Bph9) by backcrossing elite cultivar 93–11 with Pokkali (harboring Bph9) using marker-assisted selection (MAS). Subsequently, we pyramided Bph6 and Bph9 in 93–11 genetic background through MAS. The resulting Bph6 and Bph9 pyramided line LuoYang69 had stronger antixenotic and antibiosis effects on BPH and exhibited significantly enhanced resistance to BPH than near isogenic lines NIL-Bph6 and NIL-Bph9. LuoYang69 derived hybrids, harboring heterozygous Bph6 and Bph9 genes, also conferred high level of resistance to BPH. Furthermore, LuoYang69 did not affect the elite agronomic traits and rice grain quality of 93–11. The current study also developed functional markers for Bph9. Using functional dominant marker, we screened and evaluated worldwide accessions of rice germplasm. Of the 673 varieties tested, 8 cultivars were identified to harbor functional Bph9 gene.

Conclusion

The development of Bph6 and Bph9 pyramided line LuoYang69 provides valuable resource to develop hybrid rice with highly and durable BPH resistance. The development of functional markers will promote MAS of Bph9. The identified Bph9 containing cultivars can be used as new sources for BPH resistance breeding programs.
  相似文献   

10.
A conventional potato breeding strategy uses targeted outcrossing, followed by phenotypic recurrent selection over a series of generations to identify improved cultivars. This paper reviews recent research in Australia aimed at improving the efficiency of such breeding. To develop marker-assisted selection (MAS) for traits of interest, our initial targets were qualitative disease resistances for potato cyst nematode (Globodera rostochiensis Ro1), Potato virus Y and Potato virus X. We undertook a cost analysis comparison between MAS and conventional screening, confirming that MAS would be cost-effective within a breeding programme. Then, as the majority of target traits are quantitative in nature, we also looked at methods to address these traits, including progeny testing and a quantitative genetic analysis technique to develop estimated breeding values (EBVs). We found the markers were useful for detecting the disease resistance characters, while the EBVs improved the analysis of the complex traits. Using a combination of MAS, EBVs and conventional screening methods, we then designed a breeding scheme for rapid selection of cultivars with multiple desirable traits, reducing the breeding cycle from over 10 to 4 years. We then explored the factors that will affect the application of genomic selection in potato and investigated strategies to incorporate genomic selection in potato breeding, as we found that it would accelerate genetic gain as the breeding cycle can be reduced to 1 year. Improvements in computational power are also flowing on to research capabilities such as sequencing, high-throughput phenotyping and data analysis, which will accelerate germplasm improvement and breeding. High-throughput phenotyping facilities are being developed that include automated glasshouse systems equipped with imaging sensors and in-field high-throughput phenotyping systems with sensors mounted on ground- or aerial-based vehicles. Using these technological improvements in phenotypic and genotypic analysis will reduce the breeding cycle in a cost-effective manner and means that we can now breed differently.  相似文献   

11.
12.
13.
A 12-yr. (2000–2011) study was conducted in Alberta, Canada to compare the energy use efficiency (EUE) of conventional (CONV) and conservation (CONS) potato (Solanum tuberosum L.) management practices. Potato was grown in 3- to 6-yr. rotations which included dry bean (Phaseolus vulgaris L.), sugar beet (Beta vulgaris L.), soft wheat (Triticum aestivum L.), oat (Avena sativa L.), and timothy (Phleum pratense L.). CONS included compost application, reduced tillage, cover crops, and solid-seeded bean. Findings suggested that potato in 5-yr. CONS produced the highest EUE compared to the other CONS or CONV rotations. CONS can be used as a means of reducing the reliance on non-renewable energy inputs and improving overall EUE of potato production when less than 21% of the N content of compost applied was counted toward energy input use of potato production. At more than 21%, potato in the 4-yr. CONV became more favorable compared to potato in other rotations.  相似文献   

14.
Potato psyllid, Bactericera cockerelli (?ulc), causes economic damage to potato crops throughout the major potato growing regions of western North America. When cultivated crops are not available, potato psyllid often occurs on non-crop hosts. In the southern U.S. and northern Mexico, native species of Lycium (Solanaceae) are important non-crop hosts for the psyllid. We determined whether Old World species of Lycium now widespread in the Pacific Northwest are reservoirs of potato psyllid in this growing region. We examined Lycium spp. across a wide geographic region in Washington, Oregon, and Idaho at irregular intervals during three growing seasons. Potato psyllids were present at all locations. To determine whether Lycium is also a host during intervals of the year in which the potato crop is not available, we monitored a subset of these sites over the entire year. Six sites were monitored at 1- to 3-week intervals from June 2014 to June 2016. Psyllids were present on Lycium throughout the year at all sites, including during winter, indicating that Lycium is also a host when the potato crop is seasonally not available. Psyllid populations included a mixture of Northwestern and Western haplotypes. We observed well-defined spring and fall peaks in adult numbers, with peaks separated by long intervals in which psyllid numbers were very low. Seasonal patterns in psyllid numbers on these non-native Lycium hosts were very similar to what has been observed on native Lycium in the desert southwest region of the U.S. Our findings demonstrate that potato psyllid associates with Lycium across a broad geographic region within the Pacific Northwest. These results will assist in predicting sources of potato psyllid colonizing potatoes in this important growing region.  相似文献   

15.
Lamoka is a white-skinned, white-fleshed potato variety notable for excellent chip color from cold storage, good yield and specific gravity, and resistance to both common scab and race Ro1 of the golden cyst nematode (Globodera rostochiensis). It was selected from a cross made at Cornell University in 1998 between NY120 and NY115. The tubers are round-oblong and slightly flattened, with shallow eyes and relatively smooth skin. Chip color out of cold storage is better than ‘Snowden’. Marketable yield averaged 90% of Snowden across 95 trials in New York, Pennsylvania and Maine, while specific gravity averaged 0.003 less than Snowden. Lamoka was released by the New York Agricultural Experiment Station in 2011.  相似文献   

16.

Background

Rice plays an extremely important role in food safety because it feeds more than half of the world’s population. Rice grain yield depends on biomass and the harvest index. An important strategy to break through the rice grain yield ceiling is to increase the biological yield. Therefore, genes associated with organ size are important targets for rice breeding.

Results

We characterized a rice mutant gns4 (grain number and size on chromosome 4) with reduced organ size, fewer grains per panicle, and smaller grains compared with those of WT. Map-based cloning indicated that the GNS4 gene, encoding a cytochrome P450 protein, is a novel allele of DWARF11 (D11). A single nucleotide polymorphism (deletion) in the promoter region of GNS4 reduced its expression level in the mutant, leading to reduced grain number and smaller grains. Morphological and cellular analyses suggested that GNS4 positively regulates grain size by promoting cell elongation. Overexpression of GNS4 significantly increased organ size, 1000-grain weight, and panicle size, and subsequently enhanced grain yields in both the Nipponbare and Wuyunjing7 (a high-yielding cultivar) backgrounds. These results suggest that GNS4 is key target gene with possible applications in rice yield breeding.

Conclusion

GNS4 was identified as a positive regulator of grain number and grain size in rice. Increasing the expression level of this gene in a high-yielding rice variety enhanced grain yield. GNS4 can be targeted in breeding programs to increase yields.
  相似文献   

17.
The precise level of environmental control in vitro may aid in identifying genetically superior plant germplasm for rooting characteristics (RC) linked to increased foraging for plant nitrogen (N). The objectives of this research were to determine the phenotypic variation in root morphological responses of 49 Solanum chacoense (chc), 30 Solanum tuberosum Group Phureja – Solanum tuberosum Group Stenotomum (phu-stn), and three Solanum tuberosum (tbr) genotypes to 1.0 and 0.5 N rate in vitro for 28 d, and identify genotypes with superior RC. The 0.5 N significantly increased density of root length, surface area, and tips. All RC were significantly greater in chc than in either phu-stn or tbr. Based upon clustering on root length, surface area, and volume, the cluster with the greatest rooting values consisted of eight chc genotypes that may be utilized to initiate a breeding program to improve RC in potato.  相似文献   

18.
Water management is an important factor in regulating soil respiration and the net ecosystem exchange of CO2 (NEE) between croplands and atmosphere. However, how water management affects soil respiration and the NEE of paddy fields remains unexplored. Thus, a 2-year field experiment was carried out to study the effects of controlled irrigation (CI) during the rice season on the variation of soil respiration and NEE, with flooding irrigation (FI) as the control. A decrease of irrigation water input by 46.39% did not significantly affect rice yield but significantly increased irrigation water use efficiency by 0.99 kg m?3. The soil respiration rate of CI paddy fields was larger than that of FI paddy fields except during the ripening stage. Natural drying management during the ripening stage resulted in a significant increase of the soil respiration rate of the FI paddy fields. Variations of NEE with different water managements were opposite to soil respiration rates during the whole rice growth stages. Total CO2 emission of CI paddy fields through soil respiration (total R soil) increased by 11.66% compared with FI paddy fields. The increase of total R soil resulted in the significant decrease of total net CO2 absorption of CI paddy fields by 11.57% compared with FI paddy fields (p < 0.05). There were inter-annual differences of soil respiration and the NEE of paddy fields. Frequent alternate wetting and drying processes in the CI paddy fields were the main factors influencing soil respiration and NEE. CI management slightly enhanced the rice dry matter amount but accelerated the consumption and decomposition of soil organic carbon and significantly increased soil respiration, which led to the decrease of net CO2 absorption. CI management and organic carbon input technologies should be combined in applications to achieve sustainable use of water and soil resources in paddy fields.  相似文献   

19.
Late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary, is a devastating disease in potato and tomato and causes yield and quality losses worldwide. The disease first emerged in central America and has since spread in North America including the United States and Canada. Several new genotypes of P. infestans have recently emerged, including US-22, US-23 and US-24. Due to significant economic and environmental impacts, there has been an increasing interest in the rapid identification of P. infestans genotypes. In addition to providing details regarding the various phenotypic characteristics such as fungicide resistance, host preference, and pathogenicity associated with various P. infestans genotypes, information related to pathogen movement and potential recombination may also be determined from the genetic analyses. Restriction fragment length polymorphism (RFLP) analysis with the RG57 loci is one of the most reliable procedures used to genotype P. infestans. However, the RFLP procedure requires propagation and isolation of the pathogen and relatively large amounts of DNA. Isolation of the late blight pathogen is sometimes impossible due to the poor condition of the infected tissues or the presence of fungicide residues. In this study, we describe a procedure to identify P. infestans at the molecular level in planta using terminal restriction fragment length polymorphism (T-RFLP) of the RG57 loci. This T-RFLP assay is sufficiently sensitive to detect and differentiate P. infestans genotypes directly in planta without propagation and isolation of the pathogen, to facilitate the timely implementation of best management practices.  相似文献   

20.
Meloidogyne chitwoodi (Columbia root-knot nematode, CRKN) can cause serious damage in potato production systems, decreasing tuber value in the fresh market and processing industries. Genetic resistance to CRKN was first identified from the wild diploid potato species Solanum bulbocastanum accession SB22 and was successfully introgressed into tetraploid potato breeding material. To expand the base of genetic resistance, 40 plant accessions representing nine wild potato species were screened for their resistance to M. chitwoodi. Greenhouse screening identified fifteen clones from S. hougasii, one clone from S. bulbocastanum, and one clone from S. stenophyllidium with moderate to high levels of resistance against three isolates of M. chitwoodi. Geographical mapping showed that the resistance sources identified in this and previous studies primarily originated in the states of Jalisco and Michoacán in west-central Mexico. These new sources of resistance will be introgressed into elite potato populations to facilitate the development of potato cultivars with durable resistance to M. chitwoodi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号