首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
The relationship between active oxygen metabolism and resistance to late blight (Phytophthora infestans) in potato (Solanum tuberosum L.) was studied for 72 h post-inoculation by comparing three resistant cultivars (low disease index) with three susceptible ones (high disease index). Activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), and the content of ascorbic acid (ASA), were higher in the resistant cultivars than in the susceptible ones. The production rate of the superoxide anion radical (O2?) was lower in the resistant cultivars than in the susceptible ones. These changes, which were associated with the potato plant’s response to infection with P. infestans, provide some insight into the physiological basis of resistance and may also provide a screening tool for resistance to late blight.  相似文献   

3.
Meloidogyne chitwoodi (Columbia root-knot nematode, CRKN) can cause serious damage in potato production systems, decreasing tuber value in the fresh market and processing industries. Genetic resistance to CRKN was first identified from the wild diploid potato species Solanum bulbocastanum accession SB22 and was successfully introgressed into tetraploid potato breeding material. To expand the base of genetic resistance, 40 plant accessions representing nine wild potato species were screened for their resistance to M. chitwoodi. Greenhouse screening identified fifteen clones from S. hougasii, one clone from S. bulbocastanum, and one clone from S. stenophyllidium with moderate to high levels of resistance against three isolates of M. chitwoodi. Geographical mapping showed that the resistance sources identified in this and previous studies primarily originated in the states of Jalisco and Michoacán in west-central Mexico. These new sources of resistance will be introgressed into elite potato populations to facilitate the development of potato cultivars with durable resistance to M. chitwoodi.  相似文献   

4.
Late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary, is a devastating disease in potato and tomato and causes yield and quality losses worldwide. The disease first emerged in central America and has since spread in North America including the United States and Canada. Several new genotypes of P. infestans have recently emerged, including US-22, US-23 and US-24. Due to significant economic and environmental impacts, there has been an increasing interest in the rapid identification of P. infestans genotypes. In addition to providing details regarding the various phenotypic characteristics such as fungicide resistance, host preference, and pathogenicity associated with various P. infestans genotypes, information related to pathogen movement and potential recombination may also be determined from the genetic analyses. Restriction fragment length polymorphism (RFLP) analysis with the RG57 loci is one of the most reliable procedures used to genotype P. infestans. However, the RFLP procedure requires propagation and isolation of the pathogen and relatively large amounts of DNA. Isolation of the late blight pathogen is sometimes impossible due to the poor condition of the infected tissues or the presence of fungicide residues. In this study, we describe a procedure to identify P. infestans at the molecular level in planta using terminal restriction fragment length polymorphism (T-RFLP) of the RG57 loci. This T-RFLP assay is sufficiently sensitive to detect and differentiate P. infestans genotypes directly in planta without propagation and isolation of the pathogen, to facilitate the timely implementation of best management practices.  相似文献   

5.
Late blight, caused by Phytophthora infestans, is a devastating disease on potato worldwide and new lineages of the pathogen continue to develop in the U.S. Breeding for resistance is important for economic and environmental purposes. The Solanaceae Coordinated Agricultural Project (SolCAP) focuses on linking allelic variation in genes to valuable traits in elite cultivated potato germplasm. This research assessed the SolCAP diversity panel (206 clones in Washington and 213 clones in Wisconsin) for tuber resistance to the US-24 clonal lineage of P. infestans after potatoes were harvested from fields in Washington and Wisconsin in 2011. This is the first time this germplasm has been evaluated for tuber resistance to P. infestans using a non-intrusive zoospore inoculation technique. Clones with a percent incidence of 30% or less were considered resistant and only eight clones (Palisade Russet, AWN86514–2, MSL268-D, MSM171-A, MSM182–1, MSN230-1RY, Patagonia and Yukon Gem) were characterized as resistant at both locations. These clones have previously demonstrated high to moderate partial foliar resistance to isolates of P.infestans and therefore represent germplasm with both foliar and tuber resistance. Nine clones (AWN86514–2, F66041, MN 18747, MSM 182–1, MSN230-1RY, Modoc, Ama-Rosa, Patagonia and Purple Majesty), were characterized as slow-rotting at both locations with a mean percent internal rot of 75% or less after 33 days of storage. Two clones, MN 18747 and Modoc, are considered to have the highest risk of being a carrier for P. infestans of all the clones evaluated in the SolCAP collection. Not a single clone demonstrated complete tuber resistance to the US-24 strain at both locations.  相似文献   

6.
Summary Host plant resistance is an important component to the management of potato late blight,Phytophthora infestans (Mont.) de Bary. Assessment of potato lines (Solanum tuberosum L.) with various levels of resistance toP. infestans (US8, A2 genotype) were evaluated in field trials, greenhouse controlled environment chambers and inoculated tuber reactions. Five lines (AWN86514-2, B0692-4, B0718-3, Jacqueline Lee, and B0288-17) with strong foliar resistance to late blight were identified in these inoculated field trials. Greenhouse controlled environment chamber studies allowed resistant and susceptible lines to be distinguished, but the 1998 greenhouse results did not correlate well with field data. Four lines (A084275-3, Bzura, MSG007-1, and MSG297-4RD) evaluated by a digital image analysis technique demonstrated tuber resistance based upon average reflective index values in the inoculated tuber studies. Tuber resistance did not correlate with field foliar resistance. Based upon these results, field assessment of foliar reaction toP. infestans provides the best measure for assessing late blight resistance in potato. Tuber resistance to late blight can be identified among lines with varying levels of foliar resistance.  相似文献   

7.
Studying phenotypic and genomic modifications associated with pathogen adaptation to resistance is a crucial step to better understand and anticipate resistance breakdown. This short review summarizes recent results obtained using experimentally evolved populations of the potato cyst nematode Globodera pallida. In a first step, the variability of resistance durability was explored in four different potato genotypes carrying the resistance quantitative trait loci (QTL) GpaVvrn originating from Solanum vernei but differing by their genetic background. The consequences of the adaptation to resistance in terms of local adaptation, cross-virulence and virulence cost were then investigated. Finally, a genome scan approach was performed in order to identify the genomic regions involved in this adaptation. Results showed that nematode populations were able to adapt to the QTL GpaVvrn, and that the plant genetic background has a strong impact on resistance durability. A trade-off between the adaptations to different resistant potato genotypes was detected, and we also showed that adaptation to the resistance QTL GpaVvrn from S. vernei did not allow adaptation to the colinear locus from S. sparsipilum (GpaVspl). Unexpectedly, the adaptation to resistance led to an increase of virulent individual’s fitness on a susceptible host. Moreover, the genome scan approach allowed the highlighting of candidate genomic regions involved in adaptation to host plant resistance. This review shows that experimental evolution is an interesting tool to anticipate the adaptation of pathogen populations and could be very useful for identifying durable strategies for resistance deployment.  相似文献   

8.
Late blight, caused byPhytophthora infestans, is the most important disease of potato worldwide and foliar resistance is an important component of managing late blight in the field. The objective of this research was to identify germplasm for use in breeding cultivars with foliar resistance toP. infestans. More than 500 clones were tested from 1997 to 2002 in inoculated (US8 genotype) field experiments conducted at the Michigan State University Muck Soils Research Farm in Bath, Michigan. All of the current commercial cultivars tested were classified as susceptible toP. infestans. The most resistant clones were A90586-11, AWN86514-2, B0718-3, Jacqueline Lee (MSG274-3), MSI152-A, MSJ307-2, MSJ317-1, MSJ453-4Y, MSJ456-2, MSJ456-4, MSJ461-1, MSK101-2, MSK128-1, NY121, LBR8, LBR9, Tollocan, and Torridon. Some of these resistant selections were from crosses with B0718-3, Jacqueline Lee, and Tollocan suggesting that the resistance toP. infestans was transmissible. These resistant clones will provide the opportunity to breed late-blight-resistant cultivars from a diverse pool of cultivated germplasm. Consistent foliar reaction toP. infestans over years suggested that the Michigan State University Muck Soils Research Farm is a valuable location for North American breeders to assess the reaction of potato germplasm to the US8 genotype of late blight.  相似文献   

9.
Wild potatoes are important sources of genes for resistance to disease and insect pests. A collection of wild Mexican and South AmericanSolarium species from the US potato Genebank was evaluated under laboratory and/or field conditions for their reaction to late blight (Phytophthora infestans), Colorado potato beetle (CPB,Leptinotarsa decemlineata Say), and blackleg (Erwinia carotovora subsp.atroseptica (van Hall) Dye) in order to identify individual genotypes with multiple resistance genes. Late blight inoculations using aggressive isolates (US-8/A2 and US-11/A1 mating types) of P.infestans revealed a wide range of variation for resistance between and within the accessions of the wild species tested. For late blight, susceptible as well as moderately to highly resistant genotypes were observed in all the species tested. However, at least one accession from the three Mexican and one South American wild diploid species tested showed a relatively uniform high level of resistance toP. infestans. These includedS. bulbocastanum, S. pinnatisectum, S. cardiophyllum, andS. circaeifolium. Two accessions from South American speciesS. commersonii were highly susceptible to late blight. For the Colorado potato beetle test, only one species,S. pinnatisectum appeared uniformly resistant to CPB under field conditions. Results of screening for blackleg resistance showed that there were major differences between genotypes in the wild species. Accessions ofS. circaeifolium PI 498119 andS. bulbocastanum PI 243504 were identified as having significantly higher blackleg resistance than cultivated potato and the other wild species tested. However, genotypes from these two accessions were more susceptible to late blight and CPB. Characterization of theP. infestans isolate P1801C.16 used for late blight evaluation and multi-locus isolate tests using US-8/A2 and US-11/A1 races revealed that the resistance inS. pinnatisectum genotypes tested corresponded to a race-non-specific genetic system, which was different from any existing R genes.Solanum pin-natisectum genotypes with both high levels of late blight and CPB resistance as well as blackleg resistance genotypes identified in the present study represent a diverse gene pool that may be useful for development of new potato cultivars with multiple disease and insect resistance. The potential utilization of these valuable sources for improvement of cultivated potato is discussed.  相似文献   

10.
Potato (Solanum tuberosum L.) is a major food and cash crop, mainly grown by small-scale farmers in the highland regions of Uganda. Potato late blight is one of the major diseases limiting production with potential yield losses over 70%, making host resistance a strong element in integrated disease management. This study was carried out to screen and select high yielding potato genotypes with resistance to late blight in Uganda. Forty-eight genotypes, including advanced clones from the population B3C2 of the International Potato Centre, commercial and farmers’ varieties, were evaluated under two environments for two seasons. Trials were laid out in an 8?×?6 alpha lattice design with three replications. Genotypes showed significant differences in yield and resistance to blight. A higher disease severity was observed in Karengyere (56%). The average RAUDPC (= 100 max) across locations indicated that genotypes 395,077.12 and 392,657.8, with disease severity of 12% and 14%, respectively, were the most resistant. Genotypes Victoria (53%) and NKRN59.124 (48%) were the most susceptible. Mean tuber yield under late blight infection was19.8 t ha?1. The best yielding genotype across sites was 395,112.32 (35.6 t ha?1) while 394,905.8 (10.3 t ha?1), yielded the lowest. The mean marketable tuber weight was 8.9 kg with genotypes 395,112.32 and 395,109.34 having the highest marketable weight of 16.5 kg and 15.6 kg respectively. Correlations between yield and yield related parameters were positive (p ≤?0.001), while those between RAUDPC were negative. The following genotypes, 395,112.32, 391,919.3, 393,220.54. 393,077.54, 396,038.107. 392,657.8, Kinigi, 395,014.17, NKRN59.58, NKRK19.17 and 395,011.2, were identified as promising parents for a late blight resistance breeding program. These exhibited high to medium resistance to late blight disease and high yields.  相似文献   

11.
TerraRossa (POR01PG20–12) is a mid-season specialty potato, released by Oregon State University, and is a product of the Northwest Potato Variety (Tri-State) Development Program. This cultivar is unique among commercially available potato cultivars in that plants produce small- to medium-sized smooth, oblong- to long-shaped tubers with red skin and red flesh. Total tuber yields of TerraRossa are similar to Dark Red Norland and less than Red La Soda. Average tuber size (136 g) is less than both of the comparison cultivars, reflecting inherent differences in tuber size distribution. TerraRossa tubers have total antioxidant levels higher than traditional white fresh varieties and comparable to the All Blue purple potato, known for its high antioxidant levels. Sensory evaluations of TerraRossa tubers indicated that it has good culinary attributes following boiling, baking, and microwaving. Potato chips made from TerraRossa tubers retained their unique red color, which represents a novelty in the chipping industry. TerraRossa could be a good candidate for the organic sector due to its tolerance to common scab (Streptomyces scabies) and tuber late blight (Phytophthora infestans) and its resistance to golden cyst nematode (Globodera rostochiensis). Due to its high yields, high chipping quality, good culinary properties, high antioxidant content and disease resistance, TerraRossa is a good candidate for opening new specialty type markets, adding diversity to the marketplace.  相似文献   

12.
Late blight (Phytophthora infestons (Mont.) de Bary) has re-emerged as an important pathogen of the cultivated potato (Solanum tuberosum subsp.tubero-sum L.) in North America. The purpose of this study was to evaluate the relative susceptibility of potato germplasm in the greenhouse in order to initiate a breeding program for resistance to the US-8/A2 mating type which is the more aggressive and prevalent strain of late blight. Whole plants of 147 cultivars and breeding lines were evaluated. Percent plant area infection was visually assessed. Seven days after inoculation, infection ranged from 0 to 100% and the overall mean was greater than 50%. Two-thirds of the cultivars and breeding lines tested were very susceptible to the US-8 genotype. The highest resistance was identified in the somatic hybrids betweenS. tuberosum andS. bulbocastanum and their backcross derivatives. Pike and Snowden were less susceptible than the other North American cultivars. Zarevo was most resistant among the European cultivars. Seven of the advanced breeding lines were equivalent to Zarevo in infection levels. The host plant resistance identified among the material tested in this study can be used by breeding programs to develop improved cultivars with resistance to US-8 genotypes of late blight.  相似文献   

13.
Greenhouse assays were carried out to characterizeSolanum accessions previously reported to be late blight resistant and to identify individuals within the accessions with high levels of resistance to late blight. Foliage of wildSolanum species accessions or hybrid cultivated potato x wild species (diploid or tetraploid) from Mexico, Russia, or South America was inoculated withPhytophthora infestans (US-8) and was scored for severity of foliar symptoms at 7 and 14 days after inoculation (DAI). Mexican accessions (S. brachycarpum,S. pinnatisectum,S. guerreroense, andS.fendleri) were significantly more resistant (1.1% infection at 14 DAI) than either Russian (59.1% infection at 14 DAI) or South American (53.4% infection at 14 DAI) accessions. Moreover, the genotypes within the Mexican accessions tended to be more uniformly resistant whereas genotypes within the Russian and South American accessions tended to segregate for resistance. The more resistant genotypes of Russian and South American accessions (176/546) were retested, and 56 genotypes were identified as having potential for use in potato breeding programs for resistance to late blight. Fifty percent of the selected genotypes were fromS. microdontum accessions PI498124, PI595510, and PI595511. The potential of these species for incorporation into breeding programs for late blight resistance is discussed.  相似文献   

14.
Detached leaflets of 21Solanum verrucosum plant introductions (PIs) were inoculated with two races ofPhytophthora infestans to evaluate levels of resistance present within this species. Inoculated leaflets were visually evaluated for the percentage area colonized byP. infestans and the intensity of sporulation over the colonized area. Disease reactions ranged from moderately susceptible to highly resistant (immune). Significant plant-to-plant heterogeneity for resistance was observed within many of the PIs, indicating that they may represent mixtures of different genotypes. Hypersensitive flecks were observed on some inoculated leaflets of all PIs tested. Adult plant reactions showed moderate agreement with those obtained by other workers on seedling populations of several PIs. These results support the hypothesis that R-genes and polygenes for resistance toP. infestans exist withinS. verrucosum accessions. This species thus may provide a useful source of novel late blight resistance genes.  相似文献   

15.
The adequate supply of boron (B) and zinc (Zn) can improve the structural integrity and permeability of cell membranes, which is a defence mechanism against fungi infection. A greenhouse experiment was conducted to investigate the effect of the application of B and Zn on plant growth and the incidence and severity of potato early blight, a destructive foliar disease of potato crop caused by Alternaria grandis E.G. Simmons. Potato plants (Solanum tuberosum L. cv. Ágata) were grown in 11-l pots filled with sandy soil, unfertilized or fertilized with 5 mg kg?1 B and 5 mg kg?1 Zn (either alone or in combination). Potato plants were inoculated with isolates of Alternaria grandis at 40 days after planting. Early blight incidence and severity were evaluated visually 7 days after inoculation with A. grandis isolates. Disease incidence ranged from 16 to 41% infected leaves, and was significantly highest in the treatment with the application of B, followed by the control, and lowest with application of Zn and B + Zn. Early blight severity ranged from 2.5 to 25%, and was significantly higher in the unfertilized treatment than in those fertilized with Zn either alone or in combination with B. These findings suggest that Zn plays a critical role in potato tolerance to early blight and should be considered as a preventive measure in the disease management plan, since application of zinc reduced the incidence and severity of potato early blight. However, the physiological basis of this remains unknown.  相似文献   

16.
To develop an in vitro assay method for bacterial wilt resistance in potato, resistant and susceptible standard genotypes were grown in vitro, and different conditions of inoculation with Ralstonia solanacearum phylotype I/biovar 4 were examined. The optimal condition was the inoculation of 6–8 leaf stage plants with a bacterial concentration of 102 CFU ml?1 and an incubation temperature of 28 °C. Evaluation of stem wilting was more reliable than that of leaf wilting. Using this method, nine genotypes with different resistance levels in the field were evaluated. Lower disease indices were obtained for genotypes with high resistance levels in the field, suggesting that this assay is useful for evaluating bacterial wilt resistance in a controlled environment.  相似文献   

17.
Ten tetraploid interspecific potato somatic hybrids developed earlier through protoplast fusion between the dihaploid Solanum tuberosum L. ‘C-13’ and the diploid wild species Solanum pinnatisectum Dun. were used in this study. Somatic hybrids and standard control cultivars were evaluated for adaptability, tuber traits, late blight resistance and keeping quality attributes (dormancy, sprouting, weight loss and appearance after 75 days of storage) during two successive winter crop seasons (short-days) in the sub-tropical plains of India, where nearly 90% of India’s potatoes are grown. Somatic hybrids showed medium to good plant vigour and late to very late plant maturity. Though none of the somatic hybrids produced equal or higher tuber yield than the control cultivars, except clone P7, all other somatic hybrids produced significantly higher marketable and total tuber yield after a 90-day growth than the parent C-13. Most of the somatic hybrids possessed higher tuber dry matter concentration, resistance to late blight and better keeping quality attributes than the control cultivars. Notably, the tubers of somatic hybrids showed a tendency for colour change from white to purple on exposure to sunlight. Breeding potential of somatic hybrids was further assessed by crossing them with commonly grown local potato cultivars for the development of backcross (BC1) progenies. In the hybridization programme, berries were formed while somatic hybrids were used either as male or female parents with common cultivars. Our results revealed that the use of bulk pollen of somatic hybrids not only resulted in higher pollination success but also helped to achieve higher numbers of true potato seeds (TPS) per berry. Despite the formation of berries, TPS was absent in 22 crosses using somatic hybrids as a female or male parent which may be due to ovule or embryo abortions. Segregating BC1 generations were evaluated under the same sub-tropical conditions for further exploitation in potato breeding. Based on our study, the somatic hybrids P4, P8 and P10 can be utilized for the introgression of important characters such as high tuber dry matter concontration, resistance to late blight and excellent keeping quality attributes into the cultivated potato via conventional breeding methods for cultivar development in the sub-tropical plains of India.  相似文献   

18.
The Colorado potato beetle, Leptinotarsa decemlineata Say, is a serious pest of potato, Solanum tuberosum L., worldwide. Leptinotarsa decemlineata has a history of repeated adaptation to insecticides, and exhibits a geographic pattern of decreasing insecticide resistance from east to west in the USA. Imidacloprid is one of the most widely used insecticide in western states. In this study, we measured imidacloprid resistance among larval and adult L. decemlineata from ten locations in the Columbia Basin (southeastern Washington and northeastern Oregon) using topical LD50 bioassays, and compared them to estimates from ten locations in Minnesota and Wisconsin. Larval and adult imidacloprid LD50’s and mean percent mortality were generally lowest in Washington and Oregon, but some sites exhibited reductions in mortality comparable to those observed at some Wisconsin sites. Adult LD50’s suggest L. decemlineata in the Columbia Basin may be evolving in response to selection by neonicotinoid insecticides, but larval data suggest high susceptibility to imidacloprid remains in most populations. Future work should expand resistance monitoring efforts to include more regions in the West and other insecticide modes of action.  相似文献   

19.
Common scab caused by the soil-borne bacterium Streptomyces scabies is a serious disease for the potato industry. We have identified a strong source of resistance in the diploid wild relative Solanum chacoense. This resistance has been introgressed into tetraploid cultivated potato via unilateral sexual polyploidization. This paper describes three hybrid clones (M8, M16, M17) for use by potato breeding programs to enhance resistance to common scab. They were created by crossing a diploid clone (50% S. tuberosum, 50% S. chacoense) to tetraploid cultivars, producing hybrids with 75% cultivated and 25% wild germplasm. The clones are male and female fertile, and are adapted to temperate zone production environments.  相似文献   

20.
The precise level of environmental control in vitro may aid in identifying genetically superior plant germplasm for rooting characteristics (RC) linked to increased foraging for plant nitrogen (N). The objectives of this research were to determine the phenotypic variation in root morphological responses of 49 Solanum chacoense (chc), 30 Solanum tuberosum Group Phureja – Solanum tuberosum Group Stenotomum (phu-stn), and three Solanum tuberosum (tbr) genotypes to 1.0 and 0.5 N rate in vitro for 28 d, and identify genotypes with superior RC. The 0.5 N significantly increased density of root length, surface area, and tips. All RC were significantly greater in chc than in either phu-stn or tbr. Based upon clustering on root length, surface area, and volume, the cluster with the greatest rooting values consisted of eight chc genotypes that may be utilized to initiate a breeding program to improve RC in potato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号