首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Effects of (1) the addition of 35 kg N ha-1yr-1(as NH4NO3) and (2) interception of throughfall and litterfall by means of a roof on concentrations, chemical characteristics and dynamics of dissolved organic matter (DOM) in acid forest soils (podzols) were studied at Gårdsjön, Sweden. A non-manipulated catchment served as a reference. After 4 yr of treatment no significant effects of either manipulation were found on concentrations and characteristics of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). The variability of these parameters within catchments appeared to be of the same order of magnitude as the variability between catchments. At all sites, DON contributed more than 70% of the total dissolved nitrogen. In general, the proportion of hydrophilic DOC increased with depth. In contrast, to other studies the C/N ratio of DOM at Gårdsjön did not show a clear pattern with depth. Other studies in SE U.S.A. have suggested that relatively low C/N ratios at depth are due to increased contribution of hydrophilic neutrals to DOC. However, this fraction appears to be small in temperate and boreal spruce forest soils, including Gårdsjön.  相似文献   

2.
The effects of ammonium sulphate (NS) on the accumulation of nutrients in above and below ground biomass and soil were studied in a Norway spruce stand in south-west Sweden during 1988–1993. Ammonium sulphate addition resulted in nitrogen accumulation with 326 and 16 kg ha?1 in above and below ground biomass, respectively. Corresponding figures for the control plots (C) were 34 and 3 kg ha?1. Nitrogen accumulation in forest floor of NS was 266 kg ha?1 and 47 kg ha?1 in mineral soil. About 70% of added sulphate by fertiliser was retained in NS plots (482 kg S ha?1) of which 274 kg ha?1 was adsorbed in the mineral soil. The sulphate addition resulted in increased leaching of nitrogen, magnesium, calcium and sulphur. It is suggested that the spruce stand at the study site has a high capacity to accumulate nitrogen with a high above ground production. The high input of ammonium sulphate may in the long run result in increased losses of cations to ground water.  相似文献   

3.
Dissolved organic matter (DOM) is important for the cycling and transport of carbon (C) and nitrogen (N) in soil. In temperate forest soils, dissolved organic N (DON) partly escapes mineralization and is mobile, promoting loss of N via leaching. Little information is available comparing DOC and DON dynamics under tropical conditions. Here, mineralization is more rapid, and the demand of the vegetation for nutrients is larger, thus, leaching of DON could be small. We studied concentrations of DOC and DON during the rainy seasons 1998–2001 in precipitation, canopy throughfall, pore water in the mineral soil at 5, 15, 30, and 80 cm depth, and stream water under different land‐use systems representative of the highlands of northern Thailand. In addition, we determined the distribution of organic C (OC) and N (ON) between two operationally defined fractions of DOM. Samples were collected in small water catchments including a cultivated cabbage field, a pine plantation, a secondary forest, and a primary forest. The mean concentrations of DOC and DON in bulk precipitation were 1.7 ± 0.2 and 0.2 ± 0.1 mg L–1, respectively, dominated by the hydrophilic fraction. The throughfall of the three forest sites became enriched up to three times in DOC in the hydrophobic fraction, but not in DON. Maximum concentrations of DOC and DON (7.9–13.9 mg C L–1 and 0.9–1.2 mg N L–1, respectively) were found in samples from lysimeters at 5 cm soil depth. Hydrophobic OC and hydrophilic ON compounds were released from the O layer and the upper mineral soil. Concentrations of OC and ON in mineral‐soil solutions under the cabbage cultivation were elevated when compared with those under the forests. Similar to most temperate soils, the concentrations in the soil solution decreased with soil depth. The reduction of OC with depth was mainly due to the decrease of hydrophobic compounds. The changes in OC indicated the release of hydrophobic compounds poor in N in the forest canopy and the organic layers. These substances were removed from solution during passage through the mineral soil. In contrast, organic N related more to labile microbial‐derived hydrophilic compounds. At least at the cabbage‐cultivation site, mineralization seemed to contribute largely to the decrease of DOC and DON with depth, possibly because of increased microbial activity stimulated by the inorganic‐N fertilization. Similar concentrations and compositions of OC and ON in subsoils and streams draining the forested catchments suggest soil control on stream DOM. The contribution of DON to total dissolved N in those streams ranged between 50% and 73%, underscoring the importance of DOM for the leaching of nutrients from forested areas. In summary, OC and ON showed differences in their dynamics in forest as well as in agricultural ecosystems. This was mainly due to the differing distribution of OC and ON between the more immobile hydrophobic and the more easily degradable hydrophilic fraction.  相似文献   

4.
Clear‐cutting of forest provides a unique opportunity to study the response of dynamic controls on dissolved organic matter. We examined differences in concentrations, fluxes and properties of dissolved organic matter from a control and a clear‐cut stand to reveal controlling factors on its dynamics. We measured dissolved organic C and N concentrations and fluxes in the Oi, Oe and Oa horizons of a Norway spruce stand and an adjacent clear‐cutting over 3 years. Aromaticity and complexity of organic molecules were determined by UV and fluorescence spectroscopy, and we measured δ13C ratios over 1 year. Annual fluxes of dissolved organic C and N remained unchanged in the thin Oi horizon (~ 260 kg C ha?1, ~ 8.5 kg N ha?1), despite the large reduction in fresh organic matter inputs after clear‐cutting. We conclude that production of dissolved organic matter is not limited by lack of resource. Gross fluxes of dissolved organic C and N increased by about 60% in the Oe and 40% in the Oa horizon upon clear‐cutting. Increasing organic C and N concentrations and increasing water fluxes resulted in 380 kg C ha?1 year?1 and 10.5 kg N ha?1 year?1 entering the mineral soil of the clear‐cut plots. We found numerous indications that the greater microbial activity induced by an increased temperature of 1.5°C in the forest floor is the major factor controlling the enhanced production of dissolved organic matter. Increasing aromaticity and complexity of organic molecules and depletion of 13C pointed to an accelerated processing of more strongly decomposed parts of the forest floor resulting in increased release of lignin‐derived molecules after clear‐cutting. The largest net fluxes of dissolved organic C and N were in the Oi horizon, yet dissolved organic matter sampled in the Oa horizon did not originate mainly from the Oi horizon. Largest gross fluxes in the Oa horizon (control 282 kg C ha?1) and increased aromaticity and complexity of the molecules with increasing depth suggested that dissolved organic matter was derived mainly from decomposition, transformation and leaching of more decomposed material of the forest floor. Our results imply that clear‐cutting releases additional dissolved organic matter which is sequestered in the mineral soil where it has greater resistance to microbial decay.  相似文献   

5.
Dissolved organic matter (DOM) derived from the humus layer under silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst.), and mixed stands, and from senescent birch leaves and from spruce needles of the four oldest year-growth were characterized microbiologically and chemically. Samples were collected in the autumn and the solutions were obtained by centrifugation-drainage technique. The degradability of DOM, the availability of DOM to bacteria and fungi, concentrations of phenolic compounds and carbohydrates, and the distribution of carbon and nitrogen into fractions according to the chemical nature and the molecular size were studied. DOM derived from leaves and needles was clearly more labile than DOM derived from the humus layer indicating the importance of studying the DOM originating from fresh litter when assessing the turnover of DOM.DOM derived from spruce needles appeared to differ chemically greatly from all other samples. It had very high concentrations of carbohydrates, probably due to the sampling time, and phenolic compounds. The chemical composition of DOM derived from humus layer did not reflect the composition of DOM derived from needles and leaves. DOM derived from birch leaves degraded more than DOM derived from spruce needles and DOM derived from humus layer collected at the birch sites degraded more than DOM derived from humus layer collected at the spruce sites. The degradability of different compound groups of DOC and DON was studied in a short-term incubation (20 d) of DOM solutions by characterizing the solutions initially and after the incubation. Almost all compound groups appeared to degrade but weak hydrophobic acids, bases, hydrophilic neutrals, the smallest molecular size compounds, carbohydrates, and phenolic compounds degraded the most.  相似文献   

6.
We estimated the contribution of dissolved organic matter (DOM) to cation leaching and the translocation of acidity in three acid forest soils. The analysis was based on monitored (2 years) concentrations of dissolved organic carbon (DOC) in the field, measured total acidities of DOM, and measured as well as predicted weighted mean dissociation constants of the organic acids. Although the forest floor solutions were strongly acidic (pH 3.47–4.10), a considerable proportion of the organic acids was dissociated and organic anions represented 22–40% of the total anions in the mineral soil input. The flux of DOM-associated exchangeable protons from the forest floor to the mineral soil ranged from 0.35 (Wülfersreuth) to 3.72 (Hohe Matzen) kmol ha?1 yr?1. In the subsoil, this organic acidity may be neutralized by microbial decomposition of the organic acids, but a part of the hydrogen ions may dissociate and contribute to acidification of the soil solution and to weathering processes. Due to the pronounced retention of DOM in the mineral subsoil horizons, the contribution of DOM to the output of cations and acidity from the soil is much lower than in the surface horizons but still significant.?  相似文献   

7.
In this study the dry input of atmospheric particles into a forest stand is quantified. A wash-off-method using the natural leaf surfaces as collectors of the dry deposition was chosen. The direct on-site-measurement on living branches were achieved in a spruce stand (Picea abies (L.) Karst) at Solling, Germany. The ion exchange processes occurring on natural branches can reliably be quantified through immediate sequential washings. In order to calculate also the gas dry deposition of those trace elements which occur in both particle and gas phases, a resistance model was used. From these results the deposition velocity of particulate aerosol components into the forest stand was calculated. Dry particle deposition constitutes an important part of the total matter input into the forest ecosystem. Just the nitrogen input into Solling only by dry deposition (from particle-, mist-, and gas-deposition) with about 30 kg N ha?1 a?1 already exceeds the critical load of 20 kg N ha?1 a?1 by far, and this is without even considering the additional load by wet deposition which amounts to 15 kg ha?1 a?1. These findings are of greatest ecological importance, as the damage to the stability of the forest ecosystem caused by increased nitrogen input is considerable. Only a quick and drastic reduction of sulphur and nitrogen emissions could stop the further increase of the nutritient imbalance and the progressing acidification of this ecosystem.  相似文献   

8.
Simultaneous determination of nitrogen transformation rates in soil columns using 15-N: N-Model of a Terra fusca-Rendzina soil Rates of ammonification, nitrification, immobilization, and denitrification were determined in undisturbed columns of a Terra fusca Rendzina soil. A steady input of 15-N labelled ammoniumsulfate with the irrigation water created a steady state of the turnover processes in the soil resulting in a constant output of 15-N-nitrate. In this state the rate constants (8°C) were K1 = 0.64 for the netto-N-nitrification, K2 = 0.11 for the netto-N-denitrification, and K3 = 0.25 for the netto-N-immobilization. 64% of the nitrate was leached, 25% immobilized in organic matter, and 11% denitrified. Relating these rate constants to the turnover of the soil nitrogen one can calculate the mean annual rates for the different processes of a forest soil, using the mean annual temperature. For the Göttinger Wald situation (T = 6.9°C) the following rates were calculated; Ammonification = 183 kg N·ha?1·a?1, immobilization = 44 kg N·ha?1·a?1, netto N-denitrification = 19 kg N·ha?1·a?1, and netto-N-mineralization = 120 kg N·ha?1·a?1.  相似文献   

9.
Significance of microbial biomass and non-exchangeable ammonium with respect to the nitrogen transformations in loess soils of Niedersachsen during the growing season of winter wheat. I. Change of pool sizes Nitrogen transformations in loess soils have been examined by laboratory and field experiments. After straw application (· 8 t · ha?1), N in microbial biomass (Nmic) increased by about 20 mg · kg?1 soil (· 90 kg N · ha?1 · 30 cm?1) after 9 days of incubation (20 °C). Another laboratory experiment yielded an increase of about 400 mg of NH4+-N · kg?1 fixed by minerals within 1 h after addition of 1 M NH4+-acetate. Defixation of the recently fixed NH4+ after addition of 1 M KCl amounted to only 60 mg · kg?1 within 50 days. In a field experiment with winter wheat 1991, an increase in Nmic of about 80 kg N · ha?1 · 30 cm?1 was observed from March to June. After July, growth of the microbes was limited by decreased soluble carbon concentrations in the rhizosphere. Different levels of mineral N-fertilizer (0, 177 and 213 kg N · ha?1) did not affect significantly the microbial biomass. The same field experiment yielded a decrease of non-exchangeable ammonium on the “zero”-fertilized plot in spring by 200 kg N · ha?1 · 30 cm?1. The pool of fixed ammonium increased significantly after harvest. After conventional mineral N-fertilizer application (213 kg N · ha?1). NH4+-defixation was only about 120 kg N · ha?1 · 30 cm?1 until July.  相似文献   

10.
Estimating denitrification in agriculturally used soils: II. Results and evaluation This is the second of two papers describing a denitrification model. Whereas in the first paper the model approach was described, the second paper deals with results obtained with the model. To evaluate the model's performance, 14 profiles in the catchment area of a water-work were studied in detail. For each site the potential and the actual annual denitrification rates were estimated. It was found that the least favorable conditions for denitrification occurred in the sandy soils of the study area. Consequently, estimated denitrification rates were lowest (< 10 kg N ha?1 a?1) in these soils. Estimated denitrification rates were highest (50 kg N ha?1 a?1) in peal and river plain soils, with either a high amount of organic matter and/or a high groundwater table. In silty loess soils, denitrification losses were estimated to be 20 to 35 kg N ha?1 a?1. With use of the anion concentrations in the surface layer of the groundwater, a plausibility study was conducted to evaluate the estimated denitrification losses. Its results show that the values obtained are realistic. However, a true calibration of the model is still necessary.  相似文献   

11.
Significance of microbial biomass and mineral fixed ammonium with respect to the nitrogen transformations in loess soils of Niedersachsen during the growing season of winter wheat. II. 15N-turnover Field experiments 1988/89 on a fallow plot of the southern Niedersachsen loess area with straw application (δ 10 t · ha?1, homogeneously incorporated by hand) yielded an increase in microbial biomass-N (Nmic) by 60 kg N · ha?1 · 30 cm?1 until March 1989 and further 40 kg N · ha?1, till May which was almost completely remobilized until harvest. For a cropped plot (with winter wheat and 10 t · ha?1 straw incorporation), N immobilization was of similar magnitude. Up to 18% of the applied 15N-fertilizer (185 kgN · ha?1) were microbially immobilized. In contrast to 1988/89, no significant mass change of Nmic occurred in 1991 due to straw application (δ 10t · ha?1). Variations in the amount of Nmic were nearly independent on the treatment (crop, with 140 kg fertilizer-N · ha?1 or without N-fertilizer, respectively; fallow plot without fertilizer-N) within a range of 225-400 kg N · ha?1 · 30 cm?1. Directly after N-application (each 70 kg N · ha?1 in March and in May), up to 100% of the fertilizer-N were assimilated by the microbes. Subsequently, remobilization of the immobilized nitrogen occurred within 2 (in March) or 6 weeks (in May), respectively. Simultaneously, organic soil-N was mineralized after each N-application and minerally fixed for us biggest part. Between March and June, the fixed NH4+ decreased by about 112 kg · ha?1 · 30 cm?1.  相似文献   

12.
The chemical composition of waste-material-derived dissolved organic matter (DOM) was characterized by chemolytic analyses and 1H, 13C and 31P nuclear magnetic resonance (NMR) spectroscopy. Dissolved organic matter was extracted by water from an aerobic fermented urban waste compost, a sewage sludge and a pig slurry and then fractionated using the XAD-8 method. The amount of water-extractable dissolved organic carbon (DOC) ranged from 3% in the sewage sludge to 22% in the pig slurry. Dissolved organic matter isolated from pig slurry was equally distributed between hydrophilic and hydrophobic DOC, whereas in the sewage-sludge-derived material the hydrophobic fraction was predominant. Dissolved organic C from the urban waste compost was mainly within the hydrophilic fraction. Wet-chemical analysis and 1H- and 13C-NMR spectra showed that both DOM fractions from the urban waste compost were low in neutral, acidic and amino sugars as well as in lignin-derived compounds. In turn, the materials were rich in low-molecular-weight aliphatic compounds. The chemical structure of both fractions is probably the result of the intensive transformation of urban waste compost during its fermentation. The hydrophilic fractions of DOM from sewage sludge and pig slurry contained considerable amounts of carbohydrates but were also rich in low-molecular-weight aliphatics. The respective hydrophobic fractions had the largest contents of CuO-extractable phenols which may in part derive from sources other than lignin. By contrast with the other materials, the hydrophobic fraction from the pig slurry seemed to contain polymeric rather than low-molecular-weight material. The 31P-NMR spectrum of the hydrophilic DOM fraction from urban waste compost did not show signals of inorganic or organic P compounds while the spectrum of the hydrophobic fraction revealed traces of monoester P, diester P, and orthophosphate. 31P-NMR spectroscopy suggested that both the hydrophobic and hydrophilic fractions from pig slurry did not contain organic P. The hydrophilic DOM fraction from sewage sludge contained orthophosphate, organic monoester P and a little pyrophosphate. The hydrophobic fraction contained mainly organic diester P and smaller amounts of teichoic acids and organic monoester P. Considering that water-soluble fractions of urban waste compost contained no easily plant-available P and a low content of labile organics, we conclude that this material contains less labile nutrients and is more refractory than the soluble constituents of pig slurry and sewage sludge.  相似文献   

13.
Abstract

We measured the concentration and composition (sensu Leenheer, 1981) of dissolved organic carbon (DOC) in lysimeter solutions from the forest floor of a spruce stand in Maine and in laboratory extracts of organic (Oa horizon) and mineral soils collected from various forests in Maine, New Hampshire, and Vermont. All soils were acid Spodosols developed from glacial till. The effects of different storage, extraction and filtration methods were compared. Extracts from Oa horizons stored fresh at 3°C contained a larger fraction of hydrophobic neutrals than lysimeter forest floor solutions (31 and 4% of DOC in stored and lysimeter solutions, respectively), whereas extracts from Oa horizons which had been extracted, incubated at 10–15°C, and extracted again had DOC compositions similar to that in lysimeter solutions. Mechanical vacuum and batch extractions of Oa horizons yielded DOC similar in concentration and composition if the extracts were filtered through glass fiber filters. Nylon membrane filters, however, removed more hydrophobic acids from batch extracts. Dissolved organic carbon extracted from frozen, air‐dry, and oven‐dry Oa and Bh horizons was relatively rich in hydrophilic bases and neutrals and was similar to that released after chloroform fumigation, indicating that common soil‐storage methods disrupt microbial biomass.  相似文献   

14.
Dissolved organic matter (DOM) in soils is partially adsorbed when passing through a soil profile. In most adsorption studies, water soluble organic matter extracted by water or dilute salt solutions is used instead of real DOM gained in situ by lysimeters or ceramic suction cups. We investigated the adsorption of DOM gained in situ from three compartments (forest floor leachate and soil solution from 20 cm (Bg horizon) and 60 cm depth (2Bg horizon)) on the corresponding clay and fine silt fractions (< 6.3 μm, separated together from the bulk soil) of the horizons Ah, Bg, and 2Bg of a forested Stagnic Gleysol by batch experiments. An aliquot of each clay and fine silt fraction was treated with H2O2 to destroy soil organic matter. Before and after the experiments, the solutions were characterized by ultra‐violet and fluorescence spectroscopy and analyzed for sulfate, chloride, nitrate, and fluoride. The highest affinity for DOM was found for the Ah samples, and the affinity decreased in the sequence Ah > Bg > 2Bg. Dissolved organic matter in the 2Bg horizon can be regarded as slightly reactive, because adsorption was low. Desorption of DOM from the subsoil samples was reflected more realistically with a non‐linear regression approach than with initial mass isotherms. The results show that the extent of DOM adsorption especially in subsoils is controlled by the composition and by the origin of the DOM used as adsorptive rather than by the mineralogical composition of the soil or by contents of soil organic matter. We recommend to use DOM gained in situ when investigating the fate of DOM in subsoils.  相似文献   

15.
The Humboldt‐University of Berlin conducts several long‐term field trials designed to assess the effects of tillage methods, crop rotations, organic fertilization, mineral nitrogen, phosphorus, and potassium fertilizers, liming, irrigation, and weather conditions. On silty sand soils shallow ploughing resulted in a distinct accumulation of soil organic matter and phosphorus in the tilled soil layer while potassium and pH values were unaffected. On average shallow ploughing increased yields, with a tendency for higher yields in spring crops and lower yields in winter cereals. Different amounts of organic and mineral fertilizers applied over 30 years resulted in a great differentiation in soil organic matter content. In the following 32 years this variation stayed more or less unchanged, but with an overall reduction in the carbon content. In variants in which phosphate and potassic fertilizers were omitted, 16 kg ha—1 P and 15 kg ha—1 K per year were still being mobilized in the soil after 60 years. In treatments with mineral fertilization, the phosphorus is nearly balanced whilst only 60 % of the potassium is withdrawn from the soil. Additional organic fertilizers, given as farm yard manure, led to a nutrient surplus of 19 kg ha—1 a—1 P and 99 kg ha—1 a—1 K. Omitted liming caused an acidification of the soil to such an extent that crop production became impossible.  相似文献   

16.
The effects of enhanced (NH4)2SO4 (NS) deposition on Norway spruce (Picea abies [L.] Karst) fine root biomass, vitality and chemistry were investigated using root-free in-growth cores reproducing native organic and mineral soil horizons. The cores were covered and watered every 2 weeks with native throughfall or throughfall supplemented with NS to increase deposition by 75 kg ha-1 a-1 NH4 +-N (86 kg ha-1 a-1 SO42--S). The in-growth cores were sampled after 19 months and assessed for root biomass, necromass, length, tip number, tip vitality and fine root chemistry. Root biomass and fine root aluminium (Al) concentration were negatively correlated, but NS deposition had no effect on root growth or root tip vitality. NS deposition caused increased fine root nitrogen (N) concentrations in the organic horizon and increased Calcium (Ca) concentrations in the mineral horizon. Fine root biomass was higher in the organic horizon, where fine root Al and potassium (K) concentrations were lower and Ca concentrations higher than in the mineral horizon. Results highlighted the importance of soil stratification on fine root growth and chemical composition.  相似文献   

17.
A field experiment was conducted over 9?years (1999 to 2007 growing seasons) in northeastern Saskatchewan on a S-deficient Gray Luvisol (Typic Haplocryalf) soil. The objective was to determine the relative effectiveness of N alone versus combined annual application of N (120?kg N?ha?1) and S (15?kg S?ha?1) fertilizers to a wheat–canola rotation on storage of total organic C (TOC) and N (TON) and on the light fraction organic C (LFOC) and N (LFON) in soil. Compared to N alone, annual applications of S fertilizer in spring in a combination with N resulted in an increase in soil of TOC (by 2.18?Mg C?ha?1), TON (by 0.138?Mg N?ha?1), LFOC (by 1,018?kg C?ha?1), and LFON (by 42?kg N?ha?1). The relative increases in organic C or N due to S fertilizer application were much higher for the light organic fractions (36.9% for LFOC and 27.5% for LFON) than for the total organic fractions (9.2% for TOC and 7.3% for TON). The findings demonstrate the importance of a balanced/combined application of N and S fertilizers to crops in storing more organic C and N in this S-deficient soil.  相似文献   

18.

Purpose

This study quantified the above- and belowground carbon (C) stocks across a chronosequence of spruce (Picea asperata) plantations established on cutovers and explored the turning point after which the increase in biomass C slowed or biomass C decreased for guiding forest management.

Materials and methods

We assessed above- and belowground plant biomass stocks at 11 sites in three regions, representing 12- to 46-year-old spruce plantations established on clear-cut areas in the eastern Tibetan Plateau, China. Biomass and C stocks of trees, understory vegetation, and forest floor litter were determined from plot-level inventories and destructive sampling. Fine root (<2 mm) biomass and mineral soil organic C (SOC) stock were estimated from soil cores. Tree biomass was quantified using allometric equations based on diameter at breast height (DBH) and height (H).

Results and discussion

Plant biomass C stocks in spruce plantations rapidly increased from 12 to 20 years at a rate of 7.8 Mg C ha?1 year?1, but decreased from 25 to 46 years at a rate of 0.79 Mg C ha?1 year?1. SOC stocks in spruce plantations gradually decreased from 12 to 46 years at a rate of 4.4 Mg C ha?1 year?1. Total C stock in the ecosystem remained unchanged for the first 20 years after the planting of spruce on cutovers, because the buildup of C stock in spruce biomass during the first 20 years was offset by the decrease in SOC. From 21 to 46 years after the reforestation, ecosystem C stock even decreased at a rate of 5.2 Mg C ha?1 year?1. The contribution of the understory vegetation, forest floor litter, and fine root to ecosystem C stock was low (<5.0 %) in the spruce plantations.

Conclusions

Ecosystem C stock in the spruce forest established on the cutover in the eastern Tibetan Plateau was related to stand age. During the first 20 years, this ecosystem was C neutral. However, aged (20–46 years) spruce plantation ecosystem can be a C source if no management was implemented to revitalize tree growth, promote understory vegetation, and enhance SOC accumulation.
  相似文献   

19.
Dynamics and nutrient concentration in fine-roots of alpine spruce stands on calcareous soils (Wank-Massif/Bavarian Alps) The dynamics and the concentrations of nutrient elements in the fine roots of two stands of alpine spruce differing in vigour on calcareous soils overlying limestone in the Wank massif of the bavarian alps were measured. Selected root parameters were compared with those obtaining on acid soils. At Wank, the concentration (mg/100 ml soil) of living fine roots and root tips was maximum in the organic surface layer and the mineral horizon immediately underlying the surface layer. There were significantly more fine root biomass (kg ha?1) on the calcareous site (Walk) than on acid soils (Solling and Fichtelgebirge). There were also marked differences between the two sites in concentration of nutrient elements in the fine roots was strongly influenced by chemical composition of the soil solution.  相似文献   

20.
Forestry studies were undertaken within the Turkey Lakes Watershed to determine the impact of long-range transport of air pollutants on biogeochemical processes in old-growth sugar maple forest on shallow Precambrian-derived till soils in the Algoma District of Ontario, Canada. Distributions of organic matter and macroelements were determined in the tree- and field-layer vegetation, the forest floor and the mineral soil of the study site. Annual tree growth was largely offset by mortality, resulting in a relatively stable standing stock of ca. 245 t ha?1. Annual aboveground litter production averaged 3.7 t ha?1 yr?1, chiefly in the form of deciduous leaf fall. The average pH of the precipitation (4.3) was reduced considerably by contact with the forest canopy. Throughfall was enriched with other elements, principally K and, to a lesser extent, Ca and Mg. The cationic composition of the forest-floor percolates, on the other hand, was dominated primarily by Ca and only to a lesser extent by Mg and K. The stand receives moderate acid deposition, mainly from average inputs of 33–36 kg ha?1 yr?1 of SO4 2? and 24–29 kg ha?1 yr?1 of NO3 ? distributed throughout the year. Atmospheric inputs add to substantial natural NO3 ? production, notably within the forest floor and upper mineral soil, and contribute to leaching of bases, principally Ca and Mg, from the rooting zone. Active recycling of elements together with weathering of primary minerals should assist in preserving the base status of the site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号