首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 500 毫秒
1.
生物质热解利用系统的实验研究   总被引:3,自引:1,他引:2  
根据产气量为20m3/h的热解炉,以玉米秸秆颗粒为生物质原料,对额定功率为10kW的燃气发电系统及其相关的焦油裂解装置进行了研究,得出玉米秸秆颗粒在热解温度为470℃左右时,燃气的热值最高,以煅烧的白云石和镍基催化剂组成的焦油裂解装置,在催化裂解温度为850℃时,可达97%以上的焦油裂解率.结合对热解气副产物生物质炭的分析,得出了生物质热解利用系统的产出能量大概分布,为生物质能源的高效综合利用提供一定的参考.  相似文献   

2.
在利用流化床快速热解生物质制取生物油的工艺基础上,对影响生物油成分的主要因素进行了分析:在生物质快速热解过程中,当热解温度、物料种类、催化剂、载气等参数发生变化时,生物油成分也会发生变化;生物质原料对于生物油的化学成分影响较大,而热解条件则对生物油化学成分的相对含量具有显著影响;可有针对性地选择反应条件及原料种类进行热解,以获得所需要品质的生物油.  相似文献   

3.
在实验室自制固定床热解反应器中,选择生物质花生壳作为实验材料,研究并比较了过渡金属氧化物和非过渡金属氧化物作为催化剂时催化热解制备富氢可燃气的催化效果.结果表明:花生壳热解产气过程中,氢气产率与可燃气产量随热解温度变化的基本趋势不因催化剂或催化剂添加剂量的改变而改变;2%的MnO2(占入料质量的百分比)最有利于花生壳热解产氢;适量催化剂在花生壳催化热解制备富氢可燃气有效作用温度区间是500°~800℃.  相似文献   

4.
以花生壳和玉米秸秆为原料,利用自主研发的无轴螺旋连续热解装置在300、400、500℃的热解温度下反应10 min制备生物质炭,对生物质炭进行工业分析和热值测量,分析其组成成分和热值;开展了生物质炭亚甲基蓝吸附与碘吸附特性研究,结合扫描仪和取色软件获取生物质炭的RGB数据并进行灰度转化,探究生物质炭的吸附特性与RGB值、灰度的相关关系。结果表明:随着热解温度的升高,生物质炭中挥发分的含量降低,固定碳和灰分的含量升高,热值升高;较低热解温度的生物质炭的吸附效果优于较高温度热解的生物质炭;生物质炭的吸附值与R、G、B值均随着热解温度的升高而降低,两者之间存在强正相关关系,相关系数r为0.582~0.944;生物质炭的灰度与吸附值存在强正相关关系,相关系数r为0.685~0.977。  相似文献   

5.
李钢  舒新前  毕东东  丁兆军  张蕾  张磊 《农机化研究》2007,(11):155-158,163
在实验室自制固定床热解反应器中,选择了两种煤(神华煤和灵武煤)和3种生物质(花生壳、核桃壳和木屑)作为实验材料,定量化分析比较了恒温热解和同温热解停留时间对煤与生物质热解产氢及热解油、热解焦产率的影响.研究认为:实验用煤与生物质催化热解表现出基本相同的热解趋势,即提高热解温度和延长热解时间(对生物质添加合适催化剂)都有利于产氢;对煤而言,提高热解温度和延长热解时间还利于热解油生成,但对生物质而言,效果不很明显.  相似文献   

6.
建立动力学方程是正确了解生物质热解过程的关键,研究生物质快速热解机理必须获得生物质在快速热解条件下的动力学方程.为此,介绍了国内外学者对生物质快速热解动力学的研究,对提出的动力学模型进行了总结并分类介绍.生物质在快速热解条件下的动力学模型可以分为单步整体模型、竞争反应模型、半总体模型、焦油二次裂解模型和综合模型等.  相似文献   

7.
对6种典型废弃生物质(锯末、稻壳、纸屑、橱芥、废塑料、废橡胶)进行热重实验分析及热解动力学分析;同时,利用TG/DTG曲线分析了它们的基本热解特性,包括热解区间、最大热解速率的温度、不同加热速度等对热解进程的影响等;通过热解动力学分析,给出了基本的热解动力学方程,研究了各种原料在不同升温速率下的热解动力学参数,为废弃生物质制取生物质能源技术提供基础数据.  相似文献   

8.
热解温度对生物质炭性质及其在土壤中矿化的影响   总被引:5,自引:0,他引:5  
以苹果树修剪的枝条为原料,分别在300、400、500、600℃条件下热解制备生物质炭,在采用扫描电镜、红外光谱、物理化学吸附仪等手段研究其性质、结构差异的基础上,通过培养试验研究不同温度制备生物质炭的矿化特征及其对土壤有机碳组分的影响。结果表明,随着热解温度的升高,生物质炭的碳含量、比表面积及碱性官能团的含量增加,O、H及H/C、O/C和酸性官能团、总官能团的含量则降低,生物质炭的芳香族结构加强,稳定性升高。添加生物质炭可以增加土壤呼吸速率、微生物量碳(MBC)及可溶性有机碳(DOC)的含量,且随着添加比例的增加而增加,但随着热解温度的升高而降低。生物质炭的矿化率随着热解温度升高和添加比例增加而降低。利用双库模型揭示了生物质炭对土壤活性碳库、惰性碳库及其分解速率的影响。施用生物质炭后土壤有机碳的半衰期在24.09~44.76 a之间,且随生物质炭制备温度升高而增大。考虑到生物质炭制备过程中有机碳的损失,且从提升土壤有机碳含量方面考虑,500℃为制备苹果枝条生物质炭的最佳温度。  相似文献   

9.
生物质热解油的化学组成及其研究进展   总被引:1,自引:0,他引:1  
综述了生物质热解油的研究现状及应用前景,重点介绍了生物质热解油化学组成的分析方法,总述了生物质热解油的物化性质,进而归纳了几种常见生物质热解油,特别是城市污水污泥热解油、城市垃圾热解焦油、工业废油热解油、林业废料热解生物油和农作物热解油的化学组成及其性质;讨论了生物质热解油常见的改性办法,如催化加氢处理、沸石分子筛处理、催化裂解和乳化工艺的过程及其特点;展望了生物质热解油的研究前景,提出了相关建议。  相似文献   

10.
生物质与煤热解特性及动力学研究   总被引:2,自引:0,他引:2  
利用热重分析技术对4种常见天然生物质(核桃壳、木屑、玉米秸秆、小麦秸秆)和两种烟煤在高纯N2条件下的热解过程进行了分析,研究不同粒度级和不同升温速率对热解过程的影响,并用Coats-Redfern积分法对热解过程进行了动力学分析。结果表明,生物质热解失重主要温度段为200~450℃,烟煤为300~600℃,反应符合一级反应动力学模型,生物质活化能为50~80kJ/mol,煤为30~115kJ/mol;升温速率对热解特性的影响较大,提高升温速率,TG及DTG曲线向高温方向移动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号