首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lectin from the bivalve Glycymeris yessoensis (GYL) was purified by affinity chromatography on porcine stomach mucin–Sepharose. GYL is a dimeric protein with a molecular mass of 36 kDa, as established by SDS-PAGE and MALDI-TOF analysis, consisting of 18 kDa subunits linked by a disulfide bridge. According to circular dichroism data, GYL is a β/α-protein with the predominance of β-structure. GYL preferentially agglutinates enzyme-treated rabbit erythrocytes and recognizes glycoproteins containing O-glycosidically linked glycans, such as porcine stomach mucin (PSM), fetuin, thyroglobulin, and ovalbumin. The amino acid sequences of five segments of GYL were acquired via mass spectrometry. The sequences have no homology with other known lectins. GYL is Ca2+-dependent and stable over a range above a pH of 8 and temperatures up to 20 °C for 30 min. GYL is a pattern recognition receptor, as it binds common pathogen-associated molecular patterns, such as peptidoglycan, LPS, β-1,3-glucan and mannan. GYL possesses a broad microbial-binding spectrum, including Gram-positive (Bacillus subtilis, Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Vibrio proteolyticus), but not the fungus Candida albicans. Expression levels of GYL in the hemolymph were significantly upregulated after bacterial challenge by V. proteolyticus plus environmental stress (diesel fuel). Results indicate that GYL is probably a new member of the C-type lectin family, and may be involved in the immune response of G. yessoensis to bacterial attack.  相似文献   

2.
In the current study, the preparation conditions of neutrase hydrolysate (SMH) from skate (Raja porosa) muscle protein were optimized using orthogonal L9(3)4 tests, and R values indicated that pH was the most important factor affecting HO· scavenging activity of SMH. Under the optimum conditions of pH 7.0, enzymolysis temperature 60 °C, enzyme/substrate ratio (E/S) 2%, and enzymolysis time 5 h, EC50 of SMH on HO· was 2.14 ± 0.17 mg/mL. Using ultrafiltration, gel filtration chromatography, and RP-HPLC, two novel antioxidant nonapeptides (SP-A and SP-B) were isolated from SMH and their amino acid sequences were found to be APPTAYAQS (SP-A) and NWDMEKIWD (SP-B) with calculated molecular masses of 904.98 Da and 1236.38 Da, respectively. Both showed strong antioxidant activities. SP-A and SP-B exhibited good scavenging activities on HO· (EC50 0.390 and 0.176 mg/mL), DPPH· (EC50 0.614 and 0.289 mg/mL), and O2· (EC50 0.215 and 0.132 mg/mL) in a dose-dependent manner. SP-B was also effective against lipid peroxidation in the model system. The aromatic (2Trp), acidic (2Asp and Glu), and basic (Lys) amino acid residues within the sequences of SP-B might account for its pronounced antioxidant activity. The results of this study suggested that protein hydrolysate and peptides from skate muscle might be effective as food additives for retarding lipid peroxidation occurring in foodstuffs.  相似文献   

3.
Genome sequencing of Catenovulum agarivorans YM01T reveals 15 open-reading frames (ORFs) encoding various agarases. In this study, extracellular proteins of YM01T were precipitated by ammonium sulfate and separated by one-dimensional gel electrophoresis. The results of in-gel agarase activity assay and mass spectrometry analysis revealed that the protein, YM01-3, was an agarase with the most evident agarolytic activity. Agarase YM01-3, encoded by the YM01-3 gene, consisted of 420 amino acids with a calculated molecular mass of 46.9 kDa and contained a glycoside hydrolase family 16 β-agarase module followed by a RICIN superfamily in the C-terminal region. The YM01-3 gene was cloned and expressed in Escherichia coli. The recombinant agarase, YM01-3, showed optimum activity at pH 6.0 and 60 °C and had a Km of 3.78 mg mL−1 for agarose and a Vmax of 1.14 × 104 U mg−1. YM01-3 hydrolyzed the β-1,4-glycosidic linkages of agarose, yielding neoagarotetraose and neoagarohexaose as the main products. Notably, YM01-3 was stable below 50 °C and retained 13% activity after incubation at 80 °C for 1 h, characteristics much different from other agarases. The present study highlights a thermostable agarase with great potential application value in industrial production.  相似文献   

4.
The recovery of amino acids and other important bioactive compounds from the comb penshell (Atrina pectinata) using subcritical water hydrolysis was performed. A wide range of extraction temperatures from 140 to 290 °C was used to evaluate the release of proteins and amino acids. The amount of crude protein was the highest (36.14 ± 1.39 mg bovine serum albumin/g) at 200 °C, whereas a further increase in temperature showed the degradation of the crude protein content. The highest amount of amino acids (74.80 mg/g) was at 230 °C, indicating that the temperature range of 170–230 °C is suitable for the extraction of protein-rich compounds using subcritical water hydrolysis. Molecular weights of the peptides obtained from comb penshell viscera decreased with the increasing temperature. SDS-PAGE revealed that the molecular weight of peptides present in the hydrolysates above the 200 °C extraction temperature was ≤ 1000 Da. Radical scavenging activities were analyzed to evaluate the antioxidant activities of the hydrolysates. A. pectinata hydrolysates also showed a particularly good antihypertensive activity, proving that this raw material can be an effective source of amino acids and marine bioactive peptides.  相似文献   

5.
6.
Tasco®, a commercial product manufactured from the brown alga Ascophyllum nodosum, has been shown to impart thermal stress tolerance in animals. We investigated the physiological, biochemical and molecular bases of this induced thermal stress tolerance using the invertebrate animal model, Caenorhabiditis elegans. Tasco® water extract (TWE) at 300 μg/mL significantly enhanced thermal stress tolerance as well as extended the life span of C. elegans. The mean survival rate of the model animals under thermal stress (35 °C) treated with 300 μg/mL and 600 μg/mL TWE, respectively, was 68% and 71% higher than the control animals. However, the TWE treatments did not affect the nematode body length, fertility or the cellular localization of daf-16. On the contrary, TWE under thermal stress significantly increased the pharyngeal pumping rate in treated animals compared to the control. Treatment with TWE also showed differential protein expression profiles over control following 2D gel-electrophoresis analysis. Furthermore, TWE significantly altered the expression of at least 40 proteins under thermal stress; among these proteins 34 were up-regulated while six were down-regulated. Mass spectroscopy analysis of the proteins altered by TWE treatment revealed that these proteins were related to heat stress tolerance, energy metabolism and a muscle structure related protein. Among them heat shock proteins, superoxide dismutase, glutathione peroxidase, aldehyde dehydrogenase, saposin-like proteins 20, myosin regulatory light chain 1, cytochrome c oxidase RAS-like, GTP-binding protein RHO A, OS were significantly up-regulated, while eukaryotic translation initiation factor 5A-1 OS, 60S ribosomal protein L18 OS, peroxiredoxin protein 2 were down regulated by TWE treatment. These results were further validated by gene expression and reporter gene expression analyses. Overall results indicate that the water soluble components of Tasco® imparted thermal stress tolerance in the C. elegans by altering stress related biochemical pathways.  相似文献   

7.
8.
Silkworm has great potential as production system of recombinant mammalian proteins. When the protein products are used for medical purpose, it is required to reduce the risk of an allergy, the content of core alpha 1,3-fucosyl residue attached to the N-glycan of proteins, for example. We isolated the gene of an enzyme responsible for the transfer of core alpha 1,3-fucosyl residue, core alpha 1,3-fucosyltransferase (Fuc-T C3), from silkworm. A candidate cDNA for silkworm Fuc-T C3 was isolated as a homolog of the fruit fly enzyme gene fucTA. The gene was located on chromosome 7 of the silkworm genome and was composed of seven exons, which spanned approximately 10 kb on the genome. The coding region of the gene was 1,350 bp and encoded a 450-amino acid protein with a molecular mass of 52.2 kDa. Deduced amino acid sequence of the coding region showed one transmembrane domain in its N-terminal and typical motifs common to fucosyltransferases including Fuc-T C3s of other organisms in its C-terminal. The extract of CHO cells transfected with the cDNA showed Fuc-T C3 activity using GDP-fucose and DABS-GnGn peptide as substrates. These results showed this cDNA clone actually encodes silkworm Fuc-T C3.  相似文献   

9.
Heat shock proteins (HSPs) are abundant and ubiquitous in almost all organisms from bacteria to mammals. BmHSP20.8 is a small (sHSP) in Bombyx mori that contains a 561 bp open reading frame that encodes a protein of 186 amino acid residues with a predicted molecular mass of 20.8 kDa. The subcellular localization prediction indicated that BmHSP20.8 is likely distributed in the mitochondria with a 51% probability. To identify the subcellular localization of BmHSP20.8, three recombinant vectors were constructed and used to transfect BmN cells. The cytoplasmic and mitochondrial proteins were extracted 72 h after transfection. The Western blot showed that recombinant BmHSP20.8 exists only in the mitochondria. To locate the mitochondrial localization signal domain of BmHSP20.8 more accurately, we cloned four truncated recombinant vectors. The Western blot analysis of the cytoplasmic and mitochondrial proteins showed that the mitochondrial localization signal domain of BmHSP20.8 is located between amino acids 143 to 186. We constructed the pETduet-HIS-SUMO-BmHSP20.8 vector and a soluble BmHSP20.8 was expressed. In a citrate synthase (CS) thermal aggregation experiment, we found that the recombinant BmHSP20.8 protein can protect CS from aggregating at 43 and 48°C and thus exhibited molecular chaperone activity. Taken together, the results showed that BmHSP20.8 could be a mitochondrial protein and has a molecular chaperone activity, suggesting an important role in mitochondria.  相似文献   

10.
11.
The production of polyunsaturated fatty acids (PUFA) in Tisochrysis lutea was studied using the gradual incorporation of a 13C-enriched isotopic marker, 13CO2, for 24 h during the exponential growth of the algae. The 13C enrichment of eleven fatty acids was followed to understand the synthetic pathways the most likely to form the essential polyunsaturated fatty acids 20:5n-3 (EPA) and 22:6n-3 (DHA) in T. lutea. The fatty acids 16:0, 18:1n-9 + 18:3n-3, 18:2n-6, and 22:5n-6 were the most enriched in 13C. On the contrary, 18:4n-3 and 18:5n-3 were the least enriched in 13C after long chain polyunsaturated fatty acids such as 20:5n-3 or 22:5n-3. The algae appeared to use different routes in parallel to form its polyunsaturated fatty acids. The use of the PKS pathway was hypothesized for polyunsaturated fatty acids with n-6 configuration (such as 22:5n-6) but might also exist for n-3 PUFA (especially 20:5n-3). With regard to the conventional n-3 PUFA pathway, Δ6 desaturation of 18:3n-3 appeared to be the most limiting step for T. lutea, “stopping” at the synthesis of 18:4n-3 and 18:5n-3. These two fatty acids were hypothesized to not undergo any further reaction of elongation and desaturation after being formed and were therefore considered “end-products”. To circumvent this limiting synthetic route, Tisochrysis lutea seemed to have developed an alternative route via Δ8 desaturation to produce longer chain fatty acids such as 20:5n-3 and 22:5n-3. 22:6n-3 presented a lower enrichment and appeared to be produced by a combination of different pathways: the conventional n-3 PUFA pathway by desaturation of 22:5n-3, the alternative route of ω-3 desaturase using 22:5n-6 as precursor, and possibly the PKS pathway. In this study, PKS synthesis looked particularly effective for producing long chain polyunsaturated fatty acids. The rate of enrichment of these compounds hypothetically synthesized by PKS is remarkably fast, making undetectable the 13C incorporation into their precursors. Finally, we identified a protein cluster gathering PKS sequences of proteins that are hypothesized allowing n-3 PUFA synthesis.  相似文献   

12.
Shark (Sinica cetorhinus maximum) cartilage was extracted in 1 mol/L Gu- HCl guanidine. Two purified active proteins with apparent molecular weights of 15.2×103 Da and 8.0×103 Da (designated as Sp15 and Sp8, respectively) were obtained through ultrafiltration and Superdex 75 chromatography. The activities of the samples were studied in terms of their potential inhibition of vascular endothelial cell growth in vitro, of angiogenesis both in rabbit cornea and chick embryo chorioallantoic membrane (CAM) assay models in vivo, and of growth of transplanted S180 sarcoma in mice in vivo. The results showed that Sp15 expressed a typical lysozymatic activity up to 223,000 U/mg and its N-terminus was highly homologous to lysozymes of various mammalian origins. Sp15 exhibited a strong anti-angiogenic activity only in vitro, whereas Sp8 shared this effect both in vitro and in vivo. Both Sp15 and Sp8 provided an effective anti-tumor activity in mice bearing transplanted S180 sarcoma. These results suggest that Sp15 is a shark cartilage-derived lysozyme that participates in the defense to bacterial invasion to the body, while Sp8 is an angiogenic inhibitor that mediates at least part of the anti-tumor activity associated with shark cartilage probably through the inhibition of tumor-induced angiogenesis.  相似文献   

13.
Most marine biotoxins are produced by microalgae. The neurotoxin tetrodotoxin (TTX) has been reported in many seafood species worldwide but its source is unknown, making accumulation and depuration studies in shellfish difficult. Tetrodotoxin is a water-soluble toxin and cannot be directly ingested by shellfish. In the present study, a method was developed which involved binding TTX to solid particles of humic acid and encapsulating them in agar-gelatin capsules. A controlled quantity of TTX-containing microcapsules (size range 20–280 μm) was fed to Paphies australis, a bivalve known to accumulate TTX in the wild. The TTX-containing microcapsules were fed to P. australis every second day for 13 days. Ten P. australis (including five controls fed non-toxic microalgae) were harvested after 7 days and ten after 13 days. Paphies australis accumulated TTX, reaching concentrations of up to 103 µg kg−1 by day 13, exceeding the European Food Safety Authority recommended concentration of 44 μg kg−1 in shellfish. This novel method will allow future studies to explore the effects, accumulation and depuration rates of TTX in different animals and document how it is transferred through food webs.  相似文献   

14.
Fourier transform infrared (FTIR) and solid state13C NMR spectroscopic methods were used to investigate changes in maize and sorghum proteins on wet cooking and popping. FTIR spectra indicated that wet cooking led to proteins in two normal sorghums, namely NK 283 (a red hybrid) and KAT 369 (a white variety), two sorghum mutants (P850029 and P851171) and a maize hybrid (PAN 6043) assuming more antiparallel intermolecular β-sheet character, possibly at the expense of some α-helical conformation. Solid state13C NMR, using the technique of Cross Polarisation Magic Angle Spinning showed shifts of the protein carbonyl carbon and α-carbon resonances upfield on wet cooking in all samples, also indicating a change in protein secondary structure from α-helical to β-sheet conformation. The extent of secondary structural change on wet cooking seemed to be greater in sorghum than in maize and may have a bearing on the inferior protein digestibility of wet cooked sorghum compared to maize. Popping produced the same secondary structural change as observed for wet cooking in both sorghum and maize. However, the extent of change on popping was less than on wet cooking in sorghum and maize.  相似文献   

15.
16.
Chitosan, the product of chitin deacetylation, is an excellent candidate for enzyme immobilization purposes. Here we demonstrate that papain, an endolytic cysteine protease (EC: 3.4.22.2) from Carica papaya latex immobilized on the matrixes of medium molecular (200 kDa) and high molecular (350 kDa) weight chitosans exhibits anti-biofilm activity and increases the antimicrobials efficiency against biofilm-embedded bacteria. Immobilization in glycine buffer (pH 9.0) allowed adsorption up to 30% of the total protein (mg g chitosan−1) and specific activity (U mg protein−1), leading to the preservation of more than 90% of the initial total activity (U mL−1). While optimal pH and temperature of the immobilized papain did not change, the immobilized enzyme exhibited elevated thermal stability and 6–7-fold longer half-life time in comparison with the soluble papain. While one-half of the total enzyme dissociates from both carriers in 24 h, this property could be used for wound-dressing materials design with dosed release of the enzyme to overcome the relatively high cytotoxicity of soluble papain. Our results indicate that both soluble and immobilized papain efficiently destroy biofilms formed by Staphylococcus aureus and Staphylococcus epidermidis. As a consequence, papain, both soluble and immobilized on medium molecular weight chitosan, is capable of potentiating the efficacy of antimicrobials against biofilm-embedded Staphylococci. Thus, papain immobilized on medium molecular weight chitosan appears a presumably beneficial agent for outer wound treatment for biofilms destruction, increasing antimicrobial treatment effectiveness.  相似文献   

17.
Paralytic shellfish toxins (PST) are found in the hepatopancreas of Southern Rock Lobster Jasus edwardsii from the east coast of Tasmania in association with blooms of the toxic dinoflagellate Alexandrium catenella. Tasmania’s rock lobster fishery is one of the state’s most important wild capture fisheries, supporting a significant commercial industry (AUD 97M) and recreational fishing sector. A comprehensive 8 years of field data collected across multiple sites has allowed continued improvements to the risk management program protecting public health and market access for the Tasmanian lobster fishery. High variability was seen in toxin levels between individuals, sites, months, and years. The highest risk sites were those on the central east coast, with July to January identified as the most at-risk months. Relatively high uptake rates were observed (exponential rate of 2% per day), similar to filter-feeding mussels, and meant that lobster accumulated toxins quickly. Similarly, lobsters were relatively fast detoxifiers, losing up to 3% PST per day, following bloom demise. Mussel sentinel lines were effective in indicating a risk of elevated PST in lobster hepatopancreas, with annual baseline monitoring costing approximately 0.06% of the industry value. In addition, it was determined that if the mean hepatopancreas PST levels in five individual lobsters from a site were <0.22 mg STX equiv. kg−1, there is a 97.5% probability that any lobster from that site would be below the bivalve maximum level of 0.8 mg STX equiv. kg−1. The combination of using a sentinel species to identify risk areas and sampling five individual lobsters at a particular site, provides a cost-effective strategy for managing PST risk in the Tasmanian commercial lobster fishery.  相似文献   

18.
The moderately halophilic strain Salinivibrio sp. EG9S8QL was isolated among 11 halophilic strains from saline mud (Emisal Salt Company, Lake Qarun, Fayoum, Egypt). The lipopolysaccharide was extracted from dried cells of Salinivibrio sp. EG9S8QL by the phenol–water procedure. The OPS was obtained by mild acid hydrolysis of the lipopolysaccharide and was studied by sugar analysis along with 1H and 13C NMR spectroscopy, including 1H,1H COSY, TOCSY, ROESY, 1H,13C HSQC, and HMBC experiments. The OPS was found to be composed of linear tetrasaccharide repeating units of the following structure: →2)-β-Manp4Lac-(1→3)-α-ManpNAc-(1→3)-β-Rhap-(1→4)-α-GlcpNAc-(1→, where Manp4Lac is 4-O-[1-carboxyethyl]mannose.  相似文献   

19.
A marine polycyclic quinone-type metabolite, halenaquinone (HQ), was found to inhibit the proliferation of Molt 4, K562, MDA-MB-231 and DLD-1 cancer cell lines, with IC50 of 0.48, 0.18, 8.0 and 6.76 μg/mL, respectively. It exhibited the most potent activity against leukemia Molt 4 cells. Accumulating evidence showed that HQ may act as a potent protein kinase inhibitor in cancer therapy. To fully understand the mechanism of HQ, we further explored the precise molecular targets in leukemia Molt 4 cells. We found that the use of HQ increased apoptosis by 26.23%–70.27% and caused disruption of mitochondrial membrane potential (MMP) by 17.15%–53.25% in a dose-dependent manner, as demonstrated by Annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of Molt 4 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by HQ, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of HQ. The results of a cell-free system assay indicated that HQ could act as an HDAC and topoisomerase catalytic inhibitor through the inhibition of pan-HDAC and topoisomerase IIα expression, respectively. On the protein level, the expression of the anti-apoptotic proteins p-Akt, NFκB, HDAC and Bcl-2, as well as hexokinase II was inhibited by the use of HQ. On the other hand, the expression of the pro-apoptotic protein Bax, PARP cleavage, caspase activation and cytochrome c release were increased after HQ treatment. Taken together, our results suggested that the antileukemic effect of HQ is ROS-mediated mitochondrial apoptosis combined with the inhibitory effect on HDAC and topoisomerase activities.  相似文献   

20.
A marine furanoterpenoid derivative, 10-acetylirciformonin B (10AB), was found to inhibit the proliferation of leukemia, hepatoma, and colon cancer cell lines, with selective and significant potency against leukemia cells. It induced DNA damage and apoptosis in leukemia HL 60 cells. To fully understand the mechanism behind the 10AB apoptotic induction against HL 60 cells, we extended our previous findings and further explored the precise molecular targets of 10AB. We found that the use of 10AB increased apoptosis by 8.9%–87.6% and caused disruption of mitochondrial membrane potential (MMP) by 15.2%–95.2% in a dose-dependent manner, as demonstrated by annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of HL 60 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by 10AB, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of 10AB. The results of a cell-free system assay indicated that 10AB could act as a topoisomerase catalytic inhibitor through the inhibition of topoisomerase IIα. On the protein level, the expression of the anti-apoptotic proteins Bcl-xL and Bcl-2, caspase inhibitors XIAP and survivin, as well as hexokinase II were inhibited by the use of 10AB. On the other hand, the expression of the pro-apoptotic protein Bax was increased after 10AB treatment. Taken together, our results suggest that 10AB-induced apoptosis is mediated through the overproduction of ROS and the disruption of mitochondrial metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号