首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Microcystin-LR (MC-LR) is a cyclic heptapeptide toxin produced by cyanobacteria in eutrophic water. It can be transferred into soil–crop systems via irrigation and cyanobacterial paste fertilization. No studies have examined the potential toxicity of MC-LR to soil animals. Therefore, in the present study, the toxicological effects of MC-LR on earthworm (Eisenia fetida), including survival, growth, reproduction, oxidative stress, and cell viability, were investigated. The LC50 of MC-LR was 0.149 μg cm?2 at 72 h based on a filter paper test and 0.460 mg kg?1 at 14 days based on an acute soil test. MC-LR seriously affected the reproduction of earthworms. Based on hatchability, the EC50 of MC-LR was 0.268 mg kg?1, similar to environmentally relevant concentrations of microcystins. The changes in activities of superoxide dismutase, guaiacol peroxidase, catalase, and glutathione peroxidase, together with the levels of glutathione and malondialdehyde, indicated that oxidative damage and lipid peroxidation played significant roles in MC-LR toxicity. In addition, the toxicity of MC-LR in earthworms increased despite degradation of MC-LR in soil over time, possibly due to the formation of toxic metabolites of MC-LR or the bioaccumulation of MC-LR in earthworms. A reduction in the neutral red retention time along with an increase in coelomocyte apoptosis with increasing MC-LR concentrations indicated a severe damage to viability. These results suggest that environmentally relevant MC-LR concentrations in agricultural soil may cause reproductive, biochemical, and cellular toxicity to Eisenia fetida. This information can be used in ecological risk assessments on MC-LR in soil.  相似文献   

2.
Bio-fertilizer application has been proposed as a strategy for enhancing soil fertility, regulating soil microflora composition, and improving crop yields, and it has been widely applied in the agricultural yields. However, the application of bio-fertilizer in grassland has been poorly studied. We conducted in situ and pot experiments to investigate the practical effects of different fertilization regimes on Leymus chinensis growth, with a focus on the potential microecological mechanisms underlying the responses of soil microbial composition. L. chinensis biomass was significantly (P?<?0.05) increased by treatment with 6000 kg ha?1 of Trichoderma bio-fertilizer compared with other treatments. We found a positive (R2 =?0.6274, P <?0.001) correlation between bacterial alpha diversity and L. chinensis biomass. Hierarchical cluster analysis and nonmetric multidimensional scaling (NMDS) revealed that soil bacterial and fungal community compositions were all separated according to the fertilization regime used. The relative abundance of the most beneficial genera in bio-fertilizer (BOF) (6000 kg ha?1Trichoderma bio-fertilizer) was significantly higher than in organic fertilizer (OF) (6000 kg ha?1 organic fertilizer) or in CK (non-amend fertilizer), there the potential pathogenic genera were reduced. There were significant negative (P?<?0.05) correlations between L. chinensis biomass and the relative abundance of several potential pathogenic genera. However, the relative abundance of most beneficial genera were significantly (P?<?0.05) positively correlated with L. chinensis biomass. Soil properties had different effects on these beneficial and on these pathogenic genera, further influencing L. chinensis biomass.  相似文献   

3.
Although dilution of lake water has been used for improvement of water quality and algal blooms control, it has not necessarily succeeded to suppress the blooms. We hypothesized that the disappearance of algal blooms by dilution could be explained by flow regime, nutrient concentrations, and their interaction. This study investigated the effects of daily renewal rate (d), nitrogen (N) and phosphorus (P) concentration, and their interaction on the domination between Microcystis aeruginosa and Cyclotella sp. through a monoxenic culture experiment. The simulation model as functions of the N:P mass ratio and dilution rate (D) (calculated from d) was constructed, and the dominant characteristics of both species were predicted based on the model using parameters obtained in a monoculture experiment and our previous study. Results of monoxenic culture experiment revealed that M. aeruginosa dominated in all conditions (d = 5 or 15%; N = 1.0 or 2.5 or 5.0 mg-N L?1; P = 0.1 or 0.5 mg-P L?1) and the predicted cell densities were substantially correspondent to experimental data. Under various N:P ratios and D values, characteristics of domination for each species were predicted, indicating that Cyclotella sp. tended to be dominant under high P concentrations (P ≥ 0.36 mg-P L?1) when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1). It was also suggested that the dilution rate leading to the Cyclotella sp. domination required 0.20 day?1 or higher regardless of the N:P ratios.
Graphical Abstract ? M. aeruginosa and Cyclotella sp. could be a superior competitor in nutrient-limited and nutrient-rich conditions, respectively. ? The simulation model in this study indicated that the predicted cell density and nutrient concentration were substantially correspondent to experimental data. ? The model predicted that Cyclotella sp. tended to be dominant at the P ≥ 0.36 mg-P L?1 when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1).
  相似文献   

4.
Streptomyces sp. MC1, previously isolated from sugar cane, has shown ability to reduce Cr(VI) in liquid minimal medium and soil samples. The objective of this work was to demonstrate the intracellular chromium accumulation by Streptomyces sp. MC1 under different culture conditions. This strain was able to accumulate up to 3.54 mg of Cr(III) per gram of wet biomass, reducing the 98% of Cr(VI) and removing 13.9% of chromium from the culture medium supernatants. Streptomyces sp. MC1 chromium bioaccumulation ability was corroborated by using Timm’s reagent technique, a low-cost method, which has been used by first time to detect chromium deposits in bacteria. The results of atomic absorption spectrometry, scanning electron microscopy, and energy dispersive X-ray analysis suggest that the mechanism of Cr(VI) resistance observed in Streptomyces sp. MC1 includes adsorption coupled with reduction to Cr(III), and finally, Cr(III) bioaccumulation. This mechanism have special relevance to remediation of Cr(VI) contaminated environments by Streptomyces sp. MC1.  相似文献   

5.
This study was conducted to assess the hyperaccumulation and phytoremediation potential of copper (Cu) and lead (Pb) in Hardy ‘Limelight’ Hydrangea (Hydrangea paniculata) and the common sunflower (Helianthus annuus). The study also investigated the capacity of these two plants to transpire the metals in a temperature-controlled greenhouse. Plants were grown for 4 weeks and periodically watered with known elemental concentrations of copper oxide nanoparticles, copper sulfate, and lead nitrate. Both H. annuus and H. paniculata accumulated significant amounts of Cu and Pb to be classified as hyperaccumulator species. H. annuus took up significant amounts of Cu in the shoots, specifically the leaves (Cu max.?=?1368 ppm), and easily translocated it from stem to leaf (translocation factor (TF) ranged from 2.7 to 81.0). Pb was not as easily taken up and translocated (TF?=?0.6) as Cu was by this species. H. paniculata took up Cu and Pb in high concentrations but preferentially stored more metals in the stems (Cu max.?=?1757 ppm; Pb max.?=?780 ppm) than in the leaves (Cu max.?=?126 ppm; Pb max.?=?35 ppm). The translocation ability of H. paniculata was much lower for both metals compared to H. annuus. Both Cu and Pb transpired from H. annuus at concentrations of 0.04 and 0.005 ppm, respectively.  相似文献   

6.
Phenolic acid intake through the consumption of whole-wheat foods provides important health benefits associated with reduced risks of cardiovascular diseases and colon cancer. The genetic variation for phenolic acids was extensively studied in common wheat, but a comprehensive survey in tetraploid wheat is lacking. In this study we evaluated the genetic variability for individual and total phenolic acids concentration existing in a large collection of tetraploid wheat (Triticum turgidum L.). A 2-year evaluation was undertaken on the whole-meal flour of 111 genotypes belonging to seven T. turgidum subspecies including cultivars, landraces and wild accessions. Durum cultivars [T. turgidum subsp. durum (Desf.) MacKey], had the highest average concentration of total phenolic acids (828.7 μg g?1 dm in 2012; 834.5 μg g?1 dm in 2013) with amounts varying from 550.9 μg g?1 dm to 1701.2 μg g?1 dm, indicating a variation of greater than threefold fold. The lowest concentration of phenolic acids was found in T. turgidum subsp. dicoccum (Schrank ex Schübler) Thell. Rivet wheat (T. turgidum L. subsp. turgidum) had phenolic acid concentrations similar to those in durum, but less variation was noted among the accessions. On the other hand, the accessions of the four remaining subspecies showed lower phenolic acid concentrations and variation among the accessions as compared to durum. A total of six phenolic acids were identified across the wheat genotypes. The effects of genotype, year and year × genotype were estimated by ANOVA and resulted significant for all phenolic acids. The ratio of genotypic variance to total variance suggested the possibility of improving phenolic acid content in elite wheat germplasm through appropriate breeding programs. Moreover, significant correlations between phenolic acids and other quality characteristics of the grain were detected.  相似文献   

7.

Purpose

The subjects of this study were to investigate the remediating potential of the co-cultivation of Pleurotus eryngii and Coprinus comatus on soil that is co-contaminated with heavy metal (cadmium (Cd)) and organic pollutant (endosulfan), and the effects of the co-cultivated mushrooms on soil biochemical indicators, such as laccase enzyme activity and bacterial counts.

Materials and methods

A pot experiment was conducted to investigate the combined bioremediation effects on co-contaminated soil. After the mature fruiting bodies were harvested from each pot, the biomass of mushrooms was recorded. In addition, bacterial counts and laccase enzyme activity in soil were determined. The content of Cd in mushrooms and soil was detected by the flame atomic absorption spectrometry (FAAS), and the variations of Cd fractions in soil were determined following the modified BCR sequential extraction procedure. Besides, the residual endosulfan in soil was detected by gas chromatography-mass spectrometry (GC-MS).

Results and discussion

The results indicated that co-cultivation of P. eryngii and C. comatus exerted the best remediation effect on the co-contaminated soil. The biomass of mushroom in the co-cultivated group (T group) was 1.57–13.20 and 19.75–56.64% higher than the group individually cultivated with P. eryngii (P group) or C. comatus (C group), respectively. The concentrations of Cd in the fruiting bodies of mushrooms were 1.83–3.06, 1.04–2.28, and 0.67–2.60 mg/kg in T, P, and C groups, respectively. Besides, the removal rates of endosulfan in all treatments exceeded 87%. The best bioremediation effect in T group might be caused by the mutual promotion of these two kinds of mushrooms.

Conclusions

The biomass of mushroom, laccase activity, bacterial counts, and Cd content in mushrooms were significantly enhanced, and the dissipation effect of endosulfan was slightly higher in the co-cultivated group than in the individually cultivated groups. In this study, the effect of co-cultivated macro fungi P. eryngii and C. comatus on the remediation of Cd and endosulfan co-contaminated soil was firstly reported, and the results are important for a better understanding of the co-remediation for co-contaminated soil.
  相似文献   

8.

Purpose

This study aimed to evaluate the effect of combination of alkyl polyglucoside (APG) and nitrilotriacetic acid (NTA) on improving the efficiency of phytoremediation for pyrene and lead (Pb) co-contaminated soil by Scirpus triqueter.

Materials and methods

Seedlings of S. triqueter with a similar size and biomass (3 g/pot) were grown on 2-month aged soil contaminated with 184.5 mg kg?1of pyrene and 454.3 mg kg?1 of Pb at pH?=?8.3. After growth for 10 days, different doses of APG and NTA were added into the soil. After 60 days, the height of plants, Pb concentrations in plants, and pyrene amounts in soil were determined.

Results and discussion

Combined application of NTA and APG with lower dosage (1 + 1 g kg?1 soil and 1 + 2 g kg?1 soil) had no notable negative influence on the growth of S. triqueter. Moreover, significant synergy on Pb accumulation in S. triqueter was achieved with APG and NTA combined application. Besides, the dissipation of pyrene from soil after 60-day planting was increased in APG and NTA treatments when compared with the control treatments. Application of APG alone or combined with NTA had greater effect on enhancing dissipation of pyrene from soil than NTA alone.

Conclusions

This study demonstrated that the remediation of Pb and pyrene co-contaminated soil by S. triqueter can be enhanced by combined application of APG and NTA. Long-term evaluation of this strategy is needed in co-contaminated field sites.
  相似文献   

9.
Developing a molecular tool kit for hybrid breeding of Osmanthus species and related genera is an important step in creating a systematic breeding program for this species. To date, molecular resources have been aimed solely at Osmanthus fragrans with little work to develop markers for other species and cultivars. The objectives of this study were to (1) determine cross-transferability of O. fragrans and Chionanthus retusus derived SSRs in diverse Osmanthus taxa, (2) quantify the influence of locus-specific factors on cross-transferability, and (3) determine the genetic relationships between accessions. We tested 70 SSR markers derived from O. fragrans and C. retusus in 24 accessions of Osmanthus. Sixty-seven markers showed transfer to at least one other Osmanthus species with an overall transfer rate of 84% of loci across taxa. Genotyping with 42 microsatellite markers yielded a total of 367 loci. Number of alleles per locus ranged from 2 to 17 with a mean of 8.7 ± 4.8. Mean observed and expected heterozygosities were 0.560 ± 0.225 and 0.688 ± 0.230, respectively. Percent of polymorphic loci ranged from 40% in Osmanthus delavayi to 100% in O. fragrans. Osmanthus fragrans had the highest mean number of alleles per locus (4.2) while O. delavayi had the lowest (1.1). A reduced suite of eight-markers can distinguish between accessions with non-exclusion probabilities of identity from 3.91E?04 to 2.90E?07. The SSR markers described herein will be immediately useful to characterize germplasm, identify hybrids, and aid in understanding the level of genetic diversity and relationships within the cultivated germplasm.  相似文献   

10.
11.
DNA sequences of nuclear gene Got2 was studied in 60 accessions of Aegilops tauschii, 29 of subsp. tauschii and 31 of subsp. strangulata. It was found that Got2 allozyme polymorphism in Ae. tauschii is due to a single, unique, mutation which led to replacement of glutamic acid by isoleucine in residue 256 of the enzyme molecule, encoded by Got2. As revealed by Got2 DNA sequences variation, initially in its history Ae. tauschii was presented by subsp. strangulata, and among phylogenetic lineages of subsp. strangulata, the lineage “t-91s” (TauL3) is the most ancient, a relict one. Subspecies tauschii is relatively “young”. Initially it was presented by the lineage marked by combination of allozyme alleles Got2 105 and Acph1 100. In the past it inhabited the Continental area from Caucasia to Pakistan, but later on it was forced out by newly originated, now—a major lineage of subsp. tauschii, marked by Got2 100. This lineage extended the Continental area of the species up to Kirgizstan, but actually failed to penetrate into pre-Caspian area, occupied by subsp. strangulata. These results essentially differ from those obtained previously, using chloroplast DNA (cpDNA) sequences polymorphism. As revealed by cpDNA, the major, “usual”, subsp. strangulata (TauL2) is “younger” than subsp. tauschii, which resided on phylogenetic tree between relict lineage “t-91s”of subsp. strangulata—and major subsp. strangulata. But both cpDNA and Got2 DNA sequences indicate that the level of genetic variation in subsp. tauschii is much lower than in subsp. strangulata. According to Got2 DNA sequences variation, it was Ae. tauschii subsp. strangulata lineage “k-109″ which donated genome D to Triticum aestivum L. This lineage includes accessions: k-109 from South-Eastern Precaspian Azerbaijan; KU-2105, KU-2159 from Western Precaspian Iran; KU-2080 from Eastern Precaspian Iran.  相似文献   

12.
Paracetamol, the most widely and globally used analgesic and antipyretic, is easily accumulated in aquatic environments. In the present study, the biodegradation of paracetamol in different media (one for general growth, one specific for sulfate reducing bacteria, a mineral salts medium and municipal wastewater) inoculated with two types of sludge (from anaerobic lagoon and from oxidation ditch) under different oxygenic conditions (anoxic; moderate oxygenation in open flasks and high oxygenation by aeration) was investigated. In addition, bacteria with relative abundances increasing simultaneously with paracetamol degradation, when this drug was the only carbon source, thus with a putative role in its degradation, were identified using 16S rRNA gene sequences. The results show that aerobic microorganisms had a major role in the degradation of paracetamol, with 50 mg/L totally removed from municipal wastewater after 2 days incubation with aeration, and that the metabolites 4-aminophenol and hydroquinone plus one compound not identified in this work were produced in the process. The identification of bacteria with a role in the degradation of paracetamol revealed a strain from genus Pseudomonas with the highest final relative abundance of 21.2%, confirming previous works reporting strains of this genus as paracetamol decomposers. Besides, genera Flavobacterium, Dokdonella and Methylophilus were also in evidence, with initial relative abundances of 1.66%, 1.48 and 0.00% (not detected) in the inoculum and 6.91%, 3.80 and 3.83% after incubation, respectively. Therefore, a putative role of these genera in paracetamol biodegradation is suggested for the first time.
Graphical Abstract ?
  相似文献   

13.
Significant genetic diversity was observed in 218 out of a total of 1309 accessions of amaranth (Amaranthus hypochondriacus L.) and its seven wild relatives, A. spinosus L., A. dubius Mart. ex Thell., A. hybridus L., A. tricolor L., A. cruentus L., A. caudatus L., A. retroflexus L. for 24 nutritional parameters including total oil content, fatty acid profile, total protein content and amino acid profile. Diversity for total oil content (6.42–12.53%), linoleic acid (25.68–54.34%), oleic acid (21.97–42.01%) of the total fatty acids, total protein content (7.84–18.01%), among important essential amino acids; lysine content (0.66–11.12 g/16 g N), methionine (0.35–4.80 g/16 g N) and half cystine and (0.12–8.32 g/16 g N) was reported. The un-weighted pair-group method using arithmetic average cluster analysis based on pair wise Euclidean genetic distance grouped the accessions into seven major clusters. Histidine, half cystine, tyrosine, essential amino acids, total oil content, linoleic acid and oleic acid content were the major parameters contributing significantly to genetic diversity. Present findings indicate that significant diversity exists for nutritional parameters in amaranth germplasm. The promising accessions with higher multiple nutritive traits; protein content (>16%), oil content (>11%), lysine content (>7.5 g/16 g N) and EAA higher than the FAO reported values, were identified. This is the first report on detailed nutritional analysis of diversity collected worldwide. These could be used as potential breeding material for nutritional enhancement through genetic improvement. This will help in overcoming the “triple burden” of malnourishment, hidden hunger, and obesity.  相似文献   

14.
Glyphosate is an herbicide commonly used worldwide for weed control and generally applied as part of a formulated product, such as Roundup. Contamination of surface water by glyphosate-based herbicides can cause deleterious effects in organisms, mainly in aquatic systems near to intensive agricultural areas (e.g., transgenic soybean crops). Given the lack of toxicological information concerning effects of glyphosate-based herbicides on tropical aquatic ecosystems, we aimed to evaluate the lethal and sub-lethal effects of Roundup Original® on the dipteran Chironomus xanthus. The endpoints evaluated included survival, growth, and emergence. The results showed that the 48 h LC50 for glyphosate to C. xanthus was 251.5 mg a.e./L. Larval growth of C. xanthus was reduced under glyphosate exposure (LOEC for body length = 12.06 mg/L; LOEC for head capsule width = 0.49 mg/L). No effects were observed in terms of cumulative percentage of imagoes emergence. However, low concentrations of glyphosate caused delayed emergence of females (at 1.53 mg/L) and induced fast emergence of males (at 0.49 mg/L), compared to control treatment. The deleterious effects of environmental relevant concentrations of glyphosate (0.7 mg/L) observed in terms of C. xanthus growth and development suggest that glyphosate-based herbicides can have negative consequences for aquatic non-target invertebrates such as Chironomus. Multigerational assays are needed to assess the long term effects of glyphosate on C. xanthus populations. Finally, our study adds ecotoxicological data on the effects of glyphosate-based herbicides on tropical freshwater invertebrates.  相似文献   

15.
The adsorption of copper (Cu(II)) from aqueous solutions by activated Luffa cylindrica biochar fibres has been investigated by means of batch equilibrium experiments and FTIR spectroscopy. The effect of various physicochemical parameters, such as pH, initial metal concentration, ionic strength, mass of the adsorbent, contact time and temperature, has been evaluated by means of batch type adsorption experiments. FTIR spectroscopy, as well as acid-base titrations, was used for the characterization of the material and the surface species formed. According to the experimental results even at pH 3, the relative sorption is above 85% and the adsorption capacity of the activated biochar fibres for Cu(II) is q max = 248 g kg?1. Moreover, the interaction between the surface carboxylic moieties and Cu(II) results in the formation of very stable inner-sphere complexes (?G o = ?11.2 kJ mol?1 at pH 3 and ?22.4 kJ mol?1 at pH 5.5).  相似文献   

16.
Environmental pollution with chromium is due to residues of several industrial processes. Bioremediation is an alternative actually considered to remove Cr (VI) from the environment, using adapted organisms that grow in contaminated places. Have been conducted studies with fungi mechanisms of interaction with chromium, most of which have focused on processes biosorption, characterized it by passive binding of metal components of the cell surface, and bioaccumulation, wherein the metal entry to cells occurs with energy expenditure. The paper presents the results of studies carried out on sorption of chromium (VI) ions from aqueous solutions by Fusarium sp. and Myrothecium sp. Both biomasses have the ability to take up hexavalent chromium during the stationary phase of growth and as well inactive conditions. Fusarium sp. showed 26% of biosorption with active biomass and 64% in inactive biomass; meanwhile, Myrothecium sp. obtained 97 and 82%, respectively. Both fungi showed adjust to pseudo-second-order model in active (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.96) and inactive biomass assay (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.99). The data of the active biomass test also confirmed to the intraparticle diffusion model (Fusarium sp. R 2 = 0.98; Myrothecium sp. R 2 = 0.93). The results obtained through this investigation indicate the possibility of treating waste effluents containing hexavalent chromium using Fusarium sp. and Myrothecium sp.  相似文献   

17.
The use of plants for ecological remediation is an important method of controlling heavy metals in polluted land. Cotinus coggygria is a landscape plant that is used extensively in landscaping and afforestation. In this study, the cadmium tolerance level of C. coggygria was evaluated using electrical impedance spectroscopy (EIS) to lay a theoretical foundation for broad applications of this species in Cd-polluted areas and provide theoretical support to broaden the application range of the EIS technique. Two-year-old potted seedlings of C. coggygria were placed in a greenhouse to analyse the changes in the growth, water content and EIS parameters of the roots following treatment with different Cd concentrations (50, 100, 200, 500, 1000 and 1500 mg kg?1), and soil without added Cd was used as the control. The roots grew well following Cd treatments of 50 and 100 mg kg?1. The Cd contents increased with the increase in Cd concentration in the soil. However, the lowest root Cd content was found at 4 months of treatment. The extracellular resistance re and the intracellular resistance ri increased first overall and then decreased with the increasing Cd concentration, and both parameters increased with a longer treatment duration. The water content had a significant negative correlation with the Cd content (P?<?0.01) and the re (P?<?0.05). C. coggygria could tolerate a soil Cd concentration of 100 mg kg?1. There was a turning point in the growth, water content and EIS parameters of the C. coggygria roots when the soil Cd concentration reached 200 mg kg?1. The root water content and re could reflect the level of Cd tolerance in C. coggygria.  相似文献   

18.
We report for the first time the capability of four-leaf clover (Marsilea quadrifolia), a wetland plant which grows rooted in soil, in efficiently treating sewage. The use of M. quadrifolia was made possible because of the special attributes of the SHEFROL® (SHEet Flow ROot Level) bioreactor in which it was employed. This bioreactor enables the use of free-floating aquatic plants as well as terrestrial and rooted-in-soil wetland plants by hydroponics. The plants are staked in narrow channels to enable them to support each other while sewage is made to flow rapidly as a sheet of wastewater at a level that covers only the plant roots (hence the name). It was seen that M. quadrifolia was able to treat sewage of strength varying in the chemical oxygen demand (COD) range of 600–1800 mg/L to the extent of >?80% at a hydraulic retention time (HRT) of just 4.5 h. There was a near total removal of biological oxygen demand and suspended solids while total Kjeldahl nitrogen, soluble phosphorous, and heavy metal zinc were also substantially removed. The macrophyte was equally effective when used indoors under artificial lighting, as well as when used outdoors.  相似文献   

19.
Copper is an active component of some commercial algaecides and is commonly found in low concentrations in contaminated aquatic systems. Unintended consequences of algaecide application include macrophyte bioaccumulation and possible trophic level bioamplification especially by specialist herbivores. Trophic level effects of copper contamination were observed through feeding trials using the mustard beetle (Phaedon viridis). Several metals, including copper, interfere with the myrosinase enzyme system responsible for the watercress (Nasturtium officinale) allelopathic defense against herbivory. The mustard beetle is a specialist herbivore that has evolved a detection system that is stimulated by the products of the glucosinolate-myrosinase system. Because copper interferes with myrosinase enzymes, mustard beetles were expected to avoid copper-contaminated plants. While larvae exhibited a slight preference for contaminated plants, adult mustard beetles in this experiment exhibited a statistically significant preference for plants uncontaminated with copper.  相似文献   

20.

Purpose

This study aimed at evaluating the acute effects of arsenic and zinc to the warmwater aquatic oligochaete Branchiura sowerbyi. Relative sensitivity with the coldwater species Tubifex tubifex was compared. Implications for the use of B. sowerbyi in the risk assessment of sediments in the tropics are discussed.

Materials and methods

Water-only (96 h) and sediment (14 days) toxicity tests were conducted with both species evaluating a concentration series of arsenic and zinc. The tests were conducted considering the environmental conditions in the natural habitat of T. tubifex (predominantly temperate) and B. sowerbyi (predominantly tropical). Both lethal and sublethal endpoints (autotomy of the posterior body parts, abnormal behavior and appearance) were determined in the tests. The lethal (LC10 and LC50) and effect (EC10 and EC50) concentrations were also determined to assess metal sensitivity for both species.

Results and discussion

Both test species were more sensitive to Zn than As in water-only tests, which is in agreement with previous studies evaluating the toxicity of these metals to aquatic oligochaetes. Sublethal effects were generally noted at concentrations lower than those leading to mortality. The warmwater oligochaete B. sowerbyi was more sensitive to both metals tested than the coldwater species T. tubifex.

Conclusions

Study findings support the need for using indigenous tropical species in risk assessments in the tropics. In addition, sublethal effect parameters should be included in toxicity testing with aquatic oligochaetes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号