首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Previous studies documented that most desert plants can be colonized by arbuscular mycorrhizal (AM) fungi,however,little is known about how the dynamics of AM fungi are related to ephemerals in desert ecosystems.The dynamics of AM fungi with desert ephemerals were examined to determine the effects of host plant life stages on the development of AM fungi.Mean colonization of ephemeral annual plants was 45% lower than that of ephemeral perennial plants.The colonizations were much higher in the early part of the growing season than in later parts,peaking at flowering times.The phenology of AM fungi in root systems varied among different ephemerals.The density of AM fungal spores increased with the development of ephemeral annual plants,reached its maximum at flowering times,and then plateaued about 20 days after the aboveground senescence.A significant positive correlation was found between AM fungi spore density and biomass of ephemeral annual plants.The life cycles of AM fungi associated with desert ephemerals were very short,being about 60-70 days.Soil temperature and water content had no direct influence on the development of AM fungal spores.We concluded that the development of AM fungi was in response to desert ephemeral phenology and life history strategy.  相似文献   

2.
The interaction between four arbuscular mycorrhizal (AM) fungi, Glomus sp., G. proliferum , G. intraradices and G. versiforme , and the root-rot fungus Cylindrocladium spathiphylli , and subsequent effects on growth and phosphorus nutrition of banana ( Musa acuminata , AAA, cv. Grande Naine) were investigated under glasshouse conditions. Overall, root infection by C. spathiphylli reduced the growth of banana plants, but preinoculation with AM fungi significantly attenuated this detrimental effect. Lower disease severity, stimulation of growth and increase of shoot P content were observed for the plants inoculated with one of the four AM fungi. Glomus sp. and G. proliferum induced the largest increase in growth parameters and shoot P content as compared to G. intraradices and G. versiforme , in the presence as well as in the absence of C. spathiphylli . Root damage caused by C. spathiphylli was decreased in the presence of AM fungi, but the inoculation of mycorrhizal plants with C. spathiphylli also decreased the intensity of AM fungal root colonization, indicating a clear interaction between the two organisms.  相似文献   

3.
The vertical diversity and distribution of arbuscular mycorrhizal (AM) fungi were investigated in the Mu Us Desert, northwest China. Soils were sampled to 50?cm in depth in the rhizospheres of Hedysarum laeve, Artemisia ordosica, and Psammochloa villosa and 44 AM fungal species belonging to 10 genera were isolated. Several of these species have peculiar morphological features, which are distinct from other habitats. AM fungal diversity and distribution differed significantly among the three host plants and the five soil layers. Spore density, species richness, and the Shannon-Wiener index of AM fungi were 0.55–4.3 spores g?1 soil, 7–36 and 1.78–2.89, respectively. Spore density and species richness had a significant positive correlation with soil total phosphorus content (0.0377–0.1129?mg?g?1), and a negative correlation with soil pH (7.19–7.64). Nonmetric multidimensional scaling, PerMANOVA, and structural equation model analysis demonstrated that host plant species and soil depth significantly and directly influenced the structure of AM fungal communities. We concluded that diversity and distribution of AM fungi might be influenced by plant species, soil depth patterns, and soil nutrient availability in desert ecosystems. This research into AM fungal communities may lead to the development of AM fungi treatment for the mitigation of soil erosion and desertification using mycorrhizal plants, such as H. laeve, A. ordosica, and P. villosa.  相似文献   

4.
Arbuscular mycorrhizal(AM)fungi penetrate the cortical cells of the roots of vascular plants,and are widely distributed in soil.The formation of these symbiotic bodies accelerates the absorption and utilization of mineral elements,enhances plant resistance to stress,boosts the growth of plants,and increases the survival rate of transplanted seedlings.We studied the effects of various arbuscular mycorrhizae fungi on the growth and development of licorice(Glycyrrhiza glabra).Several species of AM,such as Glomus mosseae,Glomus intraradices,and a mixture of fungi(G.mosseae,G.intraradices,G.cladoideum,G.microagregatum,G.caledonium and G.etunicatum)were used in our study.Licorice growth rates were determined by measuring the colonization rate of the plants by the fungi,plant dry biomass,phosphorus concentration and concentration of secondary metabolites.We established two cloned strains of licorice,clone 3(C3)and clone 6(C6)to exclude the effect of genotypic variations.Our results showed that the AM fungi could in fact increase the leaf and root biomass,as well as the phosphorus concentration in each clone.Furthermore,AM fungi significantly increased the yield of certain secondary metabolites in clone 3.Our study clearly demonstrated that AM fungi play an important role in the enhancement of growth and development of licorice plants.There was also a significant improvement in the secondary metabolite content and yield of medicinal compounds from the roots.  相似文献   

5.
为探索丛枝菌根(arbuscular mycorrhiza,AM)真菌与植食性昆虫的相互作用,将摩西管柄囊霉(Funneliformis mosseae BEG167,Fm)、根内球囊霉(Glomus intraradices BEG141,Gi)和地表球囊霉(Glomus versiforme Berch,Gv)3种AM真菌以及甜菜夜蛾Spodoptera exigua分别接种至花生和番茄上,通过测定AM真菌的侵染定殖和甜菜夜蛾的生长发育指标分析AM真菌与甜菜夜蛾的相互作用。结果显示,甜菜夜蛾取食菌根花生植株后,Fm、Gv和Gi的侵染率和泡囊数均有增加,侵染率分别是未取食的1.15、1.10和1.11倍,而Fm的泡囊数增加最显著,是未取食的1.27倍。在菌根番茄植株上,Fm和Gv的侵染率显著增加,分别是未取食的1.24倍和1.94倍,Fm、Gv和Gi的泡囊数均显著增加,分别是未取食的1.50、1.98和1.42倍。甜菜夜蛾取食菌根花生和菌根番茄植株后,幼虫存活率下降,幼虫历期和蛹期明显延长;Fm对其影响最显著,甜菜夜蛾在花生上的存活率、幼虫历期和蛹期分别为26.67%、26.78 d和10.67 d,在番茄上分别为35.52%、24.33 d和10.39 d,与取食非菌根植株处理差异显著。表明甜菜夜蛾能在一定程度上促进AM真菌的侵染和定殖,而AM真菌能抑制甜菜夜蛾的生长和发育,但其影响因AM真菌种类而不同。  相似文献   

6.
The present research was undertaken to explor the possibility of arbuscular mycorrhizal(AM) association with Asteraceae plants in the arid lands of Saudi Arabia(Al-Ghat, Buraydah, Thumamah and Huraymila). AM fungal colonization in the roots, spore numbers in the rhizosphere soil, fungal species diversity and correlation between AM properties and soil properties were determined. The highest colonization was in Conyza bonariensis(65%) from Al-Ghat, Anthemis cotula(52%) from Buraydah and C. bonariensis(53%) from Thumamah. The lowest was in Vernonia schimperi(41%) from Al-Ghat, Pulicaria undulata(25%) from Buraydah, Acanthospermum hispidum(34%) from Thumamah, Asteriscus graveolens(22%) and V. schimperi(22%) from Huraymila. Vesicular and arbuscular colonization were also presented in all plant species examined. The number of spores were 112–207 in Al-Ghat, 113–133 in Buraydah, 87–148 in Thumamah and 107–158 in Huraymila. Funneliformis mosseae, Glomus etunicatum, G. fasciculatum and G. aggregatum were identified. Relative frequency of AM fungal species varied widely and was irrespective of location and plant species. Diversity index varied with the rhizosphere soils of different plant species at various locations. Soil properties varied with locations and no distinct correlations were observed among the soil properties, root colonization and the number of spores. The results of the present study specified the association of AM fungi in different plants of Asteraceae and its significance in the ecological functioning of annual plants in the punitive environments of the rangelands in Saudi Arabia.  相似文献   

7.
荒漠生态系统中丛枝菌根真菌多样性   总被引:3,自引:2,他引:1  
到目前为止,在全球荒漠生态系统中,共报道了69个科389种丛枝菌根真菌的寄主植物,其中,Compositae,Gramineae和Leguminosae 3个科的植物为荒漠生态系统中丛枝菌根真菌寄主植物的优势类群;共发表了7个属的89种丛枝菌根真菌,其中,Acaulospora和Glomus 属的真菌为荒漠生态系统中的优势类群.在此基础上,分析了荒漠生态系统中AM真菌多样性研究中存在的问题,并探讨了荒漠生态系统中AM真菌的研究方向.  相似文献   

8.
丛枝菌根(AM)真菌能诱导植物合成一些信号物质,如茉莉酸(JA)、水杨酸(SA)、一氧化氮(NO)、H2O2等,这些信号在AM真菌与植物识别、共生体建立和激活植物防御系统过程中发挥着重要作用[1].  相似文献   

9.
The vesicular arbuscular fungusGlomus mosseae (Nicol. & Gerd.) Gerd. & Trappe was retrieved from citrus trees growing in loess soil in the Negev region of Israel. Inoculation of citrus seedlings with the mycorrhizal fungus greatly increased the growth of plants in soil low in phosphorus. Rough lemon responded more than Sour orange. Vesicular arbuscular mycorrhiza caused higher concentrations of P and Cu and lower concentrations of N, K and Ca in leaves of inoculated plants.  相似文献   

10.
为了探明干旱环境下AM真菌形态结构及其生态适应性,2009年7月在内蒙古和河北农牧交错带选取4个样地,采集沙棘(Hippophae rhamnoides L.)根围土壤样品,利用光学显微镜和扫描电镜对分离的AM真菌进行分类鉴定。共分离鉴定3属17种AM真菌,其中球囊霉属(Glomus)11种,无梗囊霉属(Acaulospora)5种,盾巨孢囊霉属(Scutellospora)1种。沙棘AM真菌孢子具有体积小、颜色深、孢壁厚,整体形态不饱满等特征,表现出对干旱荒漠环境的生态适应性。扫描电镜下,不同属种孢子表面纹饰特征差异明显,可作为AM真菌属种分类的参考依据。  相似文献   

11.
Plant water availability, use, and management have largely focused on physical processes of infiltration and the role of roots in uptake and transpiration. However, roots and mycorrhizal fungi redistribute water in complex patterns. Here I describe some of our observations and experiments showing that mycorrhizal fungi play key roles in moving water for both transpiration and to facilitate nutrient acquisition under dry conditions. Mycorrhizal fungal hyphae grow from both surface and deep roots even into bedrock to help extract water under dry conditions. In both deep and surface roots, mycorrhizal fungi acquire water from pores too small for roots and root hairs to access, and at distances from roots and root hairs. Mycorrhizal fungi are also able to utilize hydraulic-lifted water from plants to obtain nutrients in extremely dry surface soils. The importance of these root symbionts in water and nutrient dynamics, and as integrators of surface and deeper water dynamics need further investigation.  相似文献   

12.
The effects were investigated, under controlled conditions, of single and joint inoculation of olive planting stocks cvs Arbequina and Picual with the arbuscular mycorrhizal fungi (AMF) Glomus intraradices , Glomus mosseae or Glomus viscosum , and the root-knot nematodes Meloidogyne incognita and Meloidogyne javanica , on plant performance and nematode infection. Establishment of the fungal symbiosis significantly increased growth of olive plants by 88·9% within a range of 11·9–214·0%, irrespective of olive cultivar, plant age and infection by M. incognita or M. javanica . In plants free from AMF, infection by Meloidogyne spp. significantly reduced the plant main stem diameter by 22·8–38·6%, irrespective of cultivar and plant age. Establishment of AMF in olive plants significantly reduced severity of root galling by 6·3–36·8% as well as reproduction of both Meloidogyne spp. by 11·8–35·7%, indicating a protective effect against parasitism by root-knot nematodes. Infection by the nematodes influenced root colonization by AMF, but the net effect depended on the AMF isolate–olive cultivar combination. It is concluded that prior inoculation of olive plants with AMF may contribute to improving the health status and vigour of cvs Arbequina and Picual planting stocks during nursery propagation.  相似文献   

13.
为明确丛枝菌根(arbuscular mycorrhizal,AM)真菌对加拿大一枝黄花Solidago canadensis与本地菌根植物和非菌根植物种间竞争格局的调控作用,采用温室盆栽试验,通过接种摩西球囊霉Glomus mosseae(GM)、根内球囊霉G. intraradices(GI)及其混合菌种(GM+GI)3种处理,分析AM真菌对加拿大一枝黄花与本地菌根植物玉米Zea mays和非菌根植物油菜Brassica campestris种间作用的影响。结果表明:与对照相比,接种AM真菌均显著提高了加拿大一枝黄花和玉米的菌根侵染率,菌根侵染率为13.720%~50.015%,且前者的菌根侵染率明显高于后者。单独种植时,与对照相比,接种AM真菌尤其是接种混合菌种显著提高了加拿大一枝黄花的株高、叶片数和总干重。在加拿大一枝黄花与玉米混合种植时,与单独种植相比,加拿大一枝黄花的株高、叶片数、根长和总干重均较低;同时,与对照相比,接种AM真菌显著提高了玉米的相对竞争强度而对加拿大一枝黄花的相对竞争强度没有显著影响。在加拿大一枝黄花和油菜混合种植时,与对照相比,接种AM真菌则显著提高了加拿大一枝黄花的株高、叶片数、净光合速率和总干重;同时,接种AM真菌促进了入侵种的竞争优势而抑制了非菌根植物油菜的生长。说明加拿大一枝黄花与本地种的竞争格局受到与之混生物种的菌根依赖性强度以及AM真菌的种类差异影响。  相似文献   

14.
Among other benefits, arbuscular mycorrhizal (AM) fungi may increase plant tolerance to root diseases. The research on the underlying mechanisms requires growth conditions that are both controlled and realistic. To study these interactions, a semiaxenic phototrophic system was developed in which the roots grow in a controlled environment and can be inoculated with both pathogenic and symbiotic fungi. Micropropagated fig plantlets were grown in containers having shoots in the outside and roots in a growth medium without sugar, inoculated or not with the AM fungus Rhizophagus irregularis and the pathogenic fungus Armillaria mellea. Dual inoculated plants developed the mycorrhizal association and pathogen infection symptoms. Mycorrhizal inoculation lowered disease index and increased plant growth. Colonization of A. mellea in fig roots was quantified by real-time PCR, showing that R. irregularis did not significantly lower the quantity of Armillaria, suggesting that other mechanisms were involved in increased tolerance to the pathogen. The results show that the system proposed is suitable to study the triple interaction involving plant, AM and root pathogenic fungi.  相似文献   

15.
内蒙古荒漠地区丛枝菌根植物的初步研究   总被引:5,自引:0,他引:5  
本文对内蒙古荒漠建群及优势植物的丛枝菌根共生状况进行了调查。在观察的16科76种植物中,被丛枝菌根真菌侵染的植物有61(占79. 8% )种;其中多年生草本植物被丛枝菌根真菌侵染的比例较高,占94. 46%;而一年生和二年生的草本植物的比例仅65%。须根系植物中菌根植物约占91. 3%,高于直根系(75. 5% )。古地中海孑遗种四合木(Tetraenamongolica)、棉刺(Potaniniamongolica)、沙冬青(Ammopiptanthusmongolicus)和强旱生植物半日花(Helianthemumsoongoricum)有一定的菌根侵染。本地区野生植物的丛枝菌根形态结构类型多数为Arum类型,占83. 6%;而Paris类型少,只占3. 3%。丛枝菌根结构类型与植物的生活型、根系类型和侵染率无关。  相似文献   

16.
AM真菌与西瓜枯萎病关系初探   总被引:31,自引:4,他引:27  
 在温室盆栽条件下研究了丛枝菌根(Arbuscular Mycorrhiza,AM)真菌Gigaspora rosea Nicol.& Schenck、Glomusmosseae(Nicol.& Gerd.) Gerdemann & Trappe和Glomus versiforme(Karsten) Berch与西瓜枯萎病菌(Fusariumoxysporum f. sp. niveum)的关系。结果表明,接种AM真菌能促进西瓜植株的生长发育,增加植株干重;显著减少根内和根围土壤中镰刀菌群体数量及其对根系的侵染率;降低枯萎病发病率和病情指数,从而减轻西瓜枯萎病的危害。接种F.oxysporum f. sp. niveum能降低AM真菌对西瓜的侵染率,并且AM真菌与镰刀菌的不同接种时间和顺序影响西瓜枯萎病的发生发展,证实AM真菌与镰刀菌存在竞争关系。另外,AM真菌对西瓜高感枯萎病品种的防治效果优于抗病品种,说明高感品种对菌根的依赖性较大。  相似文献   

17.
Over the last decades, tillage, chemical fertilizers, and pesticides have reduced the beneficial fungal population size in arable soils. Though soil inoculation can be a practical way to restore arbuscular mycorrhizal fungi (AMF) population size, weeds may also be benefited, as well. This study was aimed to evaluate the effect of three AMF species (Funneliformis mosseae, Rhizoglomus fasciculatum, and Rhizoglomus intraradices) on photosynthetic rate, secondary metabolites content, reproductive organs percentage and nutrient uptake in Solanum nigrum L. and Digitaria sanguinalis L. weed species. Our results showed species variation in response to AMF inoculation, so that, while inoculation with R. intraradices fungal species decreased total biomass in S. nigrum plants significantly, it increased total biomass of D. sanguinalis plants by 26–49%. In addition, inoculation with F. mosseae species increased phenol, anthocyanin, and total terpenoid content in S. nigrum plants much more than D. sanguinalis. Increased photosynthetic rate, secondary metabolites content, and flowering percentage in AMF‐inoculated S. nigrum plants show the enhanced competitive ability and allelopathic potential of this weed when associated with AMF, which makes it a good competitor against other plant species in the environment.  相似文献   

18.
A study was conducted at the experimental farm of Faculty of Agriculture, Ain Shams University, Cairo, Egypt, during two successive summer seasons (2014 and 2015) to investigate the effects of arbuscular mycorrhizal fungi (Glomus irradicans 10% w/w), Bacillus megaterium (10?ml/pot) and brassinosteroids (24-EBL, C28H48O6; 2?µM) on growth, nutrient absorption, chlorophyll, proline content, antioxidant enzymes activity and fruit yield of sweet pepper plants (Capsicum annuum L.) cv. Marconi. Plants were grown under three levels of salinity (0, 25 and 50?mM). The obtained results showed that plants grown under non-saline water (0?mM NaCl), with or without treatments, significantly gave the most vigorous vegetative growth and had the highest fruit yield compared with those grown under salt stress conditions. All anti-salinity treatments (Mycorrhiza, Bacillus and Brassinosteroids) improved growth when compared with untreated plants (control). Plants inoculated with mycorrhiza or treated with brassinosteroids showed better vegetative growth and shoot biomass (total fresh and dry weight per plant), chlorophyll a and b concentrations, antioxidant content expressed as total soluble phenols and proline concentrations at all studied salinity levels followed by plants inoculated with Bacillus megaterium compared with control plants which showed severe growth retardant especially under higher salt concentration (50?mM). Carotenoids concentration increased proportionally with the increase of salinity concentration. The maximum leaf relative water content (LRWC) and lowest values of membrane permeability (MP) were significantly observed with mychorhiza inoculated plants and brassinosteroid application respectively, followed by Bacillus inoculated plants. Antioxidant enzyme activity were highest in plants irrigated with moderate saline water (25?mM) than plants under high salinity irrigation water (50?mM) except polyphenol oxidase (PPO) as compared with unstressed plants (0?mM). Mycorrhizal inoculated plants accumulated higher K and lower Na and Cl followed by plants treated with brassinosteroids and then plants inoculated with Bacillus megaterium. Anti-salinity treatments positively enhanced fruit yield of sweet pepper plants under all salinity stress levels and the highest fruit yield were significantly observed with brassinosteroid application followed by mychorhiza inoculated plants and then Bacillus inoculated plants.  相似文献   

19.
利用温室盆栽试验研究水分胁迫下接种丛枝菌根(Arbuscular mycorrhizal,AM)真菌和根瘤菌(Rhizobium meliloti)对沙打旺(Astragalus adsurgens Pall.) 生长和养分吸收的影响。在土壤相对含水量65%和35%条件下,分别设不接种(对照)、单接根瘤菌、单接摩西球囊霉(Glomus mosseae)和双接根瘤菌与摩西球囊霉等4个处理。结果发现:干旱胁迫显著抑制沙打旺AM真菌侵染率(P<0.05),而接种根瘤菌在两种水分条件下均显著促进摩西球囊霉对沙打旺根系的侵染(P<0.05)。接种AM真菌不仅显著提高沙打旺对P的吸收(P<0.05),而且明显促进根瘤的生长。无论是在干旱条件下或是在正常供水条件下,双接根瘤菌与摩西球囊霉处理对沙打旺生长及养分吸收的效应显著高于单接菌处理,植株地上部、地下部生物量以及N、P、K等吸收量均为最大。结果表明:AM真菌与根瘤菌双接种技术在干旱、半干旱区受损生态系统的植被恢复中具有一定的应用潜力。  相似文献   

20.
生防荧光假单胞菌CPF-10对西瓜根围土壤真菌群落的影响   总被引:1,自引:0,他引:1  
陈胜菊  杨洁  旭热  王伟 《农药学学报》2013,15(2):188-197
探讨了生防菌荧光假单胞菌Pseudomonas fluorescens CPF-10对西瓜根围土壤真菌群落结构的影响。采用传统分离培养法,结合变性梯度凝胶电泳(DGGE)分析,研究了施用CPF-10后不同生育期西瓜根围土壤真菌群落结构的变化。结果表明:施入生防菌CPF-10后2周,其对土壤真菌有一定的促进作用;第3~7周时,CPF-10对土壤真菌尤其是部分病原菌有较强的抑制作用;CPF-10对丛枝菌根真菌(AMF)有一定的促进作用,可维持3周左右;收获期后则检测不到CPF-10对土壤真菌群落的影响。生防菌CPF-10对西瓜根围土壤真菌群落产生的短暂影响不会对土壤生态系统构成长期威胁。对比土著真菌及丛枝菌根真菌的DGGE图谱和切胶条带测序结果,发现DGGE技术更适用于分析小范围特定菌属如丛枝菌根真菌的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号