首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用RNG(重整化群)两方程紊流模型和简化的多相流Mixture(混合)模型,对浑水水力分离清水装置内水沙两相三维弱旋流场进行了数值模拟。根据计算结果,详细比较和分析了加沙前后装置内径向、轴向以及切向速度分布特征,及其对“装置”内泥沙运动和水沙分离效率的影响。从水沙两相流场特性出发,初步探讨了“装置”有效分离水沙并获得清水的机理,为设计优化装置结构提供理论基础。  相似文献   

2.
基于数值模拟的分离鳃水沙分离效率及机理分析   总被引:1,自引:0,他引:1  
利用层流模型和欧拉模型,运用Phase Coupled SIMPLE(PC-SIMPLE)算法,对分离鳃与普通管中的水沙两相流流场进行了静水沉降的三维数值模拟,并根据数值计算结果,对分离鳃与普通管内的速度场和含沙量分布特性进行了对比与分析,探讨了分离鳃的水沙分离效率及机理。结果表明:分离鳃中的速度矢量分布规律与普通管不同;分离鳃的结构形式、其内部的流场特性及含沙量分布特性都有利于水沙的分离,故分离鳃中的泥沙速度、清水速度及泥沙去除率都大于普通管的。探明了分离鳃快速分离水沙的机理,这对分离鳃结构的进一步优化提供了理论基础。  相似文献   

3.
为完善加压液化输沙技术与浑水水力分离清水装置的结合,在前期研究成果的基础上,通过采用RNG(重整化群)两方程紊流模型和简化的多相流Mixture(混合)模型,对不同加压液化渗水孔压力水头作用于浑水水力分离清水装置的水沙两相三维流场进行了数值模拟。根据FLUENT软件计算结果,详细分析了不同加压水头作用下,装置内部流场泥沙分布特征的变化。研究表明,加压液化输沙技术在压力水头为1.8~1.9m作用下,清水溢流含沙浓度较小,排沙底孔排沙畅通,是装置运用加压液化输沙技术最理想的状态。研究结果为将加压液化输沙技术更好的运用于浑水水力分离清水装置提供了理论依据。  相似文献   

4.
不同鳃片间距下的分离鳃内部流场三维数值模拟   总被引:1,自引:0,他引:1  
为研究鳃片间距对分离鳃的速度场及泥沙分布特性的影响,采用Fluent软件中的层流模型和欧拉模型,运用Phase Coupled SIMPLE(PC-SIMPLE)算法,对不同鳃片间距下分离鳃的水沙两相流流场进行了静水沉降的三维数值模拟。根据数值计算结果,对速度场和含沙量分布特性进行了对比与分析。结果表明:不同鳃片间距下,分离鳃内部的速度场分布规律有所不同,鳃片间距越大,速度流场受到来自泥沙通道中的泥沙流与清水通道中的清水流影响就越大;鳃片间距越小,分离鳃的沉淀效果越好。以泥沙平均速度和清水平均速度作为考核指标,同时考虑分离鳃内部的流场特性、水沙分离效果与制作分离鳃的成本,则最佳鳃片间距为5 cm。  相似文献   

5.
本试验在同一“装置”结构中,不同进流含沙浓度下,通过改变进流流量的大小,对“装置”中的浑液面升、降进行调控。根据“装置”内泥沙浓度分布的不同,将其分为四个区:清水区、低于进流含沙浓度的非拥挤沉降区、拥挤沉降区、压缩沉降区;并且分析了浑液面的升降与进流流量之间的关系,得出浑液面的升降规律。根据浑液面升降过程的调控,可求出“装置”在某一进流含沙浓度下的清水出水量,其研究结果可以为弄清“装置”水沙分离的物理机理提供理论依据。  相似文献   

6.
为了研究锥圈倾角和下锥管倾角对梭锥管内水沙分离效果的影响,在数值模拟计算结果与PIV测试结果一致基础之上,建立了5个不同锥圈倾角和7个不同下锥管倾角的梭锥管模型,采用层流方程和简化的多相流Mixture模型通过数值模拟计算了浑水含沙浓度为5kg/m3时各个梭锥管内部的泥沙浓度和速度场,详细对比分析了不同倾角下梭锥管内的速度场和浓度分布特性。结果表明,在上锥管结构尺寸、锥圈间距不变的条件下,锥圈倾角β与下锥管倾角γ相等且等于45°时,梭锥管水沙分离效果最好,在该角度下锥圈上表面泥沙滑动至排沙通道所需要的时间最短,梭锥管水沙分离效率最高。  相似文献   

7.
介绍一种新型水沙分离装置圆中环沉沙排沙过滤池的初步研究成果。圆中环沉沙排沙过滤池是一种新型的低耗水率、处理泥沙范围广泛的水沙分离装置。通过物理模型试验,模拟了在流量1m3/s,输沙率1.43g/s工况下的运行效果。实验结果表明,装置运行约43小时达到必须泄空排沙的极限状态,冲沙耗水率约为1.9%;冲沙道平均流速为0.51-2.75m/s,池内永久淤积沙质量约占总沉积质量的2%。同时分析了影响冲沙效率的主要因素,为装置的推广应用提供了理论依据和经验。  相似文献   

8.
为研究河水滴灌重力沉沙过滤池中的水力特性及流场分布规律,采用Fluent软件中的标准k-ε模型和混合物模型计算了其关键建筑物沉沙池内的水沙两相流流场,并将数值计算结果与物理试验实测数据进行了对比,发现数值计算结果与物理试验结果吻合较好,采用的数学模型可以模拟沉沙池中的水沙两相流运动过程,具有一定的准确性和可靠度.根据数值计算结果可知:沉沙池中浑水流速沿水深方向上的变化规律包含流速迅速增大、流速快速减小及流速恒定3个阶段;含沙量沿水深方向上的分布规律可分为清水层、等浓度层、沉降层和压缩层.基于数值计算结果,提出沉沙池尾部和侧向溢流堰处应采取一定措施,防止水流产生局部回流和旋涡,减少泥沙被带出沉沙池外,从而提高水沙分离效率.  相似文献   

9.
设计提出了一种新型水沙分离系统,并对该分离系统的结构和工作原理做了详细介绍,并对新型水沙分离系统和传统旋流水沙分离系统进行了对比试验。结果表明,同等条件下新型水沙分离系统具有更好的分离效果和更高的分离性能,实际使用时能满足大过水流量的同时又保持较高的除沙能力的要求。  相似文献   

10.
采用物理模型试验方法,开展了相同含沙量下不同流量的分离鳃和普通管水沙分离效率试验。试验结果表明:动水条件时,分离鳃中也出现了垂向和横向异重流现象;当含沙量为10kg/m^3时,分离鳃在浑水进口流量为0.3、0.5、0.7、0.9、1.1m^3/h条件下,水沙分离效率是普通管的1.03~2.26、1.16~2.45、1.30~2.70、1.58~3.85、1.65~1.60倍;分离鳃的最佳浑水进口流量为0.9m^3/h,水沙分离效率可达34.12%,耗水率为5.78%;浑水进口流量为0.3~0.9m^3/h时,分离鳃水沙分离效率随时间的变化可分成缓慢增加、快速增加、缓慢增加3个阶段,而浑水进口流量为1.10m^3/h时仅有缓慢增加阶段。  相似文献   

11.
分离室是种子风力筛选机的重要组成部分,对其室内气流和种子进行气固两相流仿真研究具有重要的工程意义。为此,利用Fluent软件中RNG k-ε湍流模型计算分离室内的气流场分布,在此基础上采用DPM(Discrete Phase Model)模型模拟分离室内饱满种子和轻质杂质运动状态。基于该分离室两相流模型,分析不同的种子喂入量、风门开度和离心风机频率对清选分级效果的影响,并通过正交仿真试验,计算最优工作参数。该研究可为基于气体动力学工作原理的农用机械优化设计提供参考。  相似文献   

12.
锤片式饲料粉碎机分离装置设计与试验   总被引:1,自引:0,他引:1  
为了研究锤片式饲料粉碎机分离装置应具有的合理形状,通过计算物料沿外管壁运动时摩擦力所做的功,得到摩擦力做功最小时外管壁的曲线形状,并根据该形状制作了分离装置。利用ANSYS Workbench软件中的Fluent模块对改进前后分离装置内物料的运动规律进行气-固两相流模拟,比较2种分离装置内的玉米颗粒浓度及玉米颗粒速度分布情况。对2种分离装置的物料输送效果进行了实际粉碎试验,利用高速摄像技术对比2种分离装置内的玉米颗粒分布情况;在不同转速和喂料量的情况下比较2种分离装置对物料的运输分离效果。软件模拟和试验结果均表明:当转速在1 500~3 500 r/min间变化时,新分离装置比原分离装置出料量高0.18~0.3 kg/s。当转速一定时,喂料量越接近理论设计料量,新分离装置的出料量越高于原分离装置。当转速为2 500 r/min,喂料量为5kg时,二者出料量相差约0.01 kg/s。  相似文献   

13.
文章采用层流方程和简化的多相流Mixture模型,针对结构尺寸相同的普通装置和梭锥管进行了浑水质量浓度为5kg/m3的泥沙静水沉降的数值模拟,并将计算结果与PIV测量结果进行对比,计算结果与实测结果吻合较好。详细分析了两装置内速度场、浓度场的特点及区别。结果表明,在梭锥管内,泥沙通道中心断面上泥沙的速度是普通装置内的5-6倍;在相邻锥圈间形成了沿锥圈上表面向下和沿锥圈下表面向上的环流。在普通装置内,泥沙始终沿重力方向竖直向下沉降,泥沙浓度分布比较均匀,速度较小。与普通装置相比,泥沙在梭锥管中沉降的速度较快,且特有的结构—锥圈,改变了泥沙的沉降方向,缩短了沉降距离,增加了沉降面积,使梭锥管内的水沙分离效果更明显。因此,为了提高梭锥管内水沙分离的效率,可以适当增加梭锥管内的锥圈数量以增强其水沙分离性能。  相似文献   

14.
为了解决马铃薯收获机分离装置在工作过程中出现分离效果差、生产效率较低的问题,对收获机分离装置的工作机理进行了研究和分析。在ADAMS中创建分离装置的模型,运用ADAMS的仿真选项求出了质心点的速度、加速度和位移曲线图,通过分析曲线图的变化规律,得到对分离装置效果影响最大的物理量—加速度,同时得到偏心轮转速和偏心轮半径是影响加速度的关键参数,并对分离装置进行了优化设计。结果表明,当偏心轮转速275 r/min,偏心轮半径0.028 m时分离效果最佳。在此基础上,对原有分离装置进行改进,达到提高分离效率、降低伤薯率的目的。  相似文献   

15.
针对油莎豆机械化收获过程中块茎(果)与土壤草团(杂质)分离不彻底导致收获损失率与含杂率较高的问题,设计了一种双层滚筒筛式果杂分离装置,通过理论分析确定了该装置的主要结构参数与工作参数。建立了分离装置-收获物料互作的EDEM-MBD耦合仿真模型,以双层滚筒筛转速、分离螺旋输送器转速、柔性齿段长度为试验因素,以块茎分离率和含杂率为试验指标,依据Box-Behnken试验原理开展三因素三水平仿真试验。对试验结果进行方差分析,建立了分离率、含杂率与各显著因素之间的回归模型,利用回归模型进行参数寻优,结果表明:当双层滚筒筛转速为24.9 r/min、分离螺旋输送器转速为148.5 r/min、柔性齿段长度为1 277.8 mm时,分离率最大,为96.23%,含杂率最小,为25.55%。田间验证试验结果表明:最优参数组合下的果杂分离装置平均分离率为93.19%,平均含杂率为26.65%,与回归模型寻优结果基本一致;果杂分离装置与清选装置联合使用时,分离率增加1.05个百分点,含杂率降低9.97个百分点,可满足油莎豆收获生产需求。  相似文献   

16.
针对新型锤片式粉碎机的粉碎效率很高但分离效率与粉碎效率相比偏低的问题,利用计算流体力学软件FLUENT对新型锤片式粉碎机分离装置内部气固两相流动进行了三维数值模拟,得出了在回料管不同负压情况下分离装置内物料浓度分布状况。计算结果分析表明,回料管内负压是影响粉碎机分离效率的关键因素之一。同时,找出了负压大小与分离效率之间的关系,为新型锤片式粉碎机回料管的优化设计提供了理论依据。  相似文献   

17.
绕水翼加速流空化特性数值模拟   总被引:1,自引:0,他引:1  
为了解翼型加速流动过程中空化特性,采用分离涡湍流模型(Detached eddy simulation,DES)和均相流空化模型对攻角为5.8°的NACA66(mod)水翼进行数值模拟,分析了空化数为0.99、对应雷诺数为8×105时绕二维水翼的非定常流动。通过模拟2种不同加速度(5 m/s2和2.5 m/s2)情况下空化演变过程和流场结构变化特征,得出了加速过程特有的变化规律:不同加速流下空泡都先在翼型的前缘产生,经过一段时间发展壮大,在翼型尾翼处分离,前缘处空泡减少,尾翼处空泡增加并向后衍生,直至破裂。空化产生于总加速时间的0.6倍左右,在总加速时间的1.12倍左右结束第一个周期。加速度越小,升力系数振荡范围越小,阻力系数振荡范围越大,空化发展过程越缓慢。  相似文献   

18.
为研究离心泵动静叶栅内固液两相非定常流动情况,了解流道内的流动细节,以导叶式离心泵为研究对象,采用ICEM软件对模型泵进行结构化六面体网格划分,基于Mixture混合模型和滑移网格(sliding mesh)技术,运用大涡模拟(large eddy simulation,LES)模型对其全流道进行三维非定常数值计算.对比分析了清水和固液两相2种介质时,动静叶栅内的拟序涡流结构及演化过程的不同,并分析了固液两相流介质时流道内几个不同位置处涡的演化.结果表明:泵在输送清水和固液两相介质时,附着涡的结构基本保持不变,而由于叶轮旋转所产生的涡,在叶轮旋转运动的过程中则会有卷曲、合并、撕裂的演化形式;流道内的涡量大小分布规律在清水和固液两相介质下是相同的,但是固体颗粒的加入会加快涡的耗散速度,并且涡产生的位置和合并形式都发生了变化;固液两相介质时,动静叶栅内的涡在不同位置的演化过程是不同的.  相似文献   

19.
应用脉动流化技术于气流筛子式水稻清选装置,有利于增强稻谷与断穗等杂物混合物的分离效果,提高谷物的清洁度。本文在探讨水稻清选机理的基础上,分析了脉动频率(f)、脉宽比(I)对混合物分离效果的影响,提出了水稻联合收割机分选装置中脉动流化技术的研究方向。  相似文献   

20.
为达到有效分离地膜的目的,建立了场地膜秆分离装置的三维计算流体力学模型,采用Fluent软件对场地膜秆分离装置内的流场进行数值模拟分析,改变分离装置送风口的几何尺寸,分析比较其内部流场的压力分布速度分布。结果表明:在送风口和进料口的相对位置为100mm、送风口宽度为200mm和送风口长度为6 0 0 mm时最为合理,为场地膜秆分离装置的结构设计和性能改进提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号