首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z Liu    Q. Sun    Z. Ni  T. Yang  R. A. McIntosh 《Plant Breeding》1999,118(3):215-219
Powdery mildew is an important disease in most of the wheat production areas of the world. The resistance gene Pm21 (6AL/6VS trans-location) derived from Haynaldia villosa confers resistance to all available isolates of Erysiphe (Blumeria) graminis f. sp. tritici in China and Europe. The objective of this study was to develop fast and reliable sequence characterized amplified region (SCAR) markers linked to the Pm21 gene. A random amplified polymorphic DNA (RAPD) marker for Pm21, OPH171400, was converted to SCAR markers after sequencing the two ends of the polymorphic DNA fragment. Two SCAR markers, SCAR1265 and SCAR1400, were developed to detect the Pm21 gene in different genetic backgrounds. The specific SCAR1265 marker enable large-scale accurate screening for the presence/absence of Pm21 allele.  相似文献   

2.
B. K. Das    A. Saini    S. G. Bhagwat    N. Jawali 《Plant Breeding》2006,125(6):544-549
The stem rust resistance gene Sr31, transferred from rye (Secale cereale) into wheat (Triticum aestivum L.) imparts resistance to all the virulent pathotypes of stem rust (Puccinia graminis f. sp. tritici) found in India. Wheat genotypes including carriers and non‐carriers of the Sr31 gene were analysed using arbitrary primed polymerase chain reaction (AP‐PCR). AP‐PCR markers viz. SS30.2580(H) associated with the Sr31 gene and SS26.11100 associated with the allele for susceptibility were identified. Linkage between the markers and phenotypes was confirmed by analysing an F2 population obtained from a cross between a resistant and a susceptible genotype. The markers were tightly linked to the respective alleles. Both the AP‐PCR markers were converted into sequence characterized amplified region (SCAR) markers, viz. SCSS30.2576 and SCSS26.11100 respectively. The markers were validated in two more segregating populations and 49 wheat genotypes. Using both markers it was possible to distinguish the homozygous from the heterozygous carriers of the Sr31 gene in the F2 generation. The markers developed in this study can be used for pyramiding of the Sr31 gene with other rust resistance genes and in marker‐assisted selection.  相似文献   

3.
Y. J. Yi    H. Y. Liu    X. Q. Huang    L. Z. An    F. Wang    X. L. Wang 《Plant Breeding》2008,127(2):116-120
Powdery mildew, caused by Blumeria graminis (DC.) E.O. Speer f. sp. tritici, is an important disease in wheat (Triticum aestivum L.). Bulk segregant analysis (BSA) was employed to identify SRAP (sequence‐related amplified polymorphism), sequence tagged site (STS) and simple sequence repeat (SSR) markers linked to the Pm4b gene, which confers good resistance to powdery mildew in wheat. Out of 240 SRAP primer combinations tested, primer combinations Me8/Em7 and Me12/Em7 yielded 220‐bp and 205‐bp band, respectively, each of them associated with Pm4b. STS‐241 also linked to Pm4b with a genetic distance of 4.9 cM. Among the eight SSR markers located on wheat chromosome 2AL, Xgwm382 was found to be polymorphic and linked to Pm4b with a genetic distance of 11.8 cM. Further analysis was carried out using the four markers to investigate marker validation for marker‐assisted selection (MAS). The results showed that a combination of the linked markers STS?241, Me8/Em7?220 and Xgwm382 could be used for marker‐assisted selection of the resistance gene Pm4b in wheat breeding programmes.  相似文献   

4.
M. L. Irigoyen    Y. Loarce    E. Friero    A. Fominaya    E. Ferrer 《Plant Breeding》2006,125(4):347-351
Genomic sequences with features of the major class of disease resistance genes and which bear nucleotide‐binding leucine‐rich repeat sequences (resistance gene analogs; RGA) were tested as potential markers of crown rust resistance loci in hexaploid oats. Two collections of paired near‐isogenic lines carrying resistance to different isolates of crown rust, Puccinia coronata were screened. Two out of the four RGAs assayed showed restriction fragment length polymorphism (RFLP) between one line of each collection and its recurrent parent. The paired lines X466 and D494 were polymorphic for RGA III2.2 and the pair of lines X470 and D504 were polymorphic for RGA III2.18. The III2.18 polymorphism was located in the hexaploid map Avena byzantina cv. ‘Kanota’ × A. sativa cv. ‘Ogle’ in linkage group KO17 in a region previously associated with crown rust resistance. In addition, 220 random primers were used for random amplified polymorphic DNA (RAPD) analysis to screen the two sets of NILs. Only one polymorphic band was obtained that differentiated the paired lines X470 and D504 from their parents. The RAPD band was used as a probe and the relevant RFLP that differentiated the NILs X470 and D504 was found at 1.7 cM from the III2.18 marker in KO17. RFLP analysis using probes previously mapped in KO17 confirmed differences for X470 and D504 in the region around the III2.18 marker. These results suggest that the resistance locus shared by this pair of NILs is probably linked to the markers revealed by RGA III2.18. The use of RGAs as RFLP probes in the screening of NILs with differences in crown rust resistance has proved to be more effective than RAPDs for finding polymorphic markers possibly linked to resistance loci.  相似文献   

5.
L. Kong    H. W. Ohm    S. E. Cambron    C. E. Williams 《Plant Breeding》2005,124(6):525-531
Hessian fly [Mayetiola destructor (Say)] is one of the major insect pests of wheat (Triticum aestivum L.) worldwide. Hessian fly resistance gene H9 was previously reported to condition resistance to Hessian fly biotype L that is prevalent in many wheat‐growing areas of eastern USA and an RAPD marker, OPO051000, linked to H9 in wheat was developed using wheat near‐isogenic lines (NILs). However, marker‐assisted selection (MAS) with RAPD markers is not always feasible. One of the objectives in this study was to convert an RAPD marker linked to the gene H9 into a sequence characterized amplified region (SCAR) marker to facilitate MAS and to map H9 in the wheat genome. The RAPD fragment from OPO051000 was cloned, sequenced, and converted into a SCAR marker SOPO05909, whose linkage relationship with H9 was subsequently confirmed in two F2 populations segregating for H9. Linkage analysis identified one sequence tagged site (STS) marker, STS‐Pm3, and the eight microsatellite markers Xbarc263, Xcfa2153, Xpsp2999, Xgwm136, Xgdm33, Xcnl76, Xcnl117 and Xwmc24 near the H9 locus on the distal region of the short arm of chromosome 1A, contrary to the previously reported location of H9 on chromosome 5A. Locus Xbarc263 was 1.2 cM distal to H9, which itself was 1.7 cM proximal to loci Xcfa2153, Xpsp2999 and Xgwm136. The loci Xgwm136, Xcfa2153 and SOPO05909 were shown to be specific to H9 and not diagnostic to several other Hessian fly resistance genes, and therefore should be useful for pyramiding H9 with other Hessian fly resistance genes in a single genotype.  相似文献   

6.
J. Liu  D. Liu  W. Tao  W. Li  S. Wang  P. Chen  S. Cheng  D. Gao 《Plant Breeding》2000,119(1):21-24
Breeding durable resistance to pathogens and pests is a major task for modern plant breeders and pyramiding different resistance genes into a genotype is one way of achieving this. Three powdery mildew resistance gene combinations, Pm2+Pm4a, Pm2+Pm21, Pm4a+Pm21 were successfully integrated into an elite wheat cultivar ‘Yang047′. Double homozygotes were selected from a small F2 population with the help of molecular markers. As the parents were near‐isogenic lines (NILs) of ‘Yang158′, the progenies showed good uniformity in morphological and other non‐resistance agronomic traits. The present work illustrates the bright prospects for the utilization of molecular markers in breeding for host resistance.  相似文献   

7.
X. M. Chen    Y. H. Luo    X. C. Xia    L. Q. Xia    X. Chen    Z. L. Ren    Z. H. He    J. Z. Jia 《Plant Breeding》2005,124(3):225-228
The use of resistant cultivars is a most economical way to control powdery mildew (Blumeria graminis f.sp. tritici) in wheat (Triticum aestivum L.). Identification of molecular markers closely linked to resistance genes can greatly increase the efficiency of pyramiding resistance genes in wheat cultivars. The objective of this study was to identify molecular markers closely linked lo the powdery mildew resistance gene Pm16. An F2 population with 156 progeny was produced from the cross‘Chancellor’(susceptible) ב70281’ (resistant), A total of 45 SSR markers on chromosomes 4A and 5B of wheat and 15 SSRs on chromosome 3 of rice was used lo lest the parents, as well as the resistant and susceptible bulks: the resulting polymorphic markers were used to genotype the F2 progeny. Results indicated that the SSR marker Xgwm159, located on the short arm of chromosome 5B, is closely linked to Pm16 (genetic distance: 5.3 CM). The cytogenetical data presented in an original report, in combination with this molecular analysis, suggests that Pm16 may he located on a translocated 4A.5BS chromosome.  相似文献   

8.
Fusarium head blight (FHB) is one of the most destructive diseases in wheat. Identification of resistance gene analogs (RGAs) may provide candidate genes for cloning of FHB resistance genes and molecular markers for marker-assisted improvement of wheat FHB resistance. To identify potential RGAs associated with FHB resistance in wheat, 18 primer pairs of RGAs were screened between two parents (Ning7840 and Clark) and seven informative RGA primer combinations were analyzed in their recombinant inbred lines (RILs). Five PCR products amplified from three primer combinations showed significant association with FHB resistance, and their sequences are similar to the gene families of RGAs. Three of them (RGA14-310, RGA16-462, RGA18-356) were putatively assigned to chromosome 1AL and explained 12.73%, 5.57% and 5.9% of the phenotypic variation for FHB response in the F7 population, and 10.37%, 3.37% and 4.53% in F10 population, respectively; suggesting that these RGAs may play a role in enhancing FHB resistance in wheat. Analysis of nucleotide sequence motifs demonstrated that all the RGA markers contain a heat shock factor that initiates the production of heat shock proteins. A sequence tagged site (STS) marker (FHBSTS1A-160) was successfully converted from RGA18-356, and validated in fourteen other cultivars. Significant interaction between the quantitative trait locus (QTL) on 1AL and the QTL on 3BS was detected. The marker FHBSTS1A-160 in combination with markers linked to the major QTL on 3BS could be used in marker-assisted selection (MAS) for enhanced FHB resistance in wheat.  相似文献   

9.
Q. Sun    Y. Wei    Z. Ni    C. Xie  T. Yang 《Plant Breeding》2002,121(6):539-541
Yellow rust of wheat caused by Puccinia striiformis f sp. tritici has been periodically epidemic and severely damaged wheat production in China and throughout the world. Breeding for resistant cultivars has been proved to be an effective way to resolve the problem. A yellow rust resistance gene, Yr5, derived from Triticum spelta shows immunity or high resistance to the most popular isolates Tiaozhong 30 and 31 in China. Establishment of DNA markers for the Yr5 gene will facilitate marker‐assisted selection and gene pyramiding in the breeding programme. Since the Yr5 gene was cytologically located on the long arm of chromosome 2B, By33, the donor of Yr5, was crossed and backcrossed with the susceptible line 441, and BC3F2 and BC3F3 segregating populations were screened for polymorphism by using 11 microsatellite primers mapped on chromosome 2B. A marker, Xgwm501‐195 bp/160 bp, was found to be linked to Yr5, with a genetic distance of 10.5‐13.3 cM.  相似文献   

10.
Y. Bougot    J. Lemoine    M. T. Pavoine    D. Barloy  G. Doussinault 《Plant Breeding》2002,121(4):325-329
The Pm3 resistance locus, located on chromosome 1A in wheat, confers race‐specific resistance to the obligate biotrophic fungus Blumeria graminis (DC) E.O. Speer f. sp. tritici, the causal agent of powdery mildew. Several Pm3 alleles are still effective in controlling the disease in Europe. A genetic map was constructed to map the Pm3g allele in the recombinant inbred line progeny from the cross ‘RE9001’ (susceptible) בCourtot’ (resistant). Two microsatellite markers were closely mapped to Pm3g. The PSP2999 marker, which cosegregates with this allele, was shown to detect the presence of the Pm3g resistance allele in other cultivars. A collection of 56 wheat cultivars or advanced lines carrying one Pm3 allele was used to assess the allele‐specific amplification of the PSP2999 marker. The same amplification pattern was obtained for lines with Pm3a, Pm3b, Pm3e, Pm3f and Pm3g alleles. Twenty genotypes carrying Pm3d showed a specific amplification pattern. This marker allowed the detection of the Pm3d allele in highly resistant lines whose resistance gene combinations were unknown. It was concluded that PSP2999 is a useful marker to detect Pm3 alleles in parents and to manage them in breeding programmes.  相似文献   

11.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a devastating disease of wheat (Triticum aestivum) in China and worldwide, causing severe yield losses annually. Wild emmer (T. dicoccoides) accession IW72 collected from Israel is resistant to powdery mildew at the seedling and adult stages. Genetic analysis indicated that the resistance was controlled by a single dominant gene, temporarily designated MlIW72. The F2 population and F3 families derived from a hybrid between IW72 and susceptible durum wheat line Mo75 were used for molecular mapping of the resistance gene. MlIW72 was linked with SSR loci Xgwm344, Xcfa2040, Xcfa2240, Xcfa2257 and Xwmc525 on the long arm of chromosome 7A. In addition, two STS markers, MAG2185 (derived from RFLP marker PSR680) and MAG1759 (developed from EST CD452874), were mapped close to MlIW72. All these markers were physically located in the terminal bin 0.86–1.00 of 7AL. The chromosome location and genetic mapping results suggested that the powdery mildew resistance gene identified in wild emmer accession IW72 might be a new allele at the Pm1 locus or a new locus closely linked to Pm1.  相似文献   

12.
Diseases cause significant losses in cotton production throughout the US Cotton Belt. Growing resistant cultivars can significantly improve cotton yields and effectively reduce production inputs. Disease resistance (R) genes have been isolated in numerous plant species and the R genes with domains of nucleotide binding sites (NB) and leucine rich repeats (LRR) represent the largest R gene family. Degenerate primers designed based on conserved motifs of plant disease resistance genes were used alone or in combination with AFLP primers to analyze disease resistance gene analogs (RGAs) in a recombinant inbred line (RIL) population of Pima (Gossypium barbadense) 3–79 and Upland cotton (G. hirsutum) line NM 24016. Eighty-eight polymorphic RGA markers were amplified by 8 pairs of RGA degenerate primers, while 131 polymorphic RGA-AFLP markers were produced from six pairs of RGA-AFLP primer combinations. Of the 219 polymorphic RGA and RGA-AFLP markers that were identified, 212 were assigned to 18 chromosomes and linkage groups based on existing SSR markers that are on known chromosomes. However, the RGA and RGA-AFLP markers are not evenly distributed among chromosomes in that 189 RGA and RGA-AFLP markers (88%) are assigned onto three “giant” chromosomes, i.e., C6, C12, and C15, suggesting RGA clusters in the cotton genome. Several RGA and RGA-AFLP markers were mapped to the same linkage group carrying a root-knot nematode resistance gene. The identification and mapping of RGA and RGA-AFLP markers provide a framework to facilitate marker-assisted selection of disease resistance in cotton breeding and to understand the physical relationship of cotton resistance genes.  相似文献   

13.
The majority of verified plant disease resistance genes isolated to date belong to the NBS‐LRR class, encoding proteins with a predicted nucleotide binding site (NBS) and a leucine‐rich repeat (LRR) region. Using degenerate primers, designed from the conserved motifs of the NBS region in tobacco N and Arabidopsis RPS2 genes, we isolated 190 resistance gene analogs (RGA) clones from barley genomic DNA. A total of 13 single‐ and low‐copy RGAs were genetically mapped onto chromosomes 1H–7H (except 5H) using three barley double haploid (DH) mapping populations: Steptoe × Morex, Harrington × TR306 and LUGC × Bowman. Sequence analysis of the RGAs showed that they are members of a diverse group. As a result of BLAST searches, one RGA proved unique as it did not detect any significant hit. Another RGA is putatively functional, because it detected several barley expressed sequence tag (EST) matches. To physically map the RGAs, 13 sequences were used to screen a 6.3 × cv. ‘Morex’ bacterial artificial chromosome (BAC) library. After fingerprint analysis, eight contigs were constructed incorporating 62 BAC clones. These BAC contigs are of great value for positional cloning of disease resistance genes, because they span the regions where various barley R genes have been genetically mapped.  相似文献   

14.
Chromosomal localization and linkage mapping of a powdery mildewresistance gene were conducted in the resistant wheat line Pova, derivedfrom a Triticum aestivum cv. Poros-Aegilops ovata-alien additionline. Monosomic analysis revealed that a major dominant gene was locatedon chromosome 7D. This gene possessed a distinct disease response patternagainst a differential set of Blumeria graminis tritici isolates andsegregated independently from resistance gene Pm19 also located onwheat chromosome 7D. Molecular genetic analysis showed that theresistance gene in Pova was specifically located on the long arm ofchromosome 7D closely linked to one RFLP and three AFLP markers. It isproposed that the new gene be designated Pm29.  相似文献   

15.
The objective of the study was to provide information about the occurrence and distribution of resistance genes in wheat cultivars, including old cultivars, land races and advanced breeding lines grown in China. Ninety-four accessions were analysed with a set of 11 differential powdery mildew isolates. Forty-four cultivars did not possess any major mildew resistance genes. Thirty cultivars revealed the response pattern of individual resistance genes. The most frequently encountered gene was Pm8, which occurred singly in 11 cultivars, combined either with Pm4a in three cultivars or with Pm4b in another three cultivars. However, 12 cultivars possessing the wheat-rye translocated chromosome pair T1BL-1RS did not express Pm8. Gene Pm2 was found in four cultivars and in combination with Pm6 in one cultivar. Genes Pm4a and Pm4b were observed in four and five cultivars, respectively. Another six cultivars carried Pm5. A gene combination of Pm2+Pm4b+Pm6 was found in one cultivar. Twelve cultivars and breeding lines exhibited a response pattern that could not be assigned to resistance genes or gene combinations present in the differential cultivars. Five out of these 12 cultivars/lines showed resistance to all the isolates tested. There is an urgent need to search for novel sources of mildew resistance in order to sustain resistance to existing and emerging powdery mildew pathogens.  相似文献   

16.
M. Gowda    S. Roy-Barman    B. B. Chattoo 《Plant Breeding》2006,125(6):596-599
Blast, caused by Magnaporthe grisea, is the most devastating disease of rice worldwide. In this study, the main objective was to identify and map a new gene for blast resistance, in an indica rice cultivar ‘Tadukan’ against blast fungal isolate B157, using molecular tools. F2 segregating population was derived from ‘CO39’ (susceptible) and ‘Tadukan’ (resistant), and molecular mapping of the blast resistance gene was carried out using simple sequence length polymorphism (SSLP) and amplified fragment length polymorphism (AFLP) methods. Two SSLP markers, RM206 and RM21 and three AFLP markers (AF1: E‐aca/M‐ctt; AF2: E‐aca/M‐cat and AF3: E‐acc/M‐cac2) were identified to be linked to the resistance gene. The co‐segregation analysis using SSLP markers implied that the blast resistance gene designated Pi38 resides on rice chromosome 11.  相似文献   

17.
J. S. Niu    B. Q. Wang    Y. H. Wang    A. Z. Cao    Z. J. Qi    T. M. Shen 《Plant Breeding》2008,127(4):346-349
Wheat lines known as 'Lankao 90(6)', derived from the cross 'Mzalenod Beer' (hexaploid triticale)/'Baofeng 7228'//'90 Xuanxi', carry a recessive powdery mildew resistance gene temporarily named PmLK906 . Gene PmLK906 appears to be different from known wheat powdery mildew resistance genes. PmLK906 was tagged using microsatellite markers in a segregating population derived from the cross 'Chinese Spring'/'Lankao 90(6)21-12'. The dominant microsatellite marker Xgwm265-2AL was linked in repulsion with PmLK906 at a genetic distance of 3.72 cM, whereas the co-dominant Xgdm93-2AL was linked to PmLK906 at a genetic distance of 6.15 cM. Both markers were placed on chromosome arm 2AL using 'Chinese Spring' nulli-tetrasomic lines. The recessive PmLK906 has a different specificity to the dominant resistance alleles located at the Pm4 locus and appeared to be located to a locus different from Pm4 .  相似文献   

18.
I. Leonova    A. Borner    E. Budashkina    N. Kalinina    O. Unger    M. Röuder  E. Salina 《Plant Breeding》2004,123(1):93-95
The tetraploid wheat Triticum timopheevii Zhuk (AtAtGG) is known as a source of genes determining resistance to many diseases. An introgressive line 842, with durable resistance to leaf rust was established by crossing T. aestivum cv. ‘Saratovskaya29’ with T. timopheevii ssp. viticulosum and used for mapping leaf rust resistance genes. Molecular analysis of the line 842 with polymorphic microsatellite markers detected introgressions of T. timopheevii into the homoeologous group 2 chromosomes of common wheat. Transloca‐tion breakpoints of introgressed fragments were localized between the markers Xgwm95 and Xgwm817 on chromosome 2A, as well as Xgwm1128 and Xgwm1067 on chromosome 2B. Linkage analysis demonstrated the association of disease resistance at the seedling stage with chromosome 2A. The gene was found to be linked with marker Xgwm817 at a genetic distance of 1.5 cM. The alien leaf rust resistance gene was temporarily designated as lrTt1.  相似文献   

19.
Resistance gene analog polymorphism (RGAP)is a targeted homology based method, which has been used in different crops to identify tightly linked markers for disease resistance genes and also to enrich the map with a different class of markers. In chickpea, using the RGA primers, which are designed based on the conserved motifs present in characterized R-genes, Bulk Segregant Analysis (BSA) was performed on a resistant bulk and a susceptible bulk along with parents for ascochyta blight resistance. Of all available RGAs and their48 different combinations, only one RGA showed polymorphism during BSA. This marker was evaluated in an F7:8 population of142 RILs from an interspecific cross ofC. arietinum (FLIP 84-92C) × C. reticulatum (PI 599072) and was mapped toCicer linkage map. The genomic location of chickpea RGA was compared with the locations of mapped chickpea R-genes. This is the first RGA marker mapped to chickpea linkage map. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The powdery mildew resistance allele Pm5d in the backcross-derived wheat lines IGV1-455 (CI10904/7*Prins) and IGV1-556 (CI10904/7*Starke) shows a wide spectrum of resistance and virulent pathotypes have not yet been detected in Germany. Although this allele may be distinguished from the other documented Pm5 alleles by employing a differential set of Blumeria graminis tritici isolates, the use of linked molecular markers could enhance selection, especially for gene pyramiding. Pm5d was genetically mapped relative to six microsatellite markers in the distal part of chromosome 7BL using 82 F3 families of the cross Chinese Spring × IGV1-455. Microsatellite-based deletion line mapping placed Pm5d in the terminal 14% of chromosome 7BL. The closely linked microsatellite markers Xgwm577 and Xwmc581 showed useful variation for distinguishing the different Pm5 alleles except the ones originating from Chinese wheat germplasm. Their use, however, would be limited to particular crosses because they are not functional markers. The occurrence of resistance genes closely linked to the Pm5 locus is discussed. Ghazaleh Nematollahi and Volker Mohler equally contributed to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号