首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Impact of soil fumigation practices on soil nematodes and microbial biomass   总被引:4,自引:2,他引:4  
This study was designed to understand the impact of methyl bromide (MB) (CHaBr) and its alternatives on both free-living and root-knot nematodes in the soil. A randomized complete block experiment with six treatments and 4 replicates (each replicate in a separate greenhouse) was established in Qingzhou, Shandong Province, China. In addition to MB and untreated control (CK) treatments there were four alternative soil fumigation practices including MB virtually impermeable films (VIF), metam sodium (MS), MS VIF and soil solarization combined with selected biological control agents (SS BCA). Two tomato (Lycopersicum esculentum Mill.) cultivars, cv. Maofen-802 from the Xian Institute of Vegetable Science, China, and cv. AF179 Brillante from the Israeli Hazera Quality Seeds, were selected as test crops. The results indicated that Rhabditidae was the most dominant population with percentage abundance as high as 85% of the total number of identified free-living nematodes, followed by that of Cephalobidae. Methyl bromide and its alternatives except for the non-chemical SS BCA treatment controlled the target pest, root-knot nematodes. Also, the impact of the three chemical alternatives on free-living nematode number and functional group abundance was similar to the impact associated with a typical methyl bromide application. Chemical fumigation practices, especially that with MB, significantly reduced the number of nematodes in the soil and simultaneously significantly reduced the number of nematode genera thereby reducing nematode diversity. All the four soil chemical fumigation activities decreased soil microbial biomass and had an obvious initial impact on microorganism biomass. Furthermore, both plant-parasitic and fungivore nematodes were positively correlated with soil microbial biomass.  相似文献   

2.
The efficiency and acceptance for erosion and compaction control management is not high and therefore not a guarantee for sustainable land use and soil functionality. The best method for increasing acceptance is a regional soil indicator system combined with an environmental indicator system (McRae et al. 2000). Like the concept of “critical load inputs”; for chemical pollutants, this system would make it possible to quantify the soil state and soil condition for decisions concerning the soil carrying or load capacity. The next step is the assessment of the land use pressure on soil in terms of the soil load capacity and the driving forces for land use. These results may determine the response level required: In a balanced situation, Best Management Practices may help ensure sustainability is maintained, slightly disproportional results suggest additional special agricultural management techniques may be needed, while significant differences may indicate the need for additional land use adjustments or changes in technical management. The indicator system is ideal for application in north‐eastern Germany for all moraine areas and the areas at risk to water and wind erosion and soil compaction.  相似文献   

3.
Abstract

Soil compaction is a significant production problem for agriculture because of its negative impact on plant growth, which in many cases has been attributed to changes in soil N transformations. A laboratory experiment was conducted to study the effect of soil compaction and water‐filled pore space on soil microbial activity and N losses. A hydraulic soil compaction device was used to evenly compress a Norfolk loamy sand (fine‐loamy, siliceous, thermic Typic Kandiudults) soil into 50 mm diameter by 127 mm long cores. A factorial arrangement of three bulk density levels (1.4, 1.6, and 1.8 Mg/m3) and four water‐filled pore space levels (60, 65, 70, 75%) was used. Fertilizer application of 168 kg N/ha was made as 1.0 atom % 15N as NH4NO3. Soil cores were incubated at 25°C for 21 d. Microbial activity decreased with both increasing water‐filled pore space and soil bulk density as measured by CO2‐C entrapment. Nitrogen loss increased with increasing bulk density from 92.8 to 334.4 g N/m3 soil at 60% water‐filled pore space, for 1.4 and 1.8 Mg/m3, respectively. These data indicate that N loss and soil microbial activity depends not only on the pore space occupied by water, but also on structure and size of soil pores which are altered by compaction.  相似文献   

4.
Yu  Kun  Duan  Yang  Zhang  Maosheng  Dong  Ying  Wang  Luchen  Wang  Ye  Guo  Xu  Hu  Fusheng 《Journal of Soils and Sediments》2020,20(4):1943-1959
Journal of Soils and Sediments - Land subsidence has caused serious geological damage in many countries, including China. Soil pore number, size, shape, and pore size distribution affect soil...  相似文献   

5.
Abstract

The widely used hot‐water extraction method for soil boron was compared with acid ammonium acetate (AAAc) and acid ammonium acetate‐EDTA (AAAc‐EDTA) for boron determination. According to the results AAAc and AAAc‐EDTA were similar in their extracting power but these extracted only about one third of the boron amounts of the hot water extraction method. This sets special requirements for the sensitivity of the method of determination if these extractants are used. There was no significant difference in the correlation between timothy boron and soil boron assessed with studied methods and the coefficient of correlation ranged from 0.34 to 0.37. Interpretation for AAAc and AAAc‐EDTA tests was derived of that of the hot water method in use in Finland. The sensitivity of the ICP method was too poor to accurately separate between most deficient classes but there was no problems in separation between soils in need of boron fertilization and those which are satisfactory with respect to boron.  相似文献   

6.
Exploring soil layers and water tables with ground-penetrating radar   总被引:6,自引:0,他引:6  
Ground-penetrating radar (GPR) has been used predominantly for environments with low electrical conductivity like freshwater aquifers, glaciers, or dry sandy soils. The objective of the present study was to explore its application for mapping in subsurface agricultural soils to a depth of several meters. For a loamy sand and a clayey site on the North China Plain, clay inclusions in the sand were detected; the thickness, inclination, and continuity of the confining clay and silt layers was assessed; and a local water table was mapped. Direct sampling (soil coring and profiling) in the top meter and independent measurement of the water table were utilized to confirm the findings. Also, effective estimates of the dielectric number for the site with the dielectric number of moist clayey soils depending strongly on frequency were obtained. Thus, important properties of soils, like the arrangement and type of layers and in particular their continuity and inclination, could be explored with moderate efforts for rather large areas to help find optimal locations for the time-consuming and expensive measurements which would be necessary to detail a model of the subsurface.  相似文献   

7.
The indicators of functioning of soil microorganisms in soddy–podzolic soil contaminated with Ni compounds show different ranges of soil ecotoxicity. A halving of soil microorganisms' nitrogen-fixing activity has been shown in slightly acidic soddy–podzolic cultivated soil with a Ni concentration of 150 mg/kg and for noncultivated acidic soils with a Ni concentration 100 mg/kg. The reduction of denitrification activity in cultivated soil has been observed with a Ni concentration of 500 mg/kg, and in uncultivated soil it has been observed at a Ni dose of 100 mg/kg. The inhibition of soil respiration in slightly acidic soil occurred only at the highest dose of Ni, 1000 mg/kg, while in the acidic soil it took place at 300 mg/kg. Biotesting based on bacterial luminescence can be used for determination of soil pollution with heavy metals such as Ni, as well as for the assessment of the toxicity of aqueous environments in contact with contaminated soils.  相似文献   

8.
Abstract

Extracting sludge‐amended soil with DTPA does not always give a reliable measure of plant‐available heavy metals. The major purpose of this greenhouse pot study was to help explain why. Two anaerobically digested sludges from sewages treated with either Ca(OH)2or FeCl3were applied to 3‐kg samples of a Mollic Albaqualf previously limed with Ca(OH)2rates of 0, 2.5, and 10g/pot that resulted in pHs in the check pots of 5.4, 6.2, or 7.7 after the first harvest. Sludge rates provided 0, 200, 40, 800, and 1600 mg Zn kg‐1of soil. Two consecutive crops of soybeans (Glycine MaxL.) were grown for 42 d each in the greenhouse. DTPA‐extractable, soil‐solution, and plant concentrations of Cu2+, Ni2+, and Zn2+were measured.

Dry matter yields were depressed due to salt toxicity, while DTPA‐extracted Cu2+correlated with plant uptake of Cu2+for both sludges. DTPA‐extracted Ni2+also correlated with plant Ni2+from the Ca(OH)2‐sludge‐amended soil, although DTPA‐extracted Ni2+did not correlate with plant uptake of Ni2+from the FeCl3‐sludge‐amended soil, DTPA‐extracted Zn did not correlate with plant uptake of Zn2+from any sludge‐amended soil. Soil‐solution composition correlated with plant uptake of Cu2+and Ni2+in both sludges; it also correlated with plant uptake of Zn2+from FeCl3‐sludge‐amended soil but not from Ca(OH)2‐sludge‐amended soil. DTPA extraction probably failed with Ni2+and Zn2+because of (i) its ineffectiveness at low pH, (ii) the inability of DTPA to buffer each soil extract near pH 7.3, and (iii) increased amounts of soluble chelated micronutrients at higher sludge rates and higher soil pHs. Soil‐solution composition seemed to fail only where micronutrient cations in solution probably were present largely as organic chelates  相似文献   

9.
Nanoplastics (NPs) are accumulating in the soil environment at a rapid rate, which may cause serious consequences for ecosystems and human health. However, environmental behaviour and toxicity of NPs in the soil–plant system remain poorly understood. This review summarizes current studies on NP–plant interactions to unravel uptake mechanisms and phytotoxicity of NPs. NPs could be taken up by plant roots and transported upwards through the xylem to all organs of the plant, even to the edible parts such as the grain, thereby threatening human health. The interaction of NPs with plants affects plant transport of water and nutrients. Besides, it induces significant oxidative stress leading to inhibition of physiological and biochemical activities such as photosynthesis, and thus adversely affects plant growth and development. In addition, the co-transport of NPs with other soil pollutants may induce the combined toxic effects. This study also discussed the potential mechanism of NP–plant interactions based on previous experience with engineered nanomaterials. Finally, a comprehensive assessment of the key challenges in each area was presented, and future perspectives are offered.  相似文献   

10.
In situ field measurements as well as targeted laboratory studies have shown that freeze–thaw cycles (FTCs) affect soil trace gas fluxes. However, most of past laboratory studies adjusted soil moisture before soil freezing, thereby neglecting that snow cover or water from melting snow may modify effects of FTCs on soil trace gas fluxes. In the present laboratory study with a typical semi-arid grassland soil, three different soil moisture levels (32 %, 41 %, and 50 % WFPS) were established (a) prior to soil freezing or (b) by adding fresh snow to the soil surface after freezing to simulate field conditions and the effect of the melting snow on CO2, CH4, and N2O fluxes during FTCs more realistically. Our results showed that adjusting soil moisture by watering before soil freezing resulted in significantly different cumulative fluxes of CH4, CO2, and N2O throughout three FTCs as compared to the snow cover treatment, especially at a relatively high soil moisture level of 50 % WFPS. An increase of N2O emissions was observed during thawing for both treatments. However, in the watering treatment, this increase was highest in the first thawing cycle and decreased in successive cycles, while in the snow cover treatment, a repetition of the FTCs resulted in a further increase of N2O emissions. These differences might be partly due to the different soil water dynamics during FTCs in the two treatments. CO2 emissions were a function of soil moisture, with emissions being largest at 50 % WFPS and smallest at 32 % WFPS. The largest N2O emissions were observed at WFPS values around 50 %, whereas there were only small or negligible N2O emissions from soil with relatively low soil water content, which indicates that a threshold value of soil moisture might exist that triggers N2O peaks during thawing.  相似文献   

11.
The nature of soil is modified differently depending upon the artificial condition such as its utilization or management. It is therefore expected that the microbiological characteristic of soil is changed also. Greaves1) and Williams2) reported that the reclamation of virgin soil brought about a change of bacterial count. Suzuki et al3) observed that the kind of fungi differed between a virgin and a cultivated soil and that the vegetative mycelium was numerous in the former than in the latter. On the other hand, according to W aksman and Starkey4), the bacterial count differed depending upon the fertility of soil. Singh5) reported also that the number of fungi and actinomycetes was higher in a fertile than in an infertile soil. Lochhead6), and Lochhead and Chasen studied the bacterial flora of a fertile (long-continued application of manure) and an infertile (no fertilizer for many years) soil and found that a certain difference could be observed when morphological, physiological and nutritional classification are tried.  相似文献   

12.
Fumigation of field soil with chloropicrin alone or followed by methyl bromide, each at 220Kg·ha?1, released 20–30 parts/106 NH+4-N which persisted for 75 days; such fumigation also doubled the amount of bicarbonate-extractable phosphate 28 days after fumigation. Soil fumigation increased both the vegetative and grain yields as well as increasing the content of N in the grain and the content of K and Cl in the tops at ear emergence. Root growth and the phosphate uptake activity of the roots were increased by soil fumigation.  相似文献   

13.
14.
Soil salinity is one of the major problems of agriculture that limits plant performance, particularly in arid and semiarid regions. Therefore, the effect of potassium humate (KH) and α-tocopherol (TOC), used singly or in integration, on soil characteristics, and on plant performance, physio-biochemical attributes and antioxidative defense system of Phaseolus vulgaris L. plants grown under salt stress (EC = 6.35–6.42 dS m?1) was investigated. Half g KH kg?1 soil was used as soil amendment before sowing and 1.0 mM TOC was used as foliar spray twice; at 25 and 40 days after sowing. Results showed that, KH significantly improved soil physical and chemical properties, which positively reflected on plant growth and productivity, physio-biochemical attributes, mineral nutrients (N, P, K and Ca), osmoprotectants (soluble sugars and proline), non-enzymatic (ascorbic acid, glutathione and TOC) and enzymatic (superoxide dismutase, catalase and guaiacol peroxidase (GPOX)) antioxidants compared to untreated controls. The single TOC foliar application recorded the same positive results of KH. Integrated KH + TOC treatment was most effective compared to the single treatments. The above results recommended benefits of this integrated KH + TOC for the possibility of sustainable agronomic performance of common beans grown on saline soils.  相似文献   

15.
1.3-β-Glucanase (laminarinase) activity in soil was measured using laminarin as the substrate. Activity was optimal in sodium acid-maleate buffer at pH 5.4 and followed Michaelis-Menten kinetics. Three methods of analysing kinetic data gave Km values of 0.23, 0.21 and 0.20 mg.ml?1. Vmax values were 0.41, 0.39 and 0.39 μmole glucose, g?1. h?1. The activation energy of the reaction was 49 kJ. mole?1. A proportion of the activity was highly resistant to storage at various temperatures: at 50 C 1,3-β-glucanase had a half-life of 28 days.  相似文献   

16.
We used natural gradients in soil and vegetation δ13C signatures in a savannah ecosystem in Texas to partition soil respiration into the autotrophic (Ra) and heterotrophic (Rh) components. We measured soil respiration along short transects from under clusters of C3 trees into the C4 dominated grassland. The site chosen for the study was experiencing a prolonged drought, so an irrigation treatment was applied at two positions of each transect. Soil surface CO2 efflux was measured along transects and CO2 collected for analysis of the δ13C signature in order to: (i) determine how soil respiration rates varied along transects and were affected by localised change in soil moisture and (ii) partition the soil surface CO2 efflux into Ra and Rh, which required measurement of the δ13C signature of root- and soil-derived CO2 for use in a mass balance model.The soil at the site was unusually dry, with mean volumetric soil water content of 8.2%. Soil respiration rates were fastest in the centre of the tree cluster (1.5 ± 0.18 μmol m?2 s?1; mean ± SE) and slowest at the cluster–grassland transition (0.6 ± 0.12 μmol m?2 s?1). Irrigation produced a 7–11 fold increase in the soil respiration rate. There were no significant differences (p > 0.5) between the δ13C signature of root biomass and respired CO2, but differences (p < 0.01) were observed between the respired CO2 and soil when sampled at the edge of the clusters and in the grassland. Therefore, end member values were measured by root and soil incubations, with times kept constant at 30 min for roots and 2 h for soils. The δ13C signature of the soil surface CO2 efflux and the two end member values were used to calculate that, in the irrigated soils, Rh comprised 51 ± 13.5% of the soil surface CO2 efflux at the mid canopy position and 57 ± 7.4% at the drip line. In non-irrigated soil it was not possible to partition soil respiration, because the δ13C signature of the soil surface CO2 efflux was enriched compared to both the end member values. This was probably due to a combination of the very dry porous soils at our study site (which may have been particularly susceptible to ingress of atmospheric CO2) and the very slow respiration rates of the non-irrigated soils.  相似文献   

17.
18.
Li  Yuqian  Ma  Junwei  Xiao  Chen  Li  Yijia 《Journal of Soils and Sediments》2020,20(4):1970-1982
Purpose

Soil nutrients, elemental stoichiometry, and their associated environmental control play important roles in nutrient cycling. The objectives of this study were (1) to investigate soil nutrients and elemental stoichiometry, especially potassium and its associative elemental stoichiometry with other nutrients under different land uses in terrestrial ecosystems; (2) to discuss the impacts of climate factors, soil texture, and soil physicochemical properties; and (3) to identify the key factors on soil nutrient levels and elemental stoichiometry.

Materials and methods

Soil data, including pH, bulk density (BD), cation exchange capacity (CEC), volumetric water content (VMC), clay, silt and sand contents, total carbon (TC), nitrogen (TN), phosphorous (TP) and potassium (TK), available nitrogen (AN), phosphorus (AP), potassium (AK), and soil organic matter (SOM) under different land-use types, were collected, and their elemental stoichiometry ratios were calculated. Climate data including temperature, precipitation, relative humidity, wind speed, and evapotranspiration were collected. The least significant difference test and one-way analysis of variance were applied to investigate the variability of soil nutrients and elemental stoichiometry among land-use types; the ordinary least squares method and the general linear model were used to illustrate the correlations between soil nutrients, elemental stoichiometry, and soil properties or climate factors and to identify the key influencing factors.

Results and discussion

Woodlands had the highest SOM, TN, AN, and AK contents, followed by grasslands, croplands, and shrublands, while the TP and TK contents only varied slightly among land-use types. SOM, TN, AN, N/P, and N/K were strongly negatively correlated to soil pH (p <?0.05) and were strongly positively correlated to soil CEC (p <?0.05). For soil texture, only C/N was moderately negatively correlated to silt content but moderately positively correlated to sand content (p <?0.05). For climate factors, SOM, TN, AN, N/P, and N/K were significantly negatively correlated to evapotranspiration and temperature (p <?0.05), and the correlations were usually moderate. Soil pH explained most of the total variation in soil nutrients, and climate factors explained 5.64–28.16% of soil nutrients and elemental stoichiometry (except for AP (0.0%) and TK (68.35%)).

Conclusions

The results suggest that climate factors and soil properties both affect soil nutrients and elemental stoichiometry, and soil properties generally contribute more than climate factors to soil nutrient levels. The findings will help to improve our knowledge of nutrient flux responses to climate change while also assisting in developing management measures related to soil nutrients under conditions of climate change.

  相似文献   

19.
ABSTRACT

Today, soil metal pollution has become a significant environmental issue of great public concern. This is because soil is both a major sink for heavy metal(loid)s (HMs) released into the environment, by both pedogenic and anthropogenic activities; and also a major source of food chain contamination mainly through plant uptake and animal transfer. In addition, HM contamination of soil leads to negative impacts on soil characteristics and function by disturbing both soil biological and physiochemical properties (e.g. extreme soil pH, poor soil structure and soil fertility and lack of soil microbial activity). This eventually leads to decreased crop production. Various soil remediation techniques have been successfully employed to reduce the risks associated with HMs efflux into soil. Among these, the use of low-cost and environmentally safe inorganic and organic amendments for the in-situ immobilization of HMs has become increasingly popular. Immobilization agents have successfully reduced the availability of metal ions through a variety of adsorption, complexation, precipitation, and redox reactions. Soil amendments can also be a source of nutrients and thus can also act as a soil conditioner, improving the soil’s physiochemical properties and fertility, resulting in enhanced plant establishment in metal contaminated soils. This article critically reviews the use of immobilizing agents in HM contaminated agricultural and mining soils paying particular attention to metal immobilization chemistry and the effects of soil amendments on common soil quality parameters.  相似文献   

20.
《Soil biology & biochemistry》2001,33(7-8):1029-1036
Soil microbiological analyses may serve as a means for assessing soil characteristics. Standard microbiological culture-techniques, however, leave over 90% of the microorganisms in the environment unaccounted for. Several more recently developed analytical techniques such as DNA, phospholipid fatty acid (PLFA), and community level substrate utilization (CLSU) fingerprints allow for more detailed analyses of soil microbial communities. We applied analyses of (1) community DNA with PCR and restriction fragment length polymorphism (RFLP), (2) community PLFAs with gas chromatography and mass spectrometry, and (3) CLSU with Biolog™ gram-negative-plates, to evaluate the biological characteristics of three soils used in pesticide degradation studies. Each of these methods analyzes a different aspect of soil microbial characteristics. A protocol was developed for the statistical comparison and combination of the data from all the analyses, thus allowing for a polyphasic approach to biological soil characterization. We found that all three methods yielded highly reproducible results for each soil and allowed to distinguish the soils based on the structures of specific gene- and PLFA-pools as well as on CLSU fingerprints. Not all methods, however, revealed the same relative similarities of the three soils based on cluster analysis of the biological characteristics. These results demonstrate the value of comparative data analyses and indicate that biological soil characterization needs to be interpreted with caution if it is performed with one method only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号